Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    TypeError
Message:      Mask must be a pyarrow.Array of type boolean
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1586, in _prepare_split_single
                  writer.write(example, key)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 623, in write
                  self.write_examples_on_file()
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 581, in write_examples_on_file
                  self.write_batch(batch_examples=batch_examples)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 701, in write_batch
                  self.write_table(pa_table, writer_batch_size)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 716, in write_table
                  pa_table = embed_table_storage(pa_table)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2249, in embed_table_storage
                  embed_array_storage(table[name], feature, token_per_repo_id=token_per_repo_id)
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2124, in embed_array_storage
                  return feature.embed_storage(array, token_per_repo_id=token_per_repo_id)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/pdf.py", line 260, in embed_storage
                  storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
                            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/array.pxi", line 4259, in pyarrow.lib.StructArray.from_arrays
                File "pyarrow/array.pxi", line 4929, in pyarrow.lib.c_mask_inverted_from_obj
              TypeError: Mask must be a pyarrow.Array of type boolean
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1595, in _prepare_split_single
                  num_examples, num_bytes = writer.finalize()
                                            ^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 728, in finalize
                  self.write_examples_on_file()
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 581, in write_examples_on_file
                  self.write_batch(batch_examples=batch_examples)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 701, in write_batch
                  self.write_table(pa_table, writer_batch_size)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 716, in write_table
                  pa_table = embed_table_storage(pa_table)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2249, in embed_table_storage
                  embed_array_storage(table[name], feature, token_per_repo_id=token_per_repo_id)
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2124, in embed_array_storage
                  return feature.embed_storage(array, token_per_repo_id=token_per_repo_id)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/pdf.py", line 260, in embed_storage
                  storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
                            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/array.pxi", line 4259, in pyarrow.lib.StructArray.from_arrays
                File "pyarrow/array.pxi", line 4929, in pyarrow.lib.c_mask_inverted_from_obj
              TypeError: Mask must be a pyarrow.Array of type boolean
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1334, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 911, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1447, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1604, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

pdf
pdf
label
class label
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
End of preview.
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

ScienceMetaBench

English | 中文

🤗 HuggingFace Dataset | 💻 GitHub Repository

ScienceMetaBench is a benchmark dataset for evaluating the accuracy of metadata extraction from scientific literature PDF files. The dataset covers three major categories: academic papers, textbooks, and ebooks, and can be used to assess the performance of Large Language Models (LLMs) or other information extraction systems.

📊 Dataset Overview

Data Types

This benchmark includes three types of scientific literature:

  1. Papers

    • Mainly from academic journals and conferences
    • Contains academic metadata such as DOI, keywords, etc.
  2. Textbooks

    • Formally published textbooks
    • Includes ISBN, publisher, and other publication information
  3. Ebooks

    • Digitized historical documents and books
    • Covers multiple languages and disciplines

Data Batches

This benchmark has undergone two rounds of data expansion, with each round adding new sample data:

data/
├── 20250806/          # First batch (August 6, 2024)
│   ├── ebook_0806.jsonl
│   ├── paper_0806.jsonl
│   └── textbook_0806.jsonl
└── 20251022/          # Second batch (October 22, 2024)
    ├── ebook_1022.jsonl
    ├── paper_1022.jsonl
    └── textbook_1022.jsonl

Note: The two batches of data complement each other to form a complete benchmark dataset. You can choose to use a single batch or merge them as needed.

PDF Files

The pdf/ directory contains the original PDF files corresponding to the benchmark data, with a directory structure consistent with the data/ directory.

File Naming Convention: All PDF files are named using their SHA256 hash values, in the format {sha256}.pdf. This naming scheme ensures file uniqueness and traceability, making it easy to locate the corresponding source file using the sha256 field in the JSONL data.

📝 Data Format

All data files are in JSONL format (one JSON object per line).

Academic Paper Fields

{
  "sha256": "SHA256 hash of the file",
  "origin_path": "Original path of the PDF file",
  "doi": "Digital Object Identifier",
  "title": "Paper title",
  "author": "Author name",
  "keyword": "Keywords (comma-separated)",
  "abstract": "Abstract content",
  "pub_time": "Publication year"
}

Textbook/Ebook Fields

{
  "sha256": "SHA256 hash of the file",
  "origin_path": "Original path of the PDF file",
  "isbn": "International Standard Book Number",
  "title": "Book title",
  "author": "Author name",
  "abstract": "Introduction/abstract",
  "category": "Classification number (e.g., Chinese Library Classification)",
  "pub_time": "Publication year",
  "publisher": "Publisher"
}

📖 Data Examples

Academic Paper Example

The following image shows an example of metadata fields extracted from an academic paper PDF:

Academic Paper Example

As shown in the image, the following key information needs to be extracted from the paper's first page:

  • DOI: Digital Object Identifier (e.g., 10.1186/s41038-017-0090-z)
  • Title: Paper title
  • Author: Author name
  • Keyword: List of keywords
  • Abstract: Paper abstract
  • pub_time: Publication time (usually the year)

Textbook/Ebook Example

The following image shows an example of metadata fields extracted from the copyright page of a Chinese ebook PDF:

Textbook Example

As shown in the image, the following key information needs to be extracted from the book's copyright page:

  • ISBN: International Standard Book Number (e.g., 978-7-5385-8594-0)
  • Title: Book title
  • Author: Author/editor name
  • Publisher: Publisher name
  • pub_time: Publication time (year)
  • Category: Book classification number
  • Abstract: Content introduction (if available)

These examples demonstrate the core task of the benchmark test: accurately extracting structured metadata information from PDF documents in various formats and languages.

📊 Evaluation Metrics

Core Evaluation Metrics

This benchmark uses a string similarity-based evaluation method, providing two core metrics:

Similarity Calculation Rules

This benchmark uses a string similarity algorithm based on SequenceMatcher, with the following specific rules:

  1. Empty Value Handling: One is empty and the other is not → similarity is 0
  2. Complete Match: Both are identical (including both being empty) → similarity is 1
  3. Case Insensitive: Convert to lowercase before comparison
  4. Sequence Matching: Use longest common subsequence algorithm to calculate similarity (range: 0-1)

Similarity Score Interpretation:

  • 1.0: Perfect match
  • 0.8-0.99: Highly similar (may have minor formatting differences)
  • 0.5-0.79: Partial match (extracted main information but incomplete)
  • 0.0-0.49: Low similarity (extraction result differs significantly from ground truth)

1. Field-level Accuracy

Definition: The average similarity score for each metadata field.

Calculation Method:

Field-level Accuracy = Σ(similarity of that field across all samples) / total number of samples

Example: Suppose evaluating the title field on 100 samples, the sum of title similarity for each sample divided by 100 gives the accuracy for that field.

Use Cases:

  • Identify which fields the model performs well or poorly on
  • Optimize extraction capabilities for specific fields
  • For example: If doi accuracy is 0.95 and abstract accuracy is 0.75, the model needs improvement in extracting abstracts

2. Overall Accuracy

Definition: The average of all evaluated field accuracies, reflecting the model's overall performance.

Calculation Method:

Overall Accuracy = Σ(field-level accuracies) / total number of fields

Example: Evaluating 7 fields (isbn, title, author, abstract, category, pub_time, publisher), sum these 7 field accuracies and divide by 7.

Use Cases:

  • Provide a single quantitative metric for overall model performance
  • Facilitate horizontal comparison between different models or methods
  • Serve as an overall objective for model optimization

Using the Evaluation Script

compare.py provides a convenient evaluation interface:

from compare import main, write_similarity_data_to_excel

# Define file paths and fields to compare
file_llm = 'data/llm-label_textbook.jsonl'      # LLM extraction results
file_bench = 'data/benchmark_textbook.jsonl'     # Benchmark data

# For textbooks/ebooks
key_list = ['isbn', 'title', 'author', 'abstract', 'category', 'pub_time', 'publisher']

# For academic papers
# key_list = ['doi', 'title', 'author', 'keyword', 'abstract', 'pub_time']

# Run evaluation and get metrics
accuracy, key_accuracy, detail_data = main(file_llm, file_bench, key_list)

# Output results to Excel (optional)
write_similarity_data_to_excel(key_list, detail_data, "similarity_analysis.xlsx")

# View evaluation metrics
print("Field-level Accuracy:", key_accuracy)
print("Overall Accuracy:", accuracy)

Output Files

The script generates an Excel file containing detailed sample-by-sample analysis:

  • sha256: File identifier
  • origin_path: Original file path
  • For each field (e.g., title):
    • llm_title: LLM extraction result
    • benchmark_title: Benchmark data
    • similarity_title: Similarity score (0-1)

📈 Statistics

Data Scale

First Batch (20250806):

  • Ebooks: 70 records
  • Academic Papers: 70 records
  • Textbooks: 71 records
  • Subtotal: 211 records

Second Batch (20251022):

  • Ebooks: 354 records
  • Academic Papers: 399 records
  • Textbooks: 46 records
  • Subtotal: 799 records

Total: 1010 benchmark test records

The data covers multiple languages (English, Chinese, German, Greek, etc.) and multiple disciplines, with both batches together providing a rich and diverse set of test samples.

🎯 Application Scenarios

  1. LLM Performance Evaluation: Assess the ability of large language models to extract metadata from PDFs
  2. Information Extraction System Testing: Test the accuracy of OCR, document parsing, and other systems
  3. Model Fine-tuning: Use as training or fine-tuning data to improve model information extraction capabilities
  4. Cross-lingual Capability Evaluation: Evaluate the model's ability to process multilingual literature

🔬 Data Characteristics

  • Real Data: Real metadata extracted from actual PDF files
  • Diversity: Covers literature from different eras, languages, and disciplines
  • Challenging: Includes ancient texts, non-English literature, complex layouts, and other difficult cases
  • Traceable: Each record includes SHA256 hash and original path

📋 Dependencies

pandas>=1.3.0
openpyxl>=3.0.0

Install dependencies:

pip install pandas openpyxl

🤝 Contributing

If you would like to:

  • Report data errors
  • Add new evaluation dimensions
  • Expand the dataset

Please submit an Issue or Pull Request.

📧 Contact

If you have questions or suggestions, please contact us through Issues.


Last Updated: December 26, 2025

Downloads last month
6