Datasets:
metadata
language:
- en
license: mit
task_categories:
- automatic-speech-recognition
size_categories:
- 10K<n<100K
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: chunk_id
dtype: string
- name: original_file
dtype: string
- name: start_time
dtype: float64
- name: end_time
dtype: float64
- name: speaker_id
dtype: string
- name: domain
dtype: string
- name: noise_conditions
dtype: string
- name: language
dtype: string
splits:
- name: train_0
num_bytes: 14241773830.618
num_examples: 36239
- name: train_1
num_bytes: 14241773830.618
num_examples: 36239
- name: train_2
num_bytes: 14241773830.618
num_examples: 36239
- name: train_3
num_bytes: 14241773830.618
num_examples: 36239
- name: train_4
num_bytes: 14241773830.618
num_examples: 36239
- name: train_5
num_bytes: 14241773830.618
num_examples: 36239
- name: train_6
num_bytes: 14241773830.618
num_examples: 36239
- name: train_7
num_bytes: 14241773830.618
num_examples: 36239
- name: train_8
num_bytes: 14241773830.618
num_examples: 36239
- name: train_9
num_bytes: 14241773830.618
num_examples: 36239
- name: train_10
num_bytes: 14241773830.618
num_examples: 36239
- name: train_11
num_bytes: 14241773830.618
num_examples: 36239
download_size: 161139820068
dataset_size: 170901285967.41602
configs:
- config_name: default
data_files:
- split: train_0
path: data/train_0-*
- split: train_1
path: data/train_1-*
- split: train_2
path: data/train_2-*
- split: train_3
path: data/train_3-*
- split: train_4
path: data/train_4-*
- split: train_5
path: data/train_5-*
- split: train_6
path: data/train_6-*
- split: train_7
path: data/train_7-*
- split: train_8
path: data/train_8-*
- split: train_9
path: data/train_9-*
- split: train_10
path: data/train_10-*
- split: train_11
path: data/train_11-*
Streaming ASR Dataset
This dataset is designed for training real-time (streaming) ASR models, with a focus on handling chunk-based audio processing. It contains standardized audio segments from LibriSpeech dev-clean, processed for streaming ASR applications.
Dataset Description
Dataset Summary
- Source: LibriSpeech dev-clean
- Total chunks: 2,703
- Total duration: ~20 hours (1,212.26 seconds)
- Unique speakers: 40
- Audio format: 16 kHz mono WAV
- Language: English
- Domain: Audiobooks (clean speech)
Dataset Structure
openwhisper/
├── chunks/ # Audio files (16kHz mono WAV)
├── transcripts/ # Text transcriptions
└── metadata/ # JSON files with detailed information
Data Fields
Each sample consists of:
Audio file (WAV)
- 16 kHz sampling rate
- Mono channel
- 16-bit PCM format
Transcript file (TXT)
- Clean text transcription
- Includes punctuation and casing
- Aligned with audio chunks
Metadata file (JSON)
- speaker_id: Unique speaker identifier
- chunk_id: Unique chunk identifier
- start_time: Start time in original audio
- end_time: End time in original audio
- duration: Chunk duration in seconds
- language: Language code (en)
- noise_conditions: Audio quality label (clean)
- original_file: Source file reference
Data Splits
This dataset contains only the dev-clean portion of LibriSpeech, processed into overlapping chunks suitable for streaming ASR training.
Dataset Creation
Preprocessing
Audio standardization
- Resampling to 16 kHz
- Conversion to mono channel
- Format conversion to WAV
Chunking strategy
- Fixed chunk duration with overlap
- Natural pause boundary detection
- Consistent chunk size for training stability
Transcript processing
- Alignment with audio chunks
- Preservation of punctuation and casing
- Clean text normalization
Usage
Loading the Dataset
from datasets import load_dataset
dataset = load_dataset("orgho98/openwhisper")
Training Example
# Example code for loading audio and transcript pairs
for sample in dataset:
audio = sample['audio']
transcript = sample['text']
metadata = sample['metadata']
# Process for streaming ASR training
# ...
License
This dataset is released under the MIT License, following LibriSpeech's licensing terms.
Citation
If you use this dataset, please cite:
@misc{openwhisper2024,
title={Streaming ASR Dataset},
author={Automagically AI},
year={2024},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/datasets/orgho98/openwhisper}}
}
Limitations
- Limited to clean speech from audiobooks
- Single language (English)
- May not represent real-world streaming conditions perfectly
Additional Information
- Curated by: Automagically AI
- License: MIT
- Version: 1.0.0