text
stringlengths 2
806k
| meta
dict |
---|---|
1. Field of the Invention
This invention relates to systems--including methods and apparatus--for mixing cementitious construction materials such as mortar and grout; specifically to portable systems that mix these materials at the construction sites.
2. Description of the Prior Art
An anachronism exists in construction projects where masonry or stone structures are being constructed with cementitious material such as mortar. Construction workers often manually mix sand, cement and water with shovel and wheel barrow, or sometimes in a rotating mixer, to produce mortar or grout. The quality of the mixed constituents varies widely from batch to batch--and the quality of the finished product ranges from excellent to poor.
The problem has been noticed for years by past inventors, but the proposed solutions have not produced a replacement method or system that is sufficiently economical and accurate. There are a variety of machines which address the problems, but complexities arise due to the physical properties of the constituents. Sand increases in volume in the presence of moisture or "fluffys" in the language of the trade. Cement can assume the properties of a powder, a liquid or a cake depending upon it physical condition or treatment. Consequently, the delivery mechanisms sometimes fail to convey uniform flow rates or volumes to the mixer of the constituents. This can cause the ratio of constituents to vary from the predetermined value or acceptable range. Further, the controls are seemingly inadequate to produce the requisite consistency and uniformity.
Unfortunately, the construction workers often toil as yet with inadequate tools, achieving inconsistent and unpredictable results.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates in general to a semiconductor device and its manufacturing process, and in particular to a thin film transistor used in the semiconductor device and its manufacturing process, and a display device and its manufacturing process.
2. Description of the Related Art
Active matrix type liquid crystal displays (LCD's) utilizing thin film transistors have recently been recognized as high quality display devices. Dot matrix type LCD's, using dots arranged in the form of a matrix, are classified into two types: active and simple matrix systems.
In simple matrix systems, the liquid crystals of pixels arranged in the matrix are directly driven in synchronism, with scanning signals. The pixel portion of liquid crystal panel of an LCD is formed by using electrodes and liquid crystals. Accordingly, when the number of scanning lines is increased, the driving time (i.e., duty cycle) for each pixel is shortened. This results in the reduction of contrast.
In active matrix systems, each of pixels arranged in the matrix has an active element as a pixel driving element and a signal holding element (i.e., pixel capacitance). Both the driving and holding elements are integrated in the pixel. Each pixel performs signal storage operation, so that liquid crystals are semi-statically driven. In other words, each pixel driving element functions as a switching element controlled in response to a scanning signal. When a pixel driving element is turned on, the associated pixel receives a data signal indicative of display data via the pixel driving element. This drives the liquid crystal. Thereafter, when the pixel driving element is turned off, the data signal applied to the pixel is stored as an electric charge in an associated signal holding element. Based on the accumulated charge, the drive control of the liquid crystal is maintained until the pixel driving element is turned on again. Therefore even with reduced driving times for each pixel, due to increased numbers of scanning lines, the drive control of liquid crystal will remain unaffected and no reduction in contrast will occur. Thus, active matrix systems provide displays having a much higher quality than that of simple matrix systems.
Active matrix systems are generally classified by the type of pixel driving elements used: a three terminal type transistor. The transistor type matrix system, although difficult to manufacture compared with the diode type matrix system, lends itself to improved contrast and resolution characteristics. Transistor type matrix systems moreover, allow the possibility to achieve CRT quality in a LCD device.
Thin film transistors (TFT's) are generally used as pixel driving elements in transistor type LCD's. An active layer in a TFT is a semiconductor thin film formed on an insulation substrate, and is generally an amorphous silicon or a polycrystalline silicon film. A TFT using an amorphous silicon film as an active layer is referred to as an amorphous silicon TFT, while a TFT using a polycrystalline silicon film as an active layer is referred to as a polycrystalline silicon TFT. Polycrystalline silicon TFT's have an advantage in that they have higher field effect mobility and hence higher drivability compared with amorphous silicon TFT's. Therefore, polycrystalline silicon TFT's can be used not only as pixel driving elements but also as elements forming logic circuits. Thus, the use of polycrystalline silicon TFT's allows the pixel portion of a LCD and the peripheral driving circuits to be integrated on the same substrate. This makes it possible to form polycrystalline silicon TFT's as pixel driving elements and polycrystalline silicon TFT's as peripheral driving circuits during the same manufacturing step.
FIG. 1 is a block diagram showing a configuration of a general active matrix type LCD. A pixel portion 101 has a plurality qf scanning lines (i.e., gate lines) G.sub.1, . . . , G.sub.n, G.sub.n+1, . . . , G.sub.m and a plurality of data lines (i.e., drain lines) D.sub.1, . . . , D.sub.n, D.sub.n+1, . . . , D.sub.m. The gate and drain lines extend perpendicularly to each other, and the pixels 102 are provided at the intersections thereof. The gate lines are connected to a gate driver 103 which supplies the gate lines with gate signals i.e., scanning signals. The drain lines are connected to a drain driver 104 which supplies the drain lines with data signals i.e., video signals. These drivers 103 and 104 form a peripheral driving circuit 105. An LCD, having at least one of the drivers 103 or 104 formed on the substrate on which the pixel portion 101 resides, is generally referred to as an integral driver type LCD or driver-incorporated type LCD. The gate driver 103 may be provided on both sides of the pixel portion 101. Further, the drain driver 104 may be provided on both sides of the pixel portion 101.
FIG. 2 is an equivalent circuit for a pixel 102 provided between a gate line G.sub.n and a drain line D.sub.n. The pixel 102 is formed by a TFT 110 as an active element, a liquid crystal cell LC, and an auxiliary capacitance CS. The TFT 110 has a gate connected to the gate line G.sub.n and a drain connected to the drain line D.sub.n. The source of the TFT 103 is connected to the auxiliary capacitance CS and a display electrode (i.e., pixel electrode) LCE1 of the liquid crystal cell LC. The liquid crystal cell LC and auxiliary capacitance CS form the above-described signal holding element. A voltage V.sub.com is applied to a common electrode LCE2 of the liquid crystal cell LC. The common electrode LCE2 of each liquid crystal cell LC is an electrode shared by all the pixels 102. An electrostatic potential is established between the display electrode LCE1 and common electrode LCE2. The auxiliary capacitance CS has a first electrode CSE1 connected to the source of the TFT 110 and a second electrode CSE2 to which a constant voltage V.sub.R is applied. The second electrode CSE2 may be connected to the adjacent gate line G.sub.n+1.
In the pixel portion 101, data signals must be held in the signal holding elements (i.e., LC and CS). during one frame, i.e., during the period from when the pixel driving elements are turned off to when the elements are turned on. Accordingly, each of the polycrystalline silicon TFT's 110 as pixel driving elements experience a small leakage current when turned off. However, it is desirable to have a peripheral driving circuit 105 that operates at high speeds. Consequently, the polycrystalline silicon TFT's forming the peripheral driving circuit 105, when turned on, must be supplied with large currents.
The lower the field effect mobility in an active layer of a polycrystalline silicon TFT is, the smaller the turned-off current of the TFT is. The higher the field effect mobility in the active layer is, the larger the current of the conducting TFT. Therefore, the active layers of the polycrystalline silicon TFT's, functioning as the pixel driving elements at the pixel portion 101, preferably should have low field effect mobility. On the other hand, the active layers of the polycrystalline silicon TFT's, forming the peripheral driving circuit 105, preferably should have high field effect mobility.
In order to satisfy both of these performances conditions for the pixel portion 101 and the peripheral driving circuit 105 simultaneously, it is necessary to optimize the field effect mobility of the polycrystalline silicon films used for the portions 101 and 105. It is therefore desirable to have a method or process of manufacturing a polycrystalline silicon film whose field effect mobility can be adjusted as needed.
In LCD's which are currently available, reliably holding data signals in the signal holding elements for the period of one frame is more important than improving the operating speed of the peripheral driving circuit 105. In conventional integral driver type LCD's, therefore, the field effect mobility of polycrystalline silicon films, used for both of a pixel portion 101 and a driving circuit 105, is set low in an attempt to make the turned-off current of polycrystalline silicon TFT's small. This reduces the turned-on current of polycrystalline silicon TFT's forming a peripheral driving circuit 105, and consequently reduces the operating speed of the driving circuit 105. At this point in time, achieving optimum levels of pixel performance for pixels at portion 101 and at peripheral driving circuit portion 105 has not been successful.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a method of fabricating a composite material wing, such as a fiber-reinforced plastic, and, more specifically, to a method of fabricating a composite material wing of a box structure having closed spaces by a single high-temperature heat-setting process to shorten a molding process and to reduce assembling work.
2. Description of the Related Art
Most conventional aircraft main wings are of built-up construction. Further lightweight aircraft main wings of a composite material having a high specific strength have been developed. A composite material aircraft main wing of a box structure is assembled by joining together parts including spars, skins and ribs individually formed by a resin transfer method (RTM) or a hand lay-up method with an adhesive or fasteners in a box structure. Since a part of a fiber-reinforced plastic, i.e., composite material, is soft before being set, the part of the fiber-reinforced plastic must be kept in a desired shape by using a mandrel and the mandrel must be removed after setting the part of the fiber-reinforced plastic. Therefore, the conventional wing of a box structure can not be formed in an integral structure by molding; the wing must be provided with an opening through which a mandrel can be removed, and an individually formed member for closing the opening must be joined to the wing with fasteners or an adhesive.
Forming jigs are used in forming the parts for the aircraft main wing of a box structure including spars, skins and ribs. The forming jigs must be made of a heat-resistant material because the parts are formed at high temperatures by a heat-setting process.
When assembling a composite material aircraft main wing by an assembling method using an adhesive, the parts need to be subjected to high-temperature heat setting twice when forming the parts and when adhesively assembling the same. When assembling the aircraft main wing of a composite material by an assembling method using fasteners, the parts need to be subjected to heat setting only once. However, this method of assembling the main wing that joins together the parts with the fasteners needs assembling jigs and takes much time.
Accordingly, it is an object of the present invention to provide a method of fabricating an aircraft main wing of a composite material in a box structure having closed spaces capable of forming the main wing by a low-temperature half-setting process and a heat-setting process, of shortening a molding process and reducing assembling work.
According to a first aspect of the present invention, a method of fabricating a composite material wing includes the steps of: superposing a reinforcing textile sheet on a mandrel; closely enclosing the reinforcing textile sheet superposed on the mandrel in a closed jig; introducing a thermosetting resin into the closed jig to impregnate the reinforcing textile sheet with the thermosetting resin; making the thermosetting resin impregnated into the superposed reinforcing textile sheet half-set to form a half-set composite material wing component member; taking the half-set composite material wing component member and the mandrel out of the jig; removing the mandrel from the half-set composite material wing component member; bonding the half-set composite material wing component member and an other wing component member with an adhesive to form an assembly; and heat-setting the assembly to complete a composite material wing.
Preferably, the other wing component member is a composite material wing component member formed by impregnating a reinforcing textile sheet with a thermosetting resin. Preferably, the composite material wing is a box structure having a closed space. Preferably, each of the wing component members includes at least one of a front spar, a rear spar, a plurality of ribs extended between the front spar and the rear spar, an upper skin overlying the ribs, and a lower skin underlying the ribs. Preferably, at least one of the wing component members is an integral member formed by integrally combining at least two of the front spar, the rear spar, the ribs, the upper skin and the lower skin.
According to a second aspect of the present invention, a method of fabricating a composite material wing including a front spar, a rear spar, a plurality of ribs extended between the front and the rear spar, an upper skin overlying the ribs and a lower skin underlying the ribs includes the steps of: superposing a plurality of reinforcing textile sheets for the rear spar, the ribs, the upper skin and the lower skin on a mandrel corresponding to a wing structure; closely enclosing the reinforcing textile sheets superposed on the mandrel in a closed jig; impregnating the reinforcing textile sheets with a thermosetting resin by introducing the thermosetting resin into the closed jig; making the thermosetting resin impregnated into the superposed reinforcing textile sheets half-set to form a half-set composite material wing component member; taking the half-set composite material wing component member and the mandrel out of the closed jig; removing the mandrel from the half-set composite material wing component member integrally including the rear spar, the ribs, the upper skin and the lower skin; bonding the half-set composite material wing component member and a wing component member corresponding to a front spar with an adhesive to form an assembly; and heat-setting the assembly to complete a composite material wing.
Preferably, the wing component member corresponding to the front spar is a half-set composite material member formed by impregnating a reinforcing textile sheet with a thermosetting resin.
The reinforcing textile sheets superposed on the mandrels are sealed in the closed jig, the superposed reinforcing textile sheets are impregnated with the thermosetting resin, the thermosetting resin impregnated into the superposed reinforcing textile sheets is half-set to form the half-set component members or the composite component member, the mandrels are removed from the half-set component members or the composite component member, the half-set component members are assembled and adhesively bonded together with the adhesive to form a composite structure and the composite structure is subjected to the high-temperature setting process to set the thermosetting resin. Thus, the thermosetting resin and the adhesive can be simultaneously heated and hence only a single high-temperature setting process is necessary for forming the composite material wing of a box structure having closed spaces.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention is directed to an improved battery connector that can be used either for top mounted battery terminals or for side mounted battery terminals and, more particularly, to a battery connector that can be secured to any battery terminal while preventing slippage after it is secured to the battery terminal.
2. Description of Related Art
The increased use of both side and top mounted battery terminals in the automotive industry has created a demand for a relatively inexpensive and reliable battery connector that can be used for both side and top mounted battery terminals. Numerous types of battery connectors have been proposed; however, they are generally of the kind that requires some form of adjustment in order to be able to be used with either side mounted terminal batteries or top mounted terminal batteries. There has been a continued demand in the automotive field to provide a battery connector that will be effective for both side mounted terminal batteries and top mounted terminal batteries without adjustments to the battery connector prior to use.
U.S. Pat. No. 3,745,516 discloses an auxiliary clamp for side mounted battery terminals. The auxiliary clamp is a mechanism that attaches to a battery connector to enable battery connectors to attach to side mounted battery terminals. U.S. Pat. No. 3,783,439 similarly discloses adaptors for connecting to a side mounted battery terminal. U.S. Pat. No. 4,377,317 discloses a side mounted battery terminal adaptor for connecting the cables to a side terminal of a battery terminal.
U.S. Pat. No. 4,345,807 discloses a battery cable connector for top and side mounted battery terminals. This battery connector has a side mounted battery terminal clamp which is connected to a support member which is pivotally mounted to the end portion and can be moved into place to enable the connector to be usable with side mounted battery terminals. U.S. Pat. No. 4,620,767 discloses a combination battery booster cable connector for both side and top mounted terminal batteries. The connector has portions extending forward from the jaws to enable the engagement of the side terminal bolt of a side mounted battery terminal.
The automotive industry is still seeking to find an economical and reliable means to secure battery cables to both side and top mounted battery terminals without adjustments to the connector for one type of battery terminal or another. Preventing the battery cable connector from slipping from the terminal of a side mounted terminal battery once it is in place remains a problem in the prior art.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field
Example embodiments relate to an image sensor and an electronic device including the same.
2. Description of the Related Art
A photoelectronic device converts light into an electrical signal using photoelectronic effects, and may include a photodiode and/or a phototransistor. The photoelectronic device may be applied to an image sensor and/or a solar cell.
An image sensor including a photodiode requires relatively high resolution and thus a relatively small pixel. At present, a silicon photodiode is widely used, but the silicon photodiode has a problem of deteriorated sensitivity and has a relatively small absorption area due to relatively small pixels.
On the other hand, a color filter selectively absorbs light in a given (or alternatively, predetermined) wavelength region in each pixel when light enters an image sensor. A red filter, a blue filter, and a green filter are respectively disposed on a red pixel, a blue pixel, and a green pixel and selectively absorb red, blue, and green light, and the selectively absorbed light may be transferred to a photodiode of each pixel.
However, the color filters may not only absorb light by themselves, and thus bring about loss of a relatively large amount of light delivered to the photodiode, but are also formed through a process of spin coating, UV exposure, and/or wet etching, and thus have a limitation of reducing the pixel size of an image sensor to less than or equal to a given (or alternatively, predetermined) size.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Computers are typically classified into two categories: hardwired or microprogrammed. A hardwired computer's instructions are executed by hardwired electronic circuit logic. While such an implementation is fast, hardwired logic is rigid and cannot he altered without redesigning the logic circuit. A microprogrammed (or microcoded) computer's instructions, on the other hand, are executed by a sequence of primitive operations, called microoperations, that are specified by microinstructions in a control memory. A typical microoperation is a register to register transfer operation which can be executed in one clock cycle. Sequences of microinstructions, called microprograms, are stored in a control memory which is typically a read-only memory (ROM). By altering microprograms in control memory, a processor can be made to behave like different types of computers. For example, a processor can be microprogrammed to behave like an Intel or Motorola microprocessor by simply switching sets of microprograms (called emulators) stored internally in the ROM. This process of having one computer behave like another is called emulation.
Emulation has a significant commercial implication as well, allowing rapid cloning of popular microprocessors, e.g., the Intel 80X86 or the Motorola 680X0, that dominate the personal computer (PC) market. Currently, the class of Intel 80X86 microprocessors comprise the 80286, 80386, i486, Pentium and other similar Intel CISC processors. Similarly, the class of Motorola 680X0 microprocessors comprise the 68020, 68030, 68040 and other similar Motorola CISC microprocessors. By microprogramming control logic in ROM, a "generic" microprocessor can become a clone to a popular microprocessor so that the clone can execute without modification any software written for the popular microprocessor. In the case that it has a significantly different architecture, the new microprocessor is called a software compatible clone. The clone can then become a low cost alternative and a commercial competitor to the original microprocessor.
Commercially available computers are also typically characterized as having either CISC (complex instruction set) or RISC (reduced instruction set) architectures. With a CISC architecture, an extensive instruction set is either hardwired or microprogrammed into the logic on a single chip, normally referred to as a microprocessor, that executes a fixed instruction set. Due to the complexity of the instruction set, CISC architectures typically are fairly complex, requiring large amounts of gates for implementation and associated power dissipation and normally requiring multiple clock cycles for execution of each instruction. However, with a RISC architecture the complexity of the chip is reduced by utilizing microinstructions which perform a limited subfunction of a CISC instruction, generally within a single clock cycle. This architectural choice results in a chip that requires less gates, less power and having instructions that execute significantly faster. Although each instruction accomplishes less, complex functions can be performed by combinations of the RISC instructions that are more closely tailored to a desired task than a CISC instruction that was designed to be more general purpose. Thus, a RISC computer will normally outperform a CISC computer for many types of operations. Additionally, hardware implementations of RISC computers are typically simpler and thus less expensive than CISC implementations.
While current RISC architectures are potentially capable of emulating target CISC instruction sets, this ability is limited. For example, the number and size of the registers may be significantly different between the RISC and target computers, the method of calculating and presenting condition codes may be different and the ability to parse the target instructions and relate the parsed quantities to existing registers only exists through prolonged sequences of RISC instructions. Thus, the performance of potential emulations with current RISC computers would be severely degraded and thus not feasible for most applications. To avoid these degradations, what is needed is:
1. a scheme to decode, quickly and accurately, the instruction formats of a computer being emulated; and PA1 2. a scheme to redefine the register set, operand size and condition code calculation logic of the RISC processor according to the computer being emulated.
For this application, the following terminology is defined:
Emulation is a process in which one computer X behaves identically to another computer Y, as X executes the instructions of Y, where the internal architectures of computers X and Y are different.
A host processor is computer X which behaves like computer Y as X executes the instructions of Y.
A target processor is computer Y which is emulated by host processor X. That is, host processor X emulates target processor Y.
Microcode is a set of programs, called microprograms, that are coded in microinstructions, the native instructions of the host processor. Microinstructions are typically executed in one clock cycle to control a processor at its lowest level of specification, such as register transfers, basic arithmetic and logical operations or control transfers.
Native mode of execution is a non-emulation mode of execution by a processor; that is, execution of a computer within its inherent architecture without regard to emulation or compatibility to other computers.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present disclosure relates to a light source device.
Japanese unexamined patent application No. 2011-233511 describes a vehicular head lamp 90 having a configuration including a semiconductor laser 91, an optical fiber 92, and light-emitting part 93 including a fluorescent material, as shown in FIG. 12. Light of the semiconductor laser 91 passes through the optical fiber 92 and irradiates the light emitting part 93. The optical fiber 92 has a two-layer structure of a core and a cladding that covers the core, in which the cladding has a refractive index smaller than that of the core. The core is primarily made of quartz glass, and the cladding is primarily made of quartz glass or a synthetic resin with a refractive index smaller than that of the core.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The use of sidepocket mandrels and fluid control valves, such as gas lift valves, is old. However, in many cases there is a need for increasing the volume of gas admitted by the valves which is needed for lifting purposes. The exterior dimensions of mandrels are limited, and therefore the size of the valves, which may be installed therein, is similarly limited. One way of increasing gas flow is the use of a multiple valve pocket mandrel and valves such as shown in U.S. Pat. No. 3,874,445, but such installation requires multiple down hole trips for installing or removing the individual valves and multiple locks.
The present invention is directed to an improved mandrel and improved flow control valves in which vertically connected multiple flow control valves are placed in the sidepocket of a mandrel thereby increasing the capacity of the mandrel but allowing a single down well trip to be made to install or remove the multiple valves and in addition requiring only a single lock for the latching multiple valves in the sidepocket.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a magnetic head employed in a magnetic disk drive such as a hard disk drive (HDD). In particularly, the invention relates to a quasi contact head comprising a slider with a flying surface opposed to a magnetic disk, and a composite layer formed on the slider at its trailing end so as to contain a head element, wherein an edge of the slider or composite layer first approaching the magnetic disk is subjected to grinding by an initial abrasion with the magnetic disk.
2. Description of the Prior Art
The ongoing demand to improve the recording density of information recorded on a magnetic disk makes it necessary drive to reduce the magnetic space between a reading/writing gap of a magnetic head element and a magnetic disk. Reduction in the magnetic space must be achieved without causing actual contact between the slider and the magnetic disk in a conventional flying magnetic head generally used. Probability of physical contact between the slider and the magnetic disk is accordingly minimized, possibly to zero, by taking account of any factors varying the flying height of the slider over the surface of the magnetic disk. However, reduction in such probability tends to cause an increase in the flying height of the slider.
On the other hand, a quasi contact head is supposed to reduce the magnetic space between a reading/writing gap and a magnetic disk as compared with the above-mentioned conventional flying magnetic head, since the flying height of the slider can be determined on the assumption that the slider contacts the magnetic disk.
When a quasi contact head employs a magnetoresistance (MR) element, the gap of the MR element is in some cases supposed to collide with a tiny protrusion caused by surface roughness of the magnetic disk. The contact may cause a momentary temperature rise in the gap, namely, a thermal asperity, to thereby bring about a large change in the magnitude of magnetoresistance detected by the MR element. As a result, it is very difficult to allow the MR element to achieve a precise reading operation in the quasi contact head.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a bonding apparatus and more particularly to a bonding apparatus with a bonding tool cleaning mechanism.
2. Prior Art
Currently, grindstones and wire brushes are used as a bonding tool cleaning means in bonding apparatuses such as an inner lead bonding apparatus, outer lead bonding apparatus, transfer bump bonding apparatus, chip bonding apparatus, etc.
Grindstones are suitable for removing substances adhering to the undersurface of the bonding tool; however, they do not remove the substances, which ar on the side surfaces of the bonding tool, well. On the other hand, wire brushes remove the substances adhering to the side surfaces of the bonding tool very efficiently, and they can also remove the substances adhering lightly to the undersurface of the bonding tool. Accordingly, the undersurface of the bonding tool is cleaned first by the grindstones, and then the side surfaces and the undersurface of the bonding tool are further cleaned with wire brushes.
Examples of conventional bonding apparatuses that use wire brushes are disclosed in Japanese Patent Application Laid-Open ("Kokai") Nos. 60-246643 (called "Conventional Example 1") and No. 3-32041 (called "Conventional Example 2" which corresponds to the U.S. patent application No. 07/616,194).
In Conventional Example 1, a wire brush is provided on the outer surface of a cylindrical ring. The cylindrical ring is installed so that its axis is oriented horizontally, and bonding tool cleaning is performed by rotating the ring. In Conventional Example 2, a wire brush is installed on a cleaning stand, and bonding tool cleaning is done by moving the cleaning stand horizontally by an X-Y table.
More specifically, since in Conventional Example 1 the cylindrical ring is installed horizontally, the brush on the rotating cylindrical ring can clean only the side surfaces of the bonding tool. In other words, although two opposite side surfaces of the bonding tool can be cleaned by the wire brush rotating in the forward and reverse directions, the remaining two side surfaces of the bonding tool are not cleaned. Furthermore, the undersurface of the bonding tool is cleaned only in the direction of rotation of the wire brush, and no cleaning is performed in the direction perpendicular to the direction of rotation of the wire brush. Thus, cleaning efficiency is not very satisfactory.
In Conventional Example 2, the wire brush does not rotate. Instead, bonding tool cleaning is accomplished by moving the cleaning stand on a horizontal plane. Accordingly, only the undersurface of the bonding tool is cleaned, and the side surfaces are not cleaned well. Thus, complete cleaning cannot be accomplished, and the cleaning efficiency tends to be poor.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to manipulation of materials dissolved in solvents. More specifically, in one embodiment, the invention provides an improved continuous flow interface for a liquid chromatograph.
Liquid chromatography systems and their use are well known to those of skill in the art. In a liquid chromatography system, a mixture of materials is separated for analysis. The mixture is dissolved in a suitable solvent and injected into the top of a column packed with a suitable adsorptive material. As the material flows through the column, the various materials are adsorbed to the packing at different rates such that the eluents emerging from the bottom of the column are spatially separated with the less highly adsorbed materials generally leaving first and the more highly adsorbed materials leaving later.
It is often desirable to remove the solvent from the separated components, since the solvent can interfere with post-separation work with the components. This work might involve chemical or instrumental analysis, or chemical reactions of the components. For example, it is often desirable to flow the effluent from the column into an IR spectrometer for analysis. One set of techniques has involved passing the effluent from the chromatograph through a flow cell and measuring the infrared transmission spectra of the separated components. One problem with this technique is that the solvent typically has an absorption spectrum that must somehow be subtracted out of the measured spectra. Depending upon the particular materials and solvent involved, this is sometimes difficult or impossible to fully resolve. An alternative process for obtaining spectra involves removing the solvent from the effluent and taking spectra of the residual sample materials.
A variety of techniques for elimination of part or all of the LC solvent in a LC effluent have been proposed, some of which are described in Griffiths et al., "Solvent Elimination Techniques for HPLC/FT-IR," incorporated by reference herein for all purposes. It is often desirable to provide material to such devices at relatively constant flow rates or solvent composition. This problem has been difficult to resolve. Another technique, which has been proposed for use as a concentrator in a liquid chromatography mass spectrometry interface, is described in White et al., U.S. Pat. No. 4,281,246. This technique provides for a system in which LC solvent flows down a heated wire. As the effluent flows down the wire, solvent is preferentially evaporated, resulting in an effluent which is more highly concentrated in the materials of interest.
While meeting with substantial success, certain problems remain with the system of White et al. for removing solvent from a LC effluent. For example, (1) band broadening: time resolution of the LC peaks is not maintained; (2) special broadening: material is spread into too large an area; (3) the effluent has insufficient concentration.
One source of these problems is the inability to achieve an uniform flow rate through interface. The difficulties in non-uniform flow stem, in part, from the nature of the wire guides used in the interfaces. First, these wire guides have problems with wetability, preventing the liquid from forming an even coat over the guide. Second, using the wire guide itself as a heat source causes it to become hotter than the surrounding liquid. When the liquid reaches its boiling point, it evaporates off the wire and leaves dry spots. Without liquid to cool the wire, the temperature of the dry spot increases further. When liquid hits one of these local dry spots it immediately sputters off, making it impossible to obtain a uniform liquid coat over the surface. The uniform flow problem is further exacerbated by the non-uniform multiple stages of the wire described in the prior art. These guide wires have stages with decreasing diameter and resistance. At the transition points between stages, the liquid tends to form beads. These difficulties with obtaining a uniform flow over the guide limit the minimum flow rate achievable, and consequently, decrease the concentration that the wire guide based interfaces can achieve.
Another problem with the prior art concentrator system of White et al. is the feedback control system. The response of the drop-size monitor is too slow to be effective when the solvent changes in composition, as commonly occurs during solvent programming in liquid chromatography.
From the above it is seen that an improved sample concentrator between a liquid chromatograph and a second system such as an IR analysis device is needed.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to enterprise computing monitoring and management, and more particularly to event processing in an enterprise computing monitoring and management system.
2. Description of the Related Art
Enterprise computing monitoring relates to the monitoring of the state of the different, granular components of an enterprise computing environment, as well as the state of the enterprise computing environment in the aggregate. Generally intended for use by network and application administrators, enterprise computing monitoring systems monitor selected elements in the network of components forming the enterprise computing environment. Enterprise computing monitoring systems are traditionally organized in a hierarchical fashion, with sensors distributed throughout the network of components forming the enterprise computing environment. These sensors relay monitored events to aggregation nodes, which in turn can relay the monitored events to a smaller set of aggregation nodes. Monitored events can be interpreted, translated and provided to interacting administrators in order to facilitate the management of the enterprise computing environment.
A skeletal enterprise monitoring system can collect events propagated from different levels of the hierarchy of nodes defining the enterprise computing monitoring system. The collected events, in turn, can be reported plainly through a user interface in a monitoring application and it remains incumbent upon the user to interpret and act upon the reported events. Given the complexity of the modern enterprise computing environment, however, commercially viable enterprise monitoring systems provide an enhanced degree of event interpretation and remedial, automated action taking.
Clearly, nodes in the hierarchy of an enterprise monitoring system can be interrelated such that events occurring in a child node of the hierarchy can form the root cause of other events originating at higher levels of the hierarchy in parent nodes. Consequently, plainly reporting every event arising in the hierarchy can result in an event flood and can quickly overwhelm the enterprise computing monitoring system. Of course, capturing every event stemming from a root cause event is not as helpful as correcting the root cause event. In particular, resolving the cause of root cause event in the event source invariably leads to the resolving of all other resulting events.
To achieve efficiencies in monitoring, event correlation engines can be embedded within nodes in the network of elements of the enterprise computing environment. Consequently, the event correlation engines can most quickly identify and handle events arising from within the node without depending upon event correlation engines higher in the in hierarchy of enterprise computing monitoring systems to process these events. In this regard, correlation rules applied by event correlation engines generally trigger responsive events for detected events. Yet, in many cases, important event patterns can be detected only at a higher level in the hierarchy. In the latter circumstance, it is desirable to place an event correlation engine at a higher level in the hierarchy so as to capture and process events stemming from many different nodes below.
Correlation rules often are composed by domain experts and processed by a correlation engine at a selected level in the hierarchy of the enterprise computing monitoring system so as to achieve optimal efficiency in processing events below. Coordinating the deployment of correlation rules can be challenging in an expansive enterprise computing environment. Consequently, in many enterprise systems, the correlation engine is centralized at a highest level in the hierarchy such that all events generated in environment can be captured and processed in the correlation engine. Notwithstanding, scalability will be sacrificed in this circumstance.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The inventor has, in his U.S. Pat. No. 4,219,181 described a device for governing a hydraulic actuator by means of an electrically heated wire (a thermowire), which activates a servo valve controlling the supply of working fluid. Experience has shown that it is difficult rapidly to combine a nominal value signal and an actual value signal into a signal ensuring a suitable heating of the wire. This will cause an undesirable instability at the piston of the actuator, which may have a detrimental influence upon the performance of the actuator.
The aim of the present invention is to propose a governing means, which rapidly and accurately adjusts the position of the piston of the actuator, as described, and which will bring about this adjustment with a low consumption of working fluid.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The invention is directed to a compound and a method of forming a photopolymerizable acrylated glycidyl acrylic terpolymer resin compound.
Acrylate polymers may be used as pressure sensitive adhesives, coatings, and surface application materials for numerous products. For example, acrylic polymers are used to coat the surfaces of printing plates, door jambs, and many other items which require a hard weather resistant coating. Such coatings have many applications for surfaces of items that are particularly heat sensitive such as paper, plastics, and wood.
Many acrylate resin coatings are cured using ultraviolet light. Such coatings may be cured by the impact of ultraviolet light upon the surface of the coating, which results in curing of the composition. In other applications, such compounds may be cured by a cationic curing process.
Radiation curing involves the use of ultraviolet light as a cause of free radical formation. For example, polyester clear coatings which are stored in untinted glass bottles may polymerize in a few days or weeks. In some cases, hardening of such a coating may be achieved by only a few seconds of exposure to ultraviolet light, because of the very efficient conversion of ultraviolet light energy to free radicals.
In general, acrylate resins comprise a class of thermoplastic or thermoset polymers or copolymers. These oligomers polymerize readily in the presence of light, heat or catalysts. In general, acrylate resins must be stored or shipped with inhibitors present in the composition to avoid spontaneous and explosive polymerization. Acrylate resins vary in physical properties from very hard brittle solids to fibrous elastomeric structures to viscous liquids, depending upon the monomer used and the method of polymerization employed.
In some cases, acrylate resins are xe2x80x9cbulkxe2x80x9d polymerized. For example, in U.S. Pat. No. 3,974,303 to Iwase et al., (see Example #4, column 5, lines 20-42) a method of forming a coating film using xe2x80x9cbulkxe2x80x9d polymerization is disclosed. In this patent, a method for forming coating films is disclosed which is stated to provide a coating film having impact resistance, adhesion to a substrate article, flexibility and chemical resistance. The method includes a coating having a powdery composition. In the patent a curing agent, a pigment and other additives are provided into a powdery resin. The resin is applied to an article to be coated using electrostatic coating or fluidized bed coating. Then, the coating is heated to a relatively high temperature to effect melting and curing simultaneously. One disadvantage of the process disclosed in U.S. Pat. No. 3,974,303 is that the process typically shows an excess of acrylic acid in the final product. In most cases, that results because the goal in that process is to react all of the epoxide groups. However, under such conditions, there often is no epoxy remaining for a cationic curing process. Therefore, overall curing is limited in such a process because without a light or UV source, curing will undesirably cease.
One significant problem encountered in employing the teachings of the prior art is the fact that many such coatings are not capable of providing both good weathering characteristics and a fast cure speed. Epoxy acrylates are relatively fast curing, but are hard and brittle when cured, and therefore do not weather well due to either the aromatic ring structure or the weak backbone of the aliphatic compounds. Urethane acrylates and polyester acrylates both suffer these problems. For example, polyester acrylates, which comprise a polyester backbone, transesterify upon long term exposure, and the film therefore decomposes after a certain amount of time. Such compounds also are susceptible to degradation from moisture. In general, this class of products cures slower than other types of products.
Another significant problem occurs if the radiation source, during curing, does not hit all of the surface of a coated substrate. Currently known compositions leave the surface of the coated article uncured and tacky in most instances, which is highly undesirable.
What is needed in the industry is an acrylate resin composition and method of forming an acrylate resin composition that produces a resin having desirable physical characteristics. Furthermore, an acrylate resin that is capable of being effectively cured to a hard finish both by radiation curing (i.e., ultraviolet light or visible light) and also by cationic polymerization would be very useful. In general, acrylate resin compositions showing an increased resistance to yellowing and discoloration are very desirable. Compositions which exhibit a relatively low polydispersity value and a low glass transition temperature also are desirable. Furthermore, acrylate resins that are stable at higher temperatures are useful.
A non-aromatic photopolymerizable acrylate polymer is provided in the invention. In a first step, the polymer may be formed by polymerizing a reactive source of epoxide ions, a source of unsaturated monomers in the presence of a catalyst to form a glycidyl acrylic terpolymer. Then in a second step, the glycidyl acrylic terpolymer is reacted with an epoxy ring opening catalyst and a source of unsaturated acid or anhydride to form the acrylate polymer of the invention. The polymer is formed using a minimum molar amount of acid such that epoxide groups are left upon the polymer backbone (not completely reacted via the second stage carboxy ring opening reaction) and remaining epoxide groups are rendered reactive during polymerization, so that the epoxide groups are available to react cationically.
In another aspect of the invention, the polymer is capable of being cured cationically. The polymer may include many different kinds of unsaturated monomer, and is selected from the group consisting of: methyl methacrylate, butyl acrylate, hydroxyethylacrylate, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, s-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, 3,3,5-trimethycyclohexyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, 2-butoxyethyl acrylate, acrylonitrile, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, n-octyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, phenyl methacrylate, cyclohexyl methacrylate, 3,3,5-trimethylcyclohexyl methacrylate, isobornyl methacrylate, bromoethyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate, diethyl methyleneglutarate, isocyanatoethyl methacrylate, methacrylic acid, methacrylonitrile, 2-(diethylphosphato)ethyl methacrylate, 1-diethylphosphonoethyl methacrylate, ethylene, butadiene, vinylidene chloride, and n-vinylpyrrolidinone.
In one embodiment of the invention, the polymer is capable of polymerizing by: (1) photopolymerization, (2) cationic polymerization, or both photopolymerization and cationic polymerization.
The catalyst employed in the first step may be a peroctoate or any other free radical initiator with a 30-minute half-life at less than 120xc2x0 C. In the second step of reaction, the catalyst may be a phosphonium or onium salt compound, such as ethyl triphenyl phosphonium bromide, for example.
In one embodiment of the invention, a method is provided that includes forming a photopolymerizable acrylated glycidyl acrylic terpolymer resin in a two-step reaction. First, the method includes providing a source of epoxide ions having an epoxide ring structure, and providing a source of unsaturated monomer. A catalyst is also provided. In the first step, the reactants form a terpolymer chain having epoxide groups along the length of the terpolymer chain. Then, in a second step, the terpolymer chain reacts with acrylic acid, thereby opening the rings of epoxide groups along the terpolymer chain and forming a photopolymerizable acrylated glycidyl acrylic terpolymer resin.
Reference now will be made to the embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not as a limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in this invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the appended claims and their equivalents. Other objects, features and aspects of the present invention are disclosed in or are obvious from the following detailed description. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.
In general, the invention of this application comprises photopolymerizable acrylate hybrid polymers suitable for forming films with glass transition temperatures (i.e., Tg""s) from xe2x88x9255xc2x0 C. to 110xc2x0 C. that may be used in liquid and powder coatings, inks, adhesives and composites.
The copolymer composition, in one embodiment of the invention, comprises a resinous material which is a terpolymer or copolymer of alkyl (meth)acrylate and fluoroalkyl (meth)acrylate. Sometimes, the composition may be provided as a silanealkyl(meth)acrylate or a fluoroolefin, chloroolefin, and an unsaturated source of reactive epoxide ions. The compound in this particular embodiment is modified through the ring opening reaction with an acid and/or anhydride containing a conjugated double bond to form an acrylated acrylic, an acrylated fluorinated acrylic, an acrylated halogenated grafted acrylic or an acrylated silanated acrylic having side chain unsaturation and reactive glycidyl groups. The compounds may be cured with ultraviolet light. Curing is initiated with specific UV and/or Visible Light promoters with an UV and/or Visible Light source or without UV or visible light promoters with an electron beam source. Sometimes, cationic promoters or peroxide initiators may be employed in the composition.
In the process of the invention, it is possible to provide, in a two-step reaction process, an acrylic polymer resin. Typically, no aromatic monomers are included in the reaction mixture. That is, the invention comprises, in one embodiment, an unsaturated polyacrylate and a polymethacrylate combined in the reaction mixture.
Another known method for forming coating films, employs ionizing radiation or ultraviolet rays which are applied to a coated film and a resin having polymerizable unsaturated groups to cause a chemical polymerization reaction and effect curing. Most paints used in this method are formed by dissolving a resin having polymerizable double bonds into a polymerizable monomer and a photoinitiator.
In the method of the invention, a terpolymer is first formed having a long chain with epoxide groups along the length of the chain. Then, in a second reaction step, a clear photopolymerizable acrylated hybrid glycidyl acrylic terpolymer resin is formed having a Tg of less than about 50xc2x0 C., and preferably less than about 0xc2x0 C. In a preferred embodiment, the glass transition temperature (Tg) is about xe2x88x9230xc2x0 C. The curing of polymers pursuant to the invention may be by ultraviolet radiation or electron beam radiation. Furthermore, free radical polymerization may be employed to cure the polymers of the invention. In one application, an epoxy cationic cure is used. Some compositions of the invention are curable by one or more of the above methods, that is, a combination of two or more curing methods. Such compositions are sometimes known as xe2x80x9cdualxe2x80x9d curing compositions.
A terpolymer formed according to the invention may sometimes contain alternating groups of glycidyl methacrylate (xe2x80x9cGMAxe2x80x9d) and acrylic acid (xe2x80x9cAAxe2x80x9d) in alternating sequence along the chain of the polymer. In some cases, the pattern could be 3:1 GMA groups to AA, but a preferred ratio is about 1:1. That is, there may be a GMA group, followed by an AA group, followed by a GMA group, followed by AA, etc. Catalysts are used to initiate the reaction.
In general, the UV curing process requires a UV lamp that directs UV light onto the formulated product. Photoinitiators absorb the UV energy from the light source, causing a chemical reaction that quickly converts the liquid into a solid, cured film.
The bulk of the formulation to be cured contains monomers and oligomers. Monomers such as multi-functional acrylate monomers are low molecular weight materiasl. They may be monofunctional, bifunctional, or multifunctional molecules. These molecules become part of the polymer matrix in the cured coating because of their reactive functional groups. Furthermore, monomers functions as diluents in such formulations. Monomers are sometimes referred to as reactive diluents.
Oligomers, on the other hand, are high molecular weight viscous materials. The molecular weight of oligomers ranges from several hundred to several thousand or even higher. Usually the type of oligomer backbone determines the final properties of the coating. Properties of the coating that are important include flexibility, toughness, and others. Backbones can be polyether, polyester, polyurethane or others. The functional groups that provide the linkage between molecules are usually located at both ends of the oligomer molecules. A common functionality used is the acrylate functional group.
The photoinitiator in the application of the invention is a critical component of the UV curing process. The additive initiates the polymerization process to quickly reach the final crosslinked product. As UV light energy is emitted, it is absorbed by the photoinitiator in the liquid, causing it to fragment into reactive species. These species may be either free radical or cationic. The majority of systems are based upon free radicals that react with the unsaturated compounds in the liquid, causing them to polymerize. This type of reaction is almost instantaneous.
Of equal importance to the photoinitiator, however, is the UV light source. Basically, two types of light sources are available: arc light and laser light. Arc light includes medium pressure mercury lamps and the high pressure xenon lamps, as but one example. However, any source of UV light may be used, including natural sources.
Free radical initiators can be described as either xe2x80x9chydrogen abstraction typexe2x80x9d or xe2x80x9calpha cleavage type.xe2x80x9d While hydrogen abstraction initiators have their specific uses, especially in three or four-way.
Epoxide ions that can be used in the practice of the invention include: glycidyl methacrylate or glycidyl acrylate, as examples. photoinitiator blends, alpha cleavage initiators are the most widely used. The alpha cleavage initiators have a generally higher efficiency due to their generation of free radicals by way of a unimolecular process. Alpha cleavage initiators need only to absorb light in order to generate radicals. Hydrogen abstraction initiators, on the other hand, require an extra step. That is, after absorbing light, the excited state photoinitiator must find a hydrogen donating source in order to generate the free radicals. Thus, it is a bimolecular process.
Furthermore, the source of unsaturated monomer, acid or anhydride monomer could include, for example, acrylic acid, methacrylic acid, itaconic acid, maleic anhydride, or fumaric acid, to name but a few examples. The remainder of the composition could be made up of methyl acrylate or ethyl acrylate, butyl acrylate, ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, and also methacrylate versions of the above listed compounds. Furthermore, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, and hydroxypropyl methacrylate could be used as co-monomers in the invention.
In some applications of the invention it may be advantageous to use isobutyl methacrylate, isobutyl acrylate, isodecyl methacrylate, or isodecyl acrylate or other derivatives of these compounds. The monomers discussed above can be used to adjust the Tg of the resulting product.
The polymer also may be obtained by using a free radical catalyst having a half life less than about 30 minutes @120 degrees C.
Additionally, the following compounds could be used in the practice of the invention: methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, s-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, 3,3,5-trimethycyclohexyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, 2-butoxyethyl acrylate, acrylic acid, acrylonitrile, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, n-octyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, phenyl methacrylate, cyclohexyl methacrylate, 3,3,5-trimethylcyclohexyl methacrylate, isobornyl methacrylate, bromoethyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate, diethyl methyleneglutarate, isocyanatoethyl methacrylate, methacrylic acid, methacrylonitrile, 2-(diethylphosphato)ethyl methacrylate, 1-diethylphosphonoethyl methacrylate, styrene, ethylene, butadiene, vinylidene chloride, n-vinylpyrrolidinone. Most of the above polymers may be obtained from the Rohm and Haas Company, of Philadelphia, Pa.
In general, the polydispersity of the glycidyl acrylic terpolymers formed is usually less than about 2. Polydispersity represents the molecular weight average divided by the molecular number average.
In the application of the invention, the catalyst used could be essentially any catalyst which has, at 120xc2x0 C., less than about 30 minutes of half life. For example, diacyl peroxides, monoperoxy carbonic acid esters, peroxydicarbonates, alkyl peresters, ketone peroxides, alkyl hydroperoxides, inorganic peroxides, and others could be used. Many of these compounds may be obtained from Laporte Organics, including Aztec Peroxides, Inc. formerly of Houston, Tex. Furthermore, polymerization initiators including VAZO(copyright) brand polymerization initiators distributed by the DuPont Company of Wilmington, Del. may be employed (xe2x80x9cVAZOxe2x80x9d is believed to be a trademark of the DuPont Chemical Company).
The polymer of the invention also may be formed formed using a molar amount of monomer to facilitate a ring opening reaction that consumes between about 25 and 75 percent of the reactive source of epoxide ion groups, the epoxide ions groups being rendered reactive during photo-polymerization.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
In the state of the art, welded tube shafts are known that are constructed of two endpieces each welded to one and of a hollow tube. Each endpiece comprises a first portion provided with connection fluting such as splines. The splines are adapted to connect the shaft, for example to a correspondingly splined inner joint part of a constant velocity joint. Each endpiece has a tubular second portion that is welded to the hollow tube. The second portion has an inner surface that is cylindrical and an end-wall surface that is substantially flat. The cylindrical inner surface is connected to the end-wall surface via a surface forming a portion of a torus.
During fabrication, the endpieces of known welded tube shafts are subjected to normalization annealing which leads to local decarburization of the endpiece at the location of the surface in the form of a portion of a torus.
Furthermore, after welding, the welded tube shaft is subjected to induction heat-treatment that creates a heat-treated zone in the outer portion of the shaft and a zone that is not heat-treated situated inside the endpieces, with the two zones being separated by a line of separation. Usually, the line of separation is terminated at the surface in the form of a portion of a torus.
Because of those various fabrication parameters, the structural stability and the service lifetime of the known shaft are compromised.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The swath of desert stretching from the Atlantic Ocean to North Africa, the Arabian Peninsula, the Middle East, and the Persian Gulf has vast amounts of solar energy along with warm weather. The average daily high temperatures in these regions range from 43° C. to 49° C. in the summer, with some of hottest days having temperatures over 53° C. Additionally, large parts of the United States for collecting solar energy such as the Mojave Desert and Great Basin Desert have summer daily high temperatures from 35° C. to 49° C.; some summer days have temperatures higher than 49° C.
As a result of the warm weather in these and similar regions, challenges arise because the heat can disrupt solar collection processes or equipment. For example, heat can cause equipment to malfunction or fail. Although standard air conditioning systems are one solution for cooling equipment, it can be difficult to set up air conditioning systems in high ambient temperature environments due to operating temperature limits, or remote locations such as deserts because of lack of a power and/or resources to build and maintain these systems. Moreover, the additional power required to operate air conditioning systems is generally adverse to, and may even defeat the purpose of, gathering and converting solar energy. Accordingly, there remains a need for systems and methods for cooling equipment in a solar environment.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to an apparatus for gasifying or combusting solid, carbonaceous material in a circulating fluidized bed reactor. The circulating fluidized bed reactor comprises a separator which is disposed after the reaction chamber and which separates circulating bed material from gas. The separator for circulating material is provided with a gas outlet for discharging gas from said separator and with a duct for returning separated particles preferably to the lower part of the reaction chamber. A separator for fine particulates is also disposed in the gas flow from the separator.
In a circulating fluidized bed reactor, where the flow rate of gas is maintained at such a high level that a considerable portion of solid particles is discharged with gas from the reaction chamber and, after separation of particles, the major part of the solid particles is returned to the fluidized bed, the gasification or combustion of solid carbonaceous material has been recognized to have several advantages over conventional gasification or combustion methods.
Several different methods have been applied in the gasification of solid, carbonaceous fuel, the most important of them being gasifiers based on the fluidized bed concept as described above. The problem with all gasifiers, including (although to a lesser extent) fluidized bed gasifiers, is how to achieve a very high carbon conversion. This problem becomes more acute when fuels with low reactivity, such as coal, are to be gasified. It is also difficult to achieve a high carbon conversion with fuels having a small particle size, such as milled peat.
Poor carbon conversion is principally the result of the comparatively low reaction temperature of fluidized bed gasifiers, which is restricted by the melting temperature of the fuel ashes. Carbon conversion can be significantly improved by increasing the reaction time of the gasification, i.e., by returning the escaped, unreacted fuel to the reactor.
In a circulating fluidized bed gasifier or boiler, the rate of flow of the upwardly directed gas is so high that a substantial amount of solid bed material, entrained with product or flue gases, passes out of the reactor. Most of such outflowing bed material is separated from the gas by separators and returned to the reactor. The finest fraction, however, is discharged with the gas. Circulating material in the reactor comprises ashes, coke and other solid material, such as limestone, possibly introduced in the gasifier, which induces desired reactions such as sulfur capture.
However, separators such as cyclones, which are normally used, have a restricted capacity for separating small particles. Normally, hot cyclones can separate only particles up to the size of 50-100 microns, and finer fractions tend to escape with the gases. Since the unreacted fuel discharged from the reactor with the gas is mainly coke, from which the volatile (reactive) parts have already been discharged, it would, when returned to the reactor, require a longer retention time than the actual "fresh" fuel. However, because the grain size of the returned coke is very small, the returned fine fraction is immediately discharged again from the reaction chamber, and thus the reaction time remains too short and the carbon conversion undesirable low.
The grain size of the coke gradually becomes less during the process, thereby increasing the emission of particulate material from the cyclone, which results in a low carbon conversion.
Even though small coke particles can be separated from the gases with new ceramic filters, additional problems arise. Solid fuels always contain ashes which have to be removed from the system when pure gas is produced. When aiming at a carbon conversion as high as possible, ashes have to be removed so as to avoid discharging large amounts of unreacted carbon with the ashes. The particle size of the ashes, however, always varies within a wide range and fine ashes tend to fly out of the reactor with the fine coke residue.
In order to achieve a high carbon conversion, the following diverse criteria must be reconciled: (1) separation of fine particulates from the gases and return of such to the reactor must be possible, and (2) the carbon contained in the returned particulates has to be made to react, and the ashes have to be separated from the system.
Until now, attempts to reconcile these criteria have been unsuccessful.
It is also common in boiler plants, at fluidizing bed combustion, that unburned coal is easily entrained with the fly ash, especially if poorly reactive fuel is employed or if the boiler plant is under a low load or under an extremely heavy load. Fly ash may contain over 10% coal, sometimes even 20%, which lowers the efficiency of the boiler. It is known that returning the fly ash to the combustion chamber gives a lower carbon content in the fly ash, thus improving the efficiency of the boiler.
Fly ash itself is a problematic produce, however. For example, in the U.S.A., only 20% of the total amount of fly ash can be utilized in the building industry and construction of roads. Final storing causes problems to the power plants. Fly ash is a low density material which means that the residual fly ash requires quite a large storage area. This constitutes a problem in densely populated areas. Furthermore, one has to pay attention to storing of the ashes in such a manner that they do not come into contact with groundwater. Ammonia has recently been introduced into the purification of flue gases, and this has added to the fly ash problem. The fly ash treated with ammonia cannot be used in the concrete industry.
The combustion temperatures in the fluidized bed boilers are substantially lower than, for example, in pulverized combustors and the ash properties are quite different. Ashes produced by combustion at lower temperatures are not stable, but depending on the conditions, there may be gaseous, liquid or dusty emissions.
U.S. Pat. No. 4,315,758 discloses a method and apparatus for solving the problem with the fines recycling. According to this method, the finest particulates separated from the gas are conducted back to the lower part of the reactor while oxygen containing gas is introduced into the same place in the reactor, thereby forming a high temperature zone in which the recovered fine particulates agglomerate with the particles in the fluidized bed. This method introduces an improvement in the so-called "U-gas Process" method.
British Patent No. =GB 2,065,162 discloses a method and apparatus for feeding the fine material separated from gas to the upper part of the fluidized bed in which the fine particulates agglomerate with particles of the fluidized bed when oxygen containing gas is conducted to the same place in the reactor.
The problem with both of these methods is process control. Both methods aim at agglomeration of the separated fine material to the fluidized bed (featuring excellent heat and material transfer properties). It is of major importance that the main process itself can operate at an optimal temperature, and it is easily disturbed when the temperature needed for the agglomeration is not the same as that needed for the main process. Due to the good heat transfer that occurs in the fluidized bed, the temperatures tend to become balanced, which causes new problems. Gas different from the oxygen containing gas used in the actual gasification is needed because of the excess heat. Additionally, because the size of particles contained in the fluidized bed varies considerably, it is difficult to control the agglomeration in the reactor so that production of ash agglomerates of too large a size could be prevented. Ashes stick to large as well as small bed particles and ash agglomerates of too large a size are easily formed, which impede or prevent ash removal, and the gasifying process has consequently to be interrupted. Furthermore, agglomeration in the reactor itself causes local overheating, which in turn leads to abrasion of brickwork.
U.S. Pat. No. 3,847,566 discloses one solution in which high carbon conversion is sought by burning the fine material escaping from the gasifier in a separate combustion device. Coarser, carbonaceous material taken from the fluidized bed is heated with the heat released from combustion. This carbonaceous material is returned to the fluidized bed after the heating. This is how the heat required for the gasification is generated. The gases, flue gas and product gas, released from the combustion and gasification have to be removed from the system in two separate processes both including a separate gas purification system. As can be seen, the arrangement of this method requires quite complicated constructions and results in poorly controlled processes.
The problem with the above-mentioned methods resides in the difficult process conditions where agglomeration conditions have to be controlled. This calls for expensive materials and cooled constructions.
According to the invention, an apparatus for gasification or combustion, by means of which the highest possible carbon conversion is attained without the above-mentioned drawbacks in the process control and without complicated and expensive constructions, is provided. According to the invention, it is also possible to separate the finest carbonaceous particulates from the product or flue gas and return them to the reactor in such a form that the carbon contained in the particulates can be exploited and the ash be separated.
According to the invention, in a circulating fluidized bed reactor, agglomerating means are provided comprising an agglomerating and fluidizing chamber disposed in connection with the return duct for particles. The agglomerating chamber is in communication with a return duct for circulating particles discharged from the separator and with the lower part of the return duct, through which circulating particles are returned to the lower part of the fluidized bed reactor. The bottom of the chamber is provided with means (such as fluidizing gas nozzles) for feeding fluidizing gas to maintain a bubbling fluidized bed in the chamber. The bed material is comprised of circulating particles. The fluidizing gas can also be introduced into the reactor, for example, through a porous bottom plate.
The upper part of the agglomerating chamber is provided with a burner for particulates for heating and for at least partially combusting fine particulates. Fine particulates from the separator therefor are conducted through the burner to the free space above the fluidized bed in the chamber. The burner for particulates comprises two conduits or nozzles, one for oxygen containing gas, the other for fine particulates or for a mixture of particulates and gas. The burner for particulates is disposed in the upper part of the agglomerating chamber so as to form a flame, produced in the combustion of particulates, substantially in the space above the fluidized bed. Therefore, the nozzle for particulates and the nozzle for gas are preferably so disposed as to make the point of the flame of combusting particulates penetrate the bubbling fluidized bed.
In the apparatus according to the invention, fine particulates separated in the gas purification stage are agglomerated with the circulating bed material at a raised temperature before the solid particles are returned to the reaction chamber. Thus, particles are separated from the gas at least in two stages. In the first stage, mainly coarser particles are separated, the major part of which is returned to the reactor as circulating material. In the second stage, mainly finer carbonaceous particulates are separated, at least a portion of which, agglomerated and mixed with the circulating material, is returned to the fluidized bed reactor at a raised temperature.
The temperature of the separated fine particulates is raised to over 1000.degree. C., preferably to 1000.degree.-1300.degree. C., by conducting oxygen containing gas into the flow of particulates, whereupon at least part of the fine particulates form or become sticky particles which are caused to agglomerate with the circulating particles before they are returned to the reactor chamber. Preferably, agglomerated particles are caused to mix evenly with the circulating particles before they are returned to the reactor.
In such processes where the higher the temperature for purification of the gas the better, fine particulates can also be separated from the product gas by employing several consecutively connected cyclones, cyclone radiators or high-heat filters or other equivalent means which are also capable of separating fine particulates.
On the other hand, for example, connected with a combined power plant, it is advantageous to use the hot product gas for superheating steam and not to separate the fine particulates from the product gas until the gas has cooled to a lower temperature, such as 850.degree. C. In this case, the purification of the gas is also easier to accomplish. At a lower temperature, the gas does not include to a harmful extent fine fumes which are difficult to separate and which easily clog, for example, pores of ceramic filters. Furthermore, hot fumes are extremely aggressive chemically and impose great demands on materials. The method according to the present invention is, therefore, most suitable for combined power plant applications because the carbon conversion of the fuel is high, the product gas is pure and well applicable to gas turbines and, furthermore, the overall heat economy is improved by superheating the steam.
Agglomeration increases the particle size of fine particulates to such an extent that the retention time of the particulates becomes longer in the reactor and the carbon conversion is improved. If the particle size of the returned particulates is increased sufficiently, the ash particles can be removed from the reactor at an optimal stage, whereby the carbon contained in ash particles has reacted almost completely.
By agglomerating the particulates outside the actual fluidized bed reactor, where the coarsest circulating particles are considerably smaller in size than the coarsest fluidizing particles in the reactor itself, formation of particles of too large a size is avoided, which particles might be discharged from the reactor along with the ashes thereby leaving the carbon insufficient time to react completely.
Gasification in a circulating fluidized bed reactor is in some ways different from gasification in a conventional bubbling fluidized bed reactor. In a circulating fluidized bed reactor, the upwardly directed flow rate is so high, typically 2-10 m/s, that a large amount of solid bed material is entrained with the gases to the upper part of the reactor, and some passes out of the reactor, where it is returned after the gas separation. In such a reactor, the important reactions between the gases and solid material are effected over the entire area of the reactor while the suspension density is even in the upper part of the reactor 0.5-30 kg/kg of gas, most commonly 2-10 kg/kg of gas.
In a bubbling fluidized bed, where the flow rate of the gas is typically 0.4-2 m/s and the suspension densities in the upper part of the reactor about 10 to 100 times lower than in the circulating fluidized bed reactor, the gas/solid material reactions are mainly effected in the lower part of the reactor, i.e., in the bed.
The invention provides, for example, the following advantages:
A high degree of carbon conversion is achieved. PA0 Agglomeration of fine carbon can be effected in a controlled manner not disturbing the process conditions in the gasifier or boiler. PA0 With a circulating fluidized bed concept, the cross section of the reactor can be clearly smaller than with a so-called bubbling fluidized bed reactor. PA0 Thanks to the smaller cross section and better mixing conditions, there is an essential decrease in the need for fuel feed and ash removal devices in comparison with the so-called bubbling bed. PA0 Capture of sulfur contained in the fuel with inexpensive lime can be effected in the process. PA0 Reactions between solids and gases take place over the entire area of the reactor section and separator. PA0 The equipment described above does not require expensive special materials. PA0 As the various stages of the process are performed in various devices, the process control can be carried out optimally with regard to the total result. PA0 Inert ashes are received; and PA0 Problems with storing fly ash are reduced.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
FIG. 1 illustrates the configuration of a conventional signal processing circuit in a single plate-type CCD color camera.
A first 1H delay circuit 1 generates a video signal obtained by delaying an input video signal (a CCD output signal) by 1H (one horizontal period). A second 1H delay circuit 2 generates a video signal obtained by further delaying by 1H the video signal delayed by 1H.
The input video signal, the video signal delayed by 1H, and the signal delayed by 2H are fed to a YC separating circuit 3. A luminance signal Yh, a vertical contour signal Vap, a G signal, an R signal, and a B signal are outputted from the YC separating circuit 3.
The luminance signal Yh and the vertical contour signal Vap are fed to a Y process circuit 4, are subjected to predetermined luminance signal processing, and are then outputted as a luminance signal Yout.
The G signal, the R signal, and the B signal are fed to a color difference matrix circuit 5. The color difference matrix circuit 5 comprises four adders 11, 12, 13, and 14, four multipliers 21, 22, 23, and 24, and a color difference matrix coefficient register 25 for giving a multiplication coefficient to each of the multipliers 21, 22, 23, and 24. The multiplication coefficient given to each of the multipliers 21, 22, 23, and 24 is set in the color difference matrix coefficient register 25 by a CPU 7.
Letting KRRY, KRBY, KBRY, and KBBY be respectively the multiplication coefficients given to the multipliers 21, 22, 23, and 24, the color difference matrix circuit 5 performs an operation expressed by the following equation (1), to generate color difference signals (R−Y) and (B−Y).R−Y=KRRY(R−G)+KBRY(B−G)B−Y=KRBY(R−G)+KBBY(B−G) (1)
The color difference signals (R−Y) and (B−Y) obtained by the color difference matrix circuit 5 are fed to a color encoding circuit 6.
In the color encoding circuit 6, two color carriers between which there is a phase difference of 90 degrees are respectively modulated by the color difference signals (R−Y) and (B−Y), and are synthesized, to generate a chrominance signal Cout.
In the above-mentioned circuit, the tone of a video output can be adjusted by changing the coefficients KRRY, KRBY, KBRY, and KBBY in the color difference matrix circuit 5. That is, a gain in an R−Y direction, a hue (HUE) corresponding to a B−Y axis, a hue (HUE) corresponding to an R−Y axis, and a gain in a B−Y direction are respectively adjusted by the coefficients KRRY, KBRY, KRBY, and KBBY, as shown in FIGS. 2a, 2b, 2c, and 2d.
Meanwhile, in the case of the single plate type CCD color camera, a color filter is arranged on a front surface of a CCD. Particularly when a complementary color filter is used as the color filter, it is difficult to change the spectral-response characteristics of Ye, Mg, Cy, and G color filters to ideal characteristics. Accordingly, a color different from the inherent color is reproduced.
For example, green-based colors are not easily obtained, blue-based colors are predominantly obtained, and red-based colors are shifted in a magenta direction. It is difficult to adjust such degradation of color reproducibility only by the coefficients KRRY, KRBY, KBRY, and KBBY in the color difference matrix circuit 5. The reason for this is that in a case where green-based colors are insufficient, for example, when the coefficient KRRY is increased, green can be heightened, while cyan, red, and magenta are also similarly heightened.
An object of the present invention is to provide a tone correcting circuit capable of correcting a tone only for an arbitrary hue.
Another object of the present invention is to provide a hue correcting circuit capable of correcting a hue only for an arbitrary hue.
Still another object of the present invention is to provide a color correcting circuit capable of correcting a color only for a hue within an arbitrary range out of all hue ranges.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Network devices such as computers, personal digital assistants (PDAs) and others are often received from manufacturers with default configurations. Organizations however, especially large organizations, prefer and often require that employees with similar duties have access to similar, if not identically configured devices especially tailored to the organization's needs. As such, oftentimes such devices after being received from the manufacturers must be configured or reconfigured to meet the standards set forth by the organization. Having identical devices reduces not only the cost of configuring the devices, as each may be configured with a similar image, but also reduces the cost in training new employees to operate the standard device configurations.
A standard image with which a network device may be configured may include, for example, an operating system and one or more applications anticipated to be needed by the employee for which the device may be intended. Furthermore the device itself may need to be configured to be consistent with an organization's own internal policy. For example, an organization may not allow its employees to listen to music on company devices, thus perhaps the speakers of a laptop may need to be disabled.
The devices may be configured manually, whereby an administrator or other user may need to physically handle the device, assign it a network address, load one or more images onto the device, from a CD-ROM for example and manually configuring one or more components of the device, all depending on the intended use of the device.
Automating the configuration process however, where devices may be remotely configured via a network, may not only save time and money, but also ensure that devices intended for similarly situated employees are identically configured (rather than being subject to a potential for human error). Furthermore devices located in remote destinations or office locations may be remotely configured upon gaining access to the network.
However it may occur that an organization's standard image for a device may include proprietary, classified or otherwise sensitive information on the standard images. Then for example, it may be useful to have an automated configuration process that may differentiate between security levels and configure the network devices with one or more images depending on various security considerations.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Pressure sensors have become ubiquitous the past few years as they have found their way into many types of products. Utilized in automotive, industrial, consumer, and medical products, the demand for pressure sensors has skyrocketed and shows no signs of abating.
Pressure sensor systems may include pressure sensors as well as other components. Pressure sensors may typically include a diaphragm or membrane. This membrane may be formed by creating the Wheatstone bridge in a silicon wafer, then etching away the silicon from the opposite surface until a thin layer of silicon is formed beneath the Wheatstone bridge. The resulting membrane may be surrounded by a thicker, non-etched silicon wafer portion or frame. When a pressure sensor in a pressure sensor system experiences a pressure, the membrane may respond by changing shape. This change in shape may cause one or more characteristics of electronic components on the membrane to change. These changing characteristics may be measured, and from these measurements, the pressure may be determined.
In some applications, it may be desirable that a pressure sensor have a specific form factor. For example, in many applications, it may be important that the pressure sensor be small, or have a thin form factor, or both.
But pressure sensors having these small form-factors may be difficult to assemble into larger components. For example, these pressure sensors may be too small to use with traditional semiconductor assembly tools for wire bonding or flip-chip assembly. Absent these well-established techniques for electrically connecting pressure sensors to their surroundings, device manufacturers have turned to expensive and laborious manual assembly techniques, with their drawbacks in cost, quality and yield.
Thus, what are needed are pressure sensors and associated structures that may facilitate the use of automated assembly processes and tools.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to an overheat detection circuit configured to detect an abnormal temperature of a semiconductor device.
2. Description of the Related Art
A circuit disclosed in Japanese Patent Application Laid-open No. Hei 6-242176 has been known as a related-art overheat detection circuit.
FIG. 3 is a circuit diagram of the related-art overheat detection circuit. The related-art overheat detection circuit includes a reference voltage section 10, a temperature sensor 20, and a comparator 30. The related-art overheat detection circuit controls the comparator 30 to compare and determine a voltage generated at a PN junction element 21, being a temperature sensitive element, and a reference voltage Vref output from a reference voltage circuit 11, to thereby detect an overheated state. The voltage generated at the PN junction element 21 basically exhibits negative temperature characteristics as long as the PN junction element 21 is biased by a constant current of the constant current circuit 22. When an ambient temperature increases and the voltage generated at the PN junction element 21 falls below the reference voltage Vref, the comparator 30 outputs a signal indicating the overheated state.
However, in the above-mentioned overheat detection circuit, for example, in a case where the constant current circuit 22 includes a current mirror circuit formed of PMOS transistors, a leakage current between a drain terminal of the PMOS transistor and a substrate is increased when the temperature becomes higher, which leads to an increase in constant current biasing the PN junction element 21. Therefore, there is a problem in that the voltage of the PN junction element 21 is increased and the temperature can thus not be accurately detected.
Moreover, for example, in a case where the reference voltage circuit 11 includes a saturation-connected NMOS transistor, a leakage current between a drain terminal of the NMOS transistor and a substrate is increased when the temperature becomes higher, which leads to a decrease in reference voltage Vref of the reference voltage circuit 11. Consequently, there is a problem in that a reference of the comparator 30 varies and the temperature can thus not be accurately detected.
Moreover, for example, a leakage current of a transistor forming the comparator 30 is increased to adversely affect an internal operating point, which leads to a problem in that neither of the detection of the temperature nor the output of the detection result can be accurately performed.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
In certain instruments, such as gyroscopes, there is a sensitive movable element (e.g., the gyro rotor) capable of small motions about its central position within the instrument housing. In these instruments, it is necessary to apply a force or torque to the sensitive element to force the element back to its central position. The manner in which the sensitive element is forced back to its central position is usually accomplished by applying a voltage to electrode plate pairs. The electrode plate pairs are separated by a narrow gap from the sensitive element along the X and Y axes. The plate electrodes parallel to the X and Y axes and the sensitive element form pairs of capacitors along these axes. When the sensitive element moves from its central position, a voltage is induced across the load resistor of the capacitive circuit in either the X or Y axis or both. This output signal is used by appropriate circuitry to cause the element to be forced back to its central position. Thus, the same X and Y axis capacitive circuits may be used as a pickoff or as a torquer.
A disadvantage of the instrument described is that there are independent X and Y axis pickoffs, each having its own scale factor determined by the electrode plate area and the nominal gap between the plate and the sensitive element. Another disadvantage is that there are instabilities in geometry; that is, if the electrode structure goes out of round, the average gap on the X-axis will differ from the Y-axis again changing the relative scale factors. Thus, the device will be unable to meet the scale factor requirement that the two pickoffs must be accurate to five parts per million in order to measure a displacement angle within an accuracy of one second of arc.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to recording media, and methods and apparatuses associated therewith.
2. Discussion of the Related Art
A new type of high density optical disc, such as a Blu-ray RE-writable disc (BD-RE), that can record and store high definition audio and video data for a long period of time, is being developed. As shown in FIG. 1, the BD-RE has a lead-in area, a data zone, and a lead-out area. An inner spare area (ISA) and an outer spare area (OSA) are respectively allocated at a fore end and a rear end of the data zone. A recording unit of the BD-RE is a cluster. Referring to FIG. 1, whether or not a defect area exists within the data zone can be detected during the recording of the data. When a defect area is detected, replacement recording operations are performed. For example, the data that is intended to be recorded in the defect area is recorded in a spare area (e.g., the inner spare area (ISA)). Then, position information of the detected defect area and the replacement recorded spare area are recorded and stored as management information in a defect list (DFL) of a disc management area (DMA) located within the lead-in area.
During a read operation of this data, the data recorded in the spare area is read and reproduced, instead of the data of the defect area, by accessing the DFL; thereby preventing a data recording/reproducing error from occurring.
A write-once recordable blu-ray disc (BD-WO) is also under development. Unlike a rewritable disc, data can only be recorded once in the entire area of a write-once optical disc; and data cannot be physically overwritten in the write-once optical disc. Nevertheless, there may occur instances, where it would be desirable to edit or partially modify recorded data. For example, for simplicity of use of the host or the user, virtual overwriting of the data may be desirable.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to processes for producing coke, an artificial graphite having a high graphitization degree, a carbon material for a negative electrode of non-aqueous solvent type secondary battery having a high discharge capacity and a high charge-discharge efficiency, from mesophase pitch (optically anisotropic pitch), and a pitch composition mainly used for the production of these substances.
2. Description of the Prior Art
Mesophase pitch is an excellent carbon material capable of producing pitch coke having a high graphitizability at a high yield. However, when the mesophase pitch is held in an electric furnace and heat-treated therein, gases are generated therefrom, so that the pitch is foamed and the volume thereof increases several tens times. Thus, the production of coke from the mesophase pitch has a problem concerning its productivity. Also, in the case where the mesophase pitch is used as a binder to produce a carbon-based molding material, the pitch is foamed by gases generated. As a result, there arises such a problem that coke derived from the mesophase pitch which is contained in the carbon-based molding material exhibits a low density.
Japanese Patent Application Laid-open No. Heisei 6(1994)-299076 discloses a method of adding carbon black to mesophase pitch in order to inhibit the foaming of the mesophase pitch.
However, the coke produced by the above method of adding carbon black to mesophase pitch, shows a poor graphitizability due to strong interaction between carbon black and mesophase pitch, thereby failing to obtain an artificial graphite having a high graphitization degree. Therefore, it has been required to provide not only a process for producing high-density coke at a high productivity while avoiding foaming of the mesophase pitch, but also a process for producing an artificial graphite having a high graphitization degree.
In addition, recently, lithium ion secondary batteries having a negative electrode made of a carbon material, have been rapidly put into practice as a power source for various electronic devices used in the current high information-oriented society, because these batteries show a high voltage and a high-energy density and are excellent in safety and cycle characteristics.
Natural graphite conventionally used exhibits a high discharge capacity due to its higher crystallinity as compared to those of other carbon materials. However, it is required that the natural graphite is pulverized in order to prepare a negative electrode material therefrom. Therefore, the pulverized natural graphite has a large surface area, which results in low charge-discharge efficiency at initial cycle. In addition, the natural graphite is deteriorated in cycle life since it contains a large amount of impurities such as metal components.
Accordingly, it has also been required to provide carbon materials containing a less amount of impurities such as metal components and exhibiting a high charge-discharge efficiency at initial cycle. As carbon materials satisfying such a requirement, Japanese Patent Application Laid-open No. Heisei 10(1998)-121054 discloses a graphite powder containing a less amount of impurities and exhibiting a crystallinity compatible to that of natural graphite, which is produced by heat-treating specific mesophase pitch in a specific temperature range in a non-oxidative atmosphere, and then successively subjecting the heat-treated material to pulverization and graphitization.
However, the graphite powder obtained in Japanese Patent Application Laid-open No. Heisei 10(1998)-121054 has a highly-oriented flow structure. Therefore, when such a graphite powder is used as an electrode material for secondary batteries, there is caused such a problem that the solvent contained in an electrolyte solution shows a high decomposition activity upon charging due to the crystal structure on the surface of the graphite powder, which results in deteriorated charge-discharge efficiency of the batteries. Further, as described above, the mesophase pitch is undesirably foamed by gases generated when heat-treated in an electric furnace, so that the volume thereof increases up to several tens times, thereby causing the problem concerning its productivity. Accordingly, it has been demanded to provide a process for producing a graphite powder capable of realizing not only a high productivity but also a high discharge capacity and a high charge-discharge efficiency of finally produced batteries.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Infusion devices are used to deliver substances such as medications into the subcutaneous layer of skin of a patient. Typically, an infusion device includes a cannula that is introduced into the skin, as well as a tube extending from the infusion device to, for example, an infusion pump to deliver the substance.
In current designs, it is typically necessary to introduce a cannula of the infusion device into the skin while maintaining the device at a given orientation so that the tubing extends in a direction towards the infusion pump. Further, once the infusion device is placed on the skin, there is typically no way to reorient the device and associated tubing, or to remove the tubing from the body without removing the cannula from the skin of the patient. In addition, the profile of infusion devices can be undesirably high, making placement and concealment of the infusion device difficult and uncomfortable to wear. Also, introduction of the infusion device into the skin can be complicated and require two hands to accomplish.
In addition, devices for assisting in insertion of the cannula of an infusion device into the skin of the patient are known. For example, some devices utilize springs to automatically drive a needle into the skin of a patient to introduce the cannula of the infusion device into the subcutaneous layer.
Because a needle is used to introduce the cannula of the infusion device into the subcutaneous layer of skin, there is a risk associated with inadvertent exposure to the needle. Further, patients may react adversely to viewing the needle prior to insertion and may, for example, be reluctant to place the needle into the skin. Prior devices may not adequately shroud this needle prior to and/or after introduction of the infusion device.
Other issues of concern in the design and use of insertion devices include ease of use by the patient and sterilization. For example, some patients may have difficulty loading the infusion device into the insertion device.
It is therefore desirable to provide new designs for infusion devices and devices used to assist in the introduction of an infusion device into the skin of a patient to deliver a substance into the skin.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Poly(arylene ether) resins are a class of plastics known for excellent water resistance, dimensional stability, and inherent flame retardancy, as well as high oxygen permeability and oxygen/nitrogen selectivity. Properties such as strength, stiffness, chemical resistance, and heat resistance can be tailored by blending poly(arylene ether) resins with various other plastics in order to meet the requirements of a wide variety of consumer products, for example, plumbing fixtures, electrical boxes, automotive parts, and insulation for wire and cable. The poly(arylene ether) most commonly used and widely commercially available is poly(2,6-dimethyl-1,4-phenylene ether).
Various odorous impurities that may be present in poly(arylene ether) resins have discouraged its adoption for odor-sensitive applications such as the molding of containers for food, cosmetics, and pharmaceuticals. One source of odors in poly(arylene ether) resins is di-n-butylamine, which is used as a component of the polymerization catalyst employed by the two largest manufacturers of poly(2,6-dimethyl-1,4-phenylene ether). The resulting poly(2,6-dimethyl-1,4-phenylene ether) resins can exhibit a di-n-butylamine-related odor from free di-n-butylamine impurities in the poly(2,6-dimethyl-1,4-phenylene ether). On the other hand, di-n-butylamine is also incorporated into the poly(2,6-dimethyl-1,4-phenylene ether) molecule as di-n-butylamino substituents, the thermal decomposition of which can provide a beneficial increase in poly(2,6-dimethyl-1,4-phenylene ether) molecular weight during compounding, as well as improved compatibilization of poly(2,6-dimethyl-1,4-phenylene ether) with incompatible resins such as polyamides.
One approach to reducing the odor of poly(2,6-dimethyl-1,4-phenylene ether) resins has been to utilize polymerization catalysts with less odorous amines. For example, proton nuclear magnetic resonance spectroscopy (1H NMR) analysis of a poly(2,6-dimethyl-1,4-phenylene ether) obtained in China from Bluestar New Chemical Materials Co., Ruicheng Branch, China, indicates the presence of morpholino substituents and the absence of di-n-butylamino substituents. This analysis suggests that these poly(2,6-dimethyl-1,4-phenylene ether) resins are synthesized using a polymerization catalyst comprising morpholine rather than di-n-butylamine. Although the poly(2,6-dimethyl-1,4-phenylene ether) resins synthesized with a morpholine-containing catalyst exhibit reduced odor, they also exhibit undesirable reductions in their molecular weight increase during compounding and their compatibilization with resins such as polyamides. Thus, there remains a need for a poly(2,6-dimethyl-1,4-phenylene ether) which is synthesized without di-n-butylamine but which exhibits the molecular weight gain and compatibilization advantages of poly(2,6-dimethyl-1,4-phenylene ether) resins synthesized with di-n-butylamine.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Encryption has been used to provide for secure communication between participants in a radio communication system. One prior art arrangement is based on the use of a public algorithm, such as the Data Encryption Standard (DES), in conjunction with a privately maintained encryption key to enable secure communications. In such cases, it is common to periodically change the encryption keys to maintain the integrity of the system.
A radio communication system may employ multiple encryption keys, each governing communications for a particular subset of users on the system. In this manner, distinct communication groups may be created to provide for separate operation, or to provide for differing levels of security. It is known to provide a radio communication device with a set of encryption keys which are user selectable. In one approach, the user determines when a new key selection is required and enter the required key into the device. Another approach uses over-the-air rekeying transmissions or similar remote keying operation. Over-the-air rekeying allows systems to remotely reconfigure a radio communication device with a new key. One disadvantage is that once a key has been compromised the rekeying information is also available to an unauthorized listener. Another disadvantage is that the communication device needs to be available when rekeying is occurring throughout the system to retain secure communication capability.
It is desirable to provide for flexibility in the use of encryption keys when engaged in secure communications. The prior art implements a variety of methodologies of varying degrees of complexity and effectiveness. However, improvements are needed in the management of key selections for secure communications.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
U.S. Pat. No. 2,324,291 discloses a radial piston machine including a star-shaped driving means on which radial pistons abut which are arranged like a star in the housing. The driving means is slipped onto stamp-like projections of the radial pistons to guide the radial pistons. This provides a positive clamping engagement of the piston stamps so that, on rotation of an eccentric gear arranged in the driving means, the movement of the driving means follows the movement of the eccentric. Due to the disclosed arrangement of the radial pistons on the driving means and the arrangement of the driving means with respect to the eccentric, a relative movement occurs between the contact surfaces of the piston stamps and the driving means which, due to friction on the contact surfaces and a tilting moment effect of the radial pistons in the housing, reduces the pump output and forces the driving means to clamp the pump stamps, which has adverse effects on the rigidity of the driving means.
British patent specification No. 763 095 discloses a driving means for a radial piston pump which, for the assembly, has a bipartite design in a radial direction and embraces the eccentric drive. The relative movement between the driver and the eccentric gear is ensured by a radial clearance which is configured as a sickle-shaped slot. The driver, which is hence composed of half shells, in terms of its material strength, must be dimensioned so that the tensile stress caused by screws can be taken up by the driver both mechanically and geometrically. Accordingly, the driver has a large and heavy construction. In addition, it can only be mounted in a radial direction because it is screwed with the piston.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
This invention relates generally to providing video information to a plurality of users in a video distribution system.
Current video distribution systems include pay per view systems which are available from cable and satellite television providers. In these systems, a variety of different pay per view movies are offered for viewing at a plurality of different times. The user must either join the video in progress or wait until a preset time when a new video begins. By offering a plurality of different starting times, these systems attempt to provide an approximation of video on demand.
In order to provide the video to a plurality of users at the exact times when they would like to have it, one might expect that a large bandwidth would be necessary. That is, given a large number of viewers, it would seem to be difficult to transmit different videos at a plurality of times given the bandwidth available with existing satellite and cable video distribution systems.
This means that the system users must accommodate their viewing desires to the existing bandwidth limitations of the video distribution system. Where those viewing desires do not correspond with the capabilities of existing systems, potential customers are lost.
Thus, it would desirable to provide a video distribution system which permits video distribution upon demand from the user.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
In a typical method for measuring a blood glucose level, redox reaction is utilized. Meanwhile, portable handheld blood glucose level measuring apparatuses are widely used so that the blood glucose level can be measured easily at home or away from home. In such a portable blood glucose level measuring apparatus, the blood glucose level is measured by mounting a disposable biosensor for providing an enzymatic reaction field to the apparatus and supplying blood to the biosensor.
The measurement of a blood glucose level may be performed by utilizing an electrochemical technique. In such a case, the blood glucose level is measured by mounting a biosensor 90 to a blood glucose level measuring apparatus 91 in such a manner as shown in FIG. 14 (See JP-B-H8-10208, for example). The biosensor 90 includes an insulating substrate 92 formed with a first and a second electrodes 93 and 94 for applying voltage to the enzymatic reaction field. The blood glucose level measuring apparatus 91 comprises a connector 97 including a first and a second terminals 95 and 96 coming into contact with the first and the second electrodes 93 and 94, and a measurement circuit 98 for determining the blood glucose level based on the information from the connector 97.
The blood glucose level measuring apparatus is affected by various disturbing noise. The disturbing noise may influence the measurement result or destroy the electronic part to make the measurement impossible. Particularly, a portable small measurement apparatus is liable to be influenced by static electricity from a human body. Specifically, since the biosensor 90 is usually mounted to the blood glucose level measuring apparatus 91 manually, the static electricity, if built up in the human body, is discharged to the first and the second electrodes 93 and 94 of the biosensor 90 or the first and the second terminals 95 and 96 of the blood glucose level measuring apparatus 91. If no countermeasure is taken against the static electricity, the static electricity is inputted, as disturbing noise, into the measurement circuit 98 through the first electrode 93 and the first terminal 95, for example. Therefore, as the conventional measures to reduce the influence of static electricity, the arrangement of the first and the second terminals 95 and 96 in the blood glucose level measuring apparatus 91 has been contrived or the withstand voltage of each electronic part constituting the measurement circuit 98 has been increased. In another method to cope with static electricity, a conductive sheet is disposed adjacent to the connector or the nearby portion (See JP-Y-H8-2609, for example).
However, the above-described conventional countermeasures against disturbing noise are realized by modifying the design of the blood glucose level measuring apparatus 91. Therefore, such countermeasures complicate the structure of the blood glucose level measuring apparatus 91 and increase the size of the apparatus, and hence, increase the manufacturing cost.
Recently, there is a tendency to reduce the thickness of the first and the second electrodes 93 and 94 to reduce the manufacturing cost of the biosensor 90. Further, to adapt the biosensor 90 to the portable blood glucose level measuring apparatus 91, the size of the biosensor 90, including the size of the first and the second electrodes 93 and 94, cannot help being reduced. In such cases, the resistance of the first and the second electrodes 93 and 94 increases. Therefore, in the circuit structure shown in FIG. 14, for example, Joule heat is generated adjacent to the contact point between the first electrode 93 and the first terminal 95 of the blood glucose level measuring apparatus 91 when static electricity tries to move through the contact point. When the generated Joule heat is high, the first electrode 93 may melt. In such a case, the biosensor 90 mounted to the apparatus cannot measure the blood glucose level. Further, the melt of the first electrode 93 of the biosensor 90 adheres to the first terminal 95 of the blood glucose level measuring apparatus 91 and changes the resistance of the first terminal 95, so that an error is generated in the subsequent measurement of responsive current. Such a problem is more significant as the thickness of the first electrode 93 is made smaller.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Applying digital methods to the control of systems bears the promise of creating new features, improving performance, providing greater product flexibility, and providing a lower cost. System operating characteristics dictated by a stored program, rather than the parameters of a set of discrete components, can result in cost and space savings as well as capacity for real time adaptation of those characteristics, greater sophistication in control algorithms and the ability to generate, store and recall valuable real-time functional data.
However, digital feedback control requires high resolution and high speed. These requirements have limited the adoption of digital control in many fields. The advent of low cost logic has it made possible the application of digital control techniques to cost sensitive fields. As the cost of digital logic decreases, new opportunities arise.
A typical digitally controlled feedback system has an analog to digital converter, digital loop compensator, power device driver, and an external system to be controlled. An example of a system in which application of digital control can improve performance or lower cost is the switching power supply or DC-to-DC converter. (However, many other systems would also benefit from application of digital control,)
It is very desirable to minimize the cost, size and power dissipation of a low-cost off-line switching power supply for low power applications, such as recharging cells and batteries used in portable consumer appliances, such as entertainment units, personal digital assistants, and cell phones, for example.
A PWM switched power supply requires a variable pulse width that is controlled by an error signal derived by comparing actual output voltage to a precise reference voltage. The pulse width of the switching interval must also be constrained to be within a minimum and maximum duration. These constraints are imposed for correct PWM power supply or motor driver operation.
An example of a digitally controlled system is shown in FIG. 1. In the example shown in FIG. 1, the system is a simple buck DC to DC converter. The fundamental components are the same for any DC to DC converter. The sample system shown in FIG. 1 includes three major components: a compensator preceded by an ADC, PWM and power switches, and passive LC network.
Typically the PWM resolution is required to be much higher than the ADC resolution. If this is not true, the output of the PWM jumps back and forth in code values to satisfy a particular input ADC code. The frequency of this jumping back and forth, which is commonly known as limit cycling, is determined by the control system dynamics. As a result the frequency and size of the ripple can be large. The typical solution to this problem is to increase the PWM resolution. This method can lead to significant complexity in the PWM Design. Techniques such as polyphase clocks or analog methods may be needed to achieve the required resolution. This is particularly true for high speed power supplies which require a very high speed PWM frequency.
There is a need for a digital controller that overcomes the requirements of high resolution and high speed.
There is also a need for a digital controller that can be implemented without expensive multiplication.
There is a further need for a digital controller that has the above characteristics and can have arbitrarily controlled coefficients.
There is also a need for simple, cost effective methods and systems that provide effectively high PWM resolution.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
During fabrication of a semiconductor device such as a gallium nitride (GaN) high electron mobility transistor (HEMT), a transition metal such as nickel (Ni) is deposited as a layer of the semiconductor device to realize a Schottky barrier. The Schottky barrier is an energy barrier that provides a rectifying function used to prevent unwanted leakage current from passing through a junction region of the semiconductor device. A thicker noble metal layer for carrying a relatively large current at low resistance is typically deposited over the layer making up the Schottky barrier. However, when a transition metal such as Ni is used as a Schottky contact metal, an intervening layer of a noble metal such as platinum (Pt) or palladium (Pd) is also deposited to form a diffusion barrier layer. Alternately, diffusion layers have been fabricated using an in-situ oxidation process that oxidizes a transition metal during deposition. These diffusion layers and the other layers of metal making up a metal structure for a semiconductor device are generally deposited in a vacuum chamber by thermal evaporation, e-beam evaporation or sputtering. As such, the in-situ oxidation process requires expensive modifications of tools and/or complicated modifications of other processes. Thus, a new process for fabricating a metal structure for a semiconductor device is needed to avoid expensive modifications of tools and/or complicated modifications of other processes.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a model and accompanying algorithm to simulate and analyze ink ejection from a piezoelectric print head. More particularly, the model of this invention includes a quadrilateral grid for finite-difference-based ink-jet simulation where the algorithm is designed to solve a set of partial differential equations for two-phase flows that have been newly developed on the quadrilateral grid. The quadrilateral grid is transformed to a uniform square grid, and the derivatives of various parameters (e.g., the velocities, pressure, and level set) in the newly developed partial differential equations are calculated on the uniform square grid. A stable and powerful numerical algorithm is developed to solve the derived equations. The simulation model may be embodied in software, hardware or combination thereof and may be implemented on a computer or other processor-controlled device.
2. Description of the Related Art
Results of computational fluid dynamics (CFD) ink-jet simulation have been very useful in the design of piezoelectric ink-jet print heads. FIG. 1 shows how a practical inkjet simulation may be carried out. An analytical tool such as an equivalent circuit 11 receives as an input the dynamic voltage to be applied to the piezoelectric PZT actuator and simulates the ink behavior under the influence of the ink cartridge, supply channel, vibration plate, and PZT actuator. That is, from the input voltage and an ink flow rate, the equivalent circuit 11 calculates an inflow pressure that drives the CFD code 12. The CFD code 12 then solves the governing partial differential equations, i.e., the incompressible Navier-Stokes equations for two-phase flows, for fluid velocity, pressure and interface position, and feeds back the ink flow rate to the equivalent circuit. The sequence is repeated as long as needed.
A CFD code has been used by Seiko Epson to solve the Navier-Stokes equations. Such code employs the volume of fluid method (VOF) to take into account the ink-air interface. VOF performs fairly well with regard to mass conversation but is not so accurate on surface tension aspects of fluid flow, especially when the ink droplet is smaller than 5 pico liters. However, since the capability of ejecting ultra small ink droplets is essential for any photo quality ink-jet printer today, an improved modeling method which included the level set method was adopted by Seiko Epson to more accurately capture the ink-air interface in CFD simulations. Since there is a mathematical relation between the level set and the interface curvature, and hence the surface tension, the level set method excels whenever surface tension is important.
Because solving the level set equation by finite element analysis usually results in a serious mass conservation problem, finite difference analysis is usually the best choice among numerical schemes to be used with the level set method. FIG. 2 shows a typical rectangular grid for a finite difference analysis. Since the wall of the narrowing section of the modeled nozzle is not parallel to any coordinate axis, the discretized computational domain can not faithfully fit the real nozzle wall. The body-fitted quadrilateral grid in FIG. 3 does not have that problem. While a non-rectangular quadrilateral grid like the one in FIG. 3 can be naturally handled in finite element analysis, performing a finite difference analysis on such a grid is very difficult.
The first finite difference scheme for solving the incompressible Navier-Stokes equations on quadrilateral grids works well for single-phase fluids on a two-dimensional Cartesian coordinate system. The scheme was later extended to an axisymmetric coordinate system. It was not clear, however, how to extend the algorithm to two-phase flows, to include surface tension, and to include the level set convection equation.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a novel compound, to processes for preparing it and to its use in treating medical disorders. In particular the present invention relates to novel acid addition salts of amlodipine.
2. Description of the Related Arts
Calcium channel blockers (calcium antagonists) are useful in treating cardiac conditions including angina and/or hypertension. Dicarboxylate-dihydropyridine derivatives are generally known to possess calcium channel blocking activity. For example, EP 089 167 and corresponding U.S. Pat. No. 4,572,909 disclose a class of 2-amino group-3,5-dicarboxylate dihydropyridine derivatives as being useful calcium channel blockers. These patents identify that one of the most preferred compounds is 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine. This compound, which is now commonly known as amlodipine, has the following formula:
Amlodipine exhibits good bioavailability and has a long half-life in the body. While a variety of acid addition salts are mentioned in these patents as being potentially suitable, including fumarates, the maleate salt is identified as the most preferred acid addition salt. However, the commercial product of amlodipine (NORVASC by Pfizer) uses amlodipine besylate (benzene sulfonate) and not amlodipine maleate. Indeed, subsequent patents EP 244 944 and corresponding U.S. Pat. No. 4,879,303 indicate that the besylate salt provides certain advantages over the known salts including good formulating properties. Apparently, amlodipine maleate suffered from tabletting and stability problems so as to cause a switch during development to the besylate salt. (See xe2x80x9cReview of Original NDAxe2x80x9d for NDA# 19-787 of Oct. 10, 1990, obtainable from FDA under Freedom of Information Act). The stability and tabletting issues/causes are not publicly disclosed in the information available from the FDA.
The present invention relates to fumarate salts of amlodipine. In particular, one aspect of the invention relates to an acid addition salt of amlodipine with fumaric acid. Another aspect of the invention relates to amlodipine fumarate in a crystalline state. A preferred form of amlodipine fumarate is amlodipine hemifumarate.
The invention also relates to a process, which comprises contacting amlodipine free base or a salt thereof with fumaric acid or its ammonium salt in the presence of a solvent to form amlodipine fumarate.
Further aspects of the invention include a method for treating or preventing angina or hypertension which comprises administering to a patient in need thereof an effective amount of amlodipine fumarate as well as to a pharmaceutical composition for use in the treatment and/or prevention of angina or hypertension that comprises an effective amount of amlodipine fumarate together with a pharmaceutically acceptable excipient.
This invention relates to a novel salt of amlodipine that does not comprise problems associated with the maleate salt and is a suitable equivalent to the besylate salt. According to the present invention there is provided an acid addition salt of amlodipine with fumaric acid, i.e. amlodipine fumarate.
Fumaric acid, unlike maleic acid, exists in a trans configuration. It has now been discovered that a problem with the formation and/or stability of amlodipine maleate is the potential for the amine nitrogen of amlodipine to react with the double bond of the maleic acid to form an amlodipine aspartate of the following formula.
This reaction is a Michael-type addition. The present invention avoids the formation of amlodipine aspartate by selecting a different salt anion. In particular, although both maleic acid and fumaric acid contain a carbon double bond, the Michael-type addition is prevented from occurring with fumaric acid because of this acid""s trans configuration. Accordingly an aspartate derivative can not be formed with fumaric acid and this particular impurity/stability issue now known to be associated with amlodipine is avoided.
Amlodipine fumarate as used herein means any acid addition salt formed by reacting/combining fumaric acid with amlodipine; e.g. any salt comprised of amlodipine cations and fumaric acid anions. For instance, solid as well as dissolved forms are included as are crystalline and amorphous forms. Further, the ratio of amlodipine to fumaric acid is not required to be 1:1, although such is included, in order to be an amlodipine fumarate compound. For example, a preferred amlodipine fumarate has a ratio of 2:1, which corresponds to a hemifumarate. These and other specific ratios of amlodipine to fumaric acid are all embraced by the single generic term xe2x80x9camlodipine fumarate.xe2x80x9d The crystal forms can be anhydrates, hydrates, solvates, etc. Further, it should be understood that the compound can exist as one of two enantiomers due to the presence of a chiral center on the 1,4-dihydropyridine ring. The forms may be separated e.g., by crystallisation or chromatography of the amlodipine free base or a salt thereof with an optically active acid, and converted to the corresponding fumarate salt. The individual enantiomers as well as mixtures thereof are likewise all embraced by the singular expression xe2x80x9camlodipine fumarate.xe2x80x9d
Amlodipine fumarate can be prepared by contacting amlodipine (as the free base) or its acid addition salt other than the fumarate, with fumaric acid or its ammonium salt in a suitable solvent, preferably with both the fumaric acid and amlodipine being fully dissolved therein. Generally the amlodipine fumarate is precipitated out of the solution or reaction mixture. The precipitation may be spontaneous depending upon the solvent used and the conditions. Alternatively, the precipitation can be induced by reducing the temperature of the solvent, especially if the initial temperature at contact is elevated. The precipitation may also be facilitated by reducing the volume of the solution or by adding a contrasolvent, i.e. a liquid miscible with the solvent in which the amlodipine fumarate is less soluble.
The amlodipine or salt thereof to be used in making the present invention can be obtained by methods well known in the art including those described in the above-mentioned patents as well as in U.S. Pat. No. 4,572,909. Another useful synthesis scheme for making amlodipine or salts thereof in good yields and purity via a phthalimidoamlodipine intermediate is also described in commonly-owned provisional application serial No. 60/258,613 filed Dec. 29, 2000, the entire contents of which are incorporated herein by reference, and in commonly-owned U.S. patent application Ser. No. 09/809,351, filed on Mar. 16, 2001 and entitled xe2x80x9cProcess for Making Amlodipine, Derivatives Thereof, and Precursors Therefor,xe2x80x9d the entire contents of which are incorporated herein by reference. Fumaric acid and ammonium salts thereof are well known per se and are readily available to the worker skilled in the art.
Solvents useful for carrying out the salt reaction include water, alcohol such as methanol or ethanol, ketone such as acetone or methyl isobutyl ketone, ester such as ethylacetate, ether such as diethylether or tetrahydrofuran, nitrile such as acetonitrile, dipolar aprotic solvents such as dimethylsulfoxide or dimethylformamide, hydrocarbons such as hexane or toluene and mixtures thereof. Preferred solvents are those wherein the reactants are more soluble than the amlodipine fumarate product. In this way, the salt forming reaction is accompanied by spontaneous precipitation of the produced fumarate salt out of the solution. Examples are alcohols such as ethanol and isopropanol, esters such as ethyl acetate, and hydrocarbons such as toluene.
The precipitated fumarate salt may be isolated in a solid state by conventional methods such as filtration or centrifugation, optionally followed by washing and/or drying and may be purified by crystallization, for example at elevated temperature in an appropriate solvent, for example water, an alcohol such as methanol, or a ketone such as acetone. The above described methods allow for the production of an amlodipine fumarate compound in a crystalline state.
Amlodipine fumarate is preferably formed as a salt having a 2:1 molar ratio between amlodipine and fumaric acid (=amlodipine (2:1) fumarate or amlodipine hemifumarate) as such salt is insoluble or only sparingly soluble in water and most commonly used organic solvents. Amlodipine hemifumarate may be formed even when an excess of amlodipine or an excess of fumaric acid is used in the salt formation. Because of its limited water solubility, amlodipine hemifumarate is a preferred compound for certain embodiments of the present invention, especially for slow or extended release pharmaceutical compositions. By having a lower water solubility, the release profile of amlodipine in the body can be more easily moderated and extended. By using this salt as an active ingredient in tablets or capsules, other means for enhancing slow or extended release (e.g. special coating, special excipients such as insoluble polymers etc.) may be avoided or reduced.
The amlodipine fumarate may also be obtained in an amorphous form, e.g. by freeze drying a solution of amlodipine and fumaric acid in a proper solvent, e.g. in water. Such amorphous forms may be advantageous in comparison with the crystalline forms as it may be obtained in a finely powdered form with good solubility properties.
Amlodipine fumarates and particularly amlodipine hemifumarate may exist in a solvent-free form or it may be isolated as a hydrate or a solvate. The hydrates and solvates of amlodipine fumarate, especially hydrates or solvates of amlodipine hemifumarate, form another aspect of the invention.
Amlodipine fumarate may be characterised by a variety of ordinary methods such as IR spectrum, m.p., DSC curve, etc. The structure and amlodipine/fumaric acid ratio may be proven by measuring 1H-NMR spectrum and/or by titration methods.
Amlodipine fumarate is converted to amlodipine free base in vivo and thus it basically shares the pharmaceutical activity of amlodipine. Accordingly, the compound may be used as a suitable form of amlodipine for administration of amlodipine into a patient in need thereof. Particularly, due to its limited solubility in body fluids, amlodipine hemifumarate is the advantageous salt form of amlodipine, especially for manufacturing slow or modified release final forms, but the use thereof is not limited thereto.
Amlodipine fumarate is a useful calcium channel blocker and thus can be used to treat any cardiac condition that would be benefited by administration of a calcium channel blocker. In particular, the amlodipine fumarate can be used to treat or prevent hypertension or angina by administering an effective amount to a patient in need thereof. The specific form of angina is not particularly limited and specifically includes chronic stable angina pectoris and vasospastic angina (Prinzmetal""s angina). The compound can be administered by any suitable route including orally or parenterally. The xe2x80x9cpatientsxe2x80x9d intended to be treated include human and non-human animals especially humans and non-human mammals.
The compound is usually administered as part of a pharmaceutical composition. Accordingly, a further aspect of the invention is a pharmaceutical composition for treating or preventing hypertension or angina that comprises an effective amount of amlodipine fumarate and a pharmaceutically acceptable excipient. Excipients include any inert or non-active material used in making a pharmaceutical dosage form. For example, tablet excipients include, but are not limited to, calcium phosphate, cellulose, starch or lactose. Capsules such as those made of gelatin, may contain or carry amlodipine fumarate alone or in admixture with other excipients. Liquid dosage forms are also included such as oral liquids in the form of liquors or suspensions, as well as injectable solutions. The pharmaceutical composition may be formulated for transdermal administration in the form of a patch. All of the above described pharmaceutical compositions may optionally contain one or more of each of the following excipients: carriers, diluents, colorants, flavoring agents, lubricants, solubilizing agents, disintegrants, binders and preservatives.
The pharmaceutical composition is normally provided in a unit dose. A unit dose is typically administered once or twice daily, more typically once daily. In the case of a transdermal patch, the unit dose (one patch) is generally applied at least once a month, more commonly at least once a bi-week, and typically once a week. An effective amount of the fumaric acid addition salt of amlodipine in a unit dose for treating or preventing hypertension or angina is generally within the range of 1 to 100 mg, typically 1 to 50 mg, more typically 1 to 20 mg. In solid oral dosage forms (tablets, capsules, etc.), the pharmaceutical composition typically contains about 1, 2.5, 5.0, or 10 mg of the amlodipine fumarate. For simplicity, all amounts refer to the corresponding amount of amlodipine free base provided to the composition. Specific examples of pharmaceutical compositions include those described in EP 244944 wherein amlodipine hemifumarate is used as the active ingredient.
All of the pharmaceutical compositions described above can be made by known methods and techniques. For example, the tablets can be made by dry granulation/direct compression or by a classical wet granulation method. Typically, tablets are made by blending, filling and compressing into tablets. The blending step may comprise a wet granulation or dry granulation. Similarly, capsules can be made by blending the ingredients and filling the capsule.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a lighting apparatus for an inspection which is used for irradiating a light on a product to be an inspection object and inspecting the external appearance and scratches of the product, and furthermore, the inspections of the quality of soldering of an electronic components mounted on a substrate in a factory or the like, for example.
2. Prior Art
Examples of the conventional lighting apparatus for an inspection include a coaxial lighting apparatus for coaxially irradiating a light on a CCD camera 7 as shown in FIG. 6, for example. In a casing 21 of a lower end opening type having an upper end provided with an opening 20 for the CCD camera 7, the coaxial lighting apparatus comprises a half mirror 23 having such an attitude as to be inclined by 45 degrees with respect to an optical axis 22 of the CCD camera 7, a large number of light emitting diodes 24 provided facing the lateral side of the half mirror 23 and mounted in the same plane for irradiating a light toward the half mirror 23 in a orthogonal direction to the optical axis 22, and a diffusion plate 25 positioned ahead of the light emitting diode 24. In the case in which an inspection object 4 is for inspection by using the lighting apparatus for an inspection thus constituted, the inspection object 4 is disposed below the lighting apparatus for an inspection. A light emitted from the light emitting diode 24 is diffused by the diffusion plate 25, reflected by the half mirror 23 and thus directed downward, thereby illuminating the inspection object 4. The light applied on and reflected by the inspection object 4 is transmitted through the half mirror 23 and then received by the CCD camera 7 through the opening 20, and the light thus received is subjected to an image processing by an image processing device which is not shown, for example, so that the quality of an image can be determined by a computer.
In the lighting apparatus for an inspection, however, the half mirror 23 having the attitude of a 45-degree inclination is disposed. Therefore, there is a drawback that the size of the whole apparatus is increased in a vertical direction.
Moreover, a space is required for disposing the diffusion plate 25 ahead of the light emitting diode 24. For this reason, there is a drawback that the size of the whole apparatus is also increased in a horizontal direction.
In consideration of the circumstances described above, it is an object of the present invention to provide a lighting apparatus for an inspections which can be reduced in size.
In order to solve the above-mentioned problems, the present invention provides a lighting apparatus for an inspection comprising: lighting means having a large number of light emitters, and guide means including a large number of reflecting portions for reflecting a part of lights emitted from the light emitters and directing the part of lights to an inspection object provided in a lower position, wherein the light for inspection which is applied on and reflected by the inspection object can be received through the apertures among the reflecting portions of the guide member.
Accordingly, by way of circularly disposing the light emitters, consequently, a large number of light emitters can be provided. The light emitted from the light emitters is reflected by the reflecting portion of the guide means, and the light thus reflected is directed to the inspection object provided in a lower position. The inspection object on which the light is irradiated is visually observed through apertures among the reflecting portions of the guide member or an image is picked up by image input means such as a CCD camera to carry out an image processing so that the inspection object can be inspected.
The guide means may be formed of a flat and transparent light guiding plate. Consequently, it is possible to reduce the size of the guiding means in a vertical direction. Moreover, a surface on an opposite side to the inspection object of the light guiding plate is caused to include a dotted pattern with white paint spots or the like grid pattern directly thereon or over a transparent film provided on the surface, or a concavo-convex processing is carried out directly over the surface or over the transparent film provided on the surface, thereby constituting a light diffusing property with the reflecting portion. Consequently, the amount of light irradiation can be uniform in any part of the inspection object. The concavo-convex processing includes embossing capable of forming an emboss pattern having a high concavo-convex degree and graining capable of forming a grain, that is, fine concavo-convex portions such as a so-called wrinkle, pear-skin pattern or the like. A rough surface provided with fine concavo-convex portions is formed by the graining in place of the embossing. Consequently, there is an advantage that the light can be diffused at a small angle, for example, the generation of a glitter in a display screen can be prevented.
By covering the upper surface of the reflecting portion with a layer for absorbing a light, it is possible to avoid such a situation that the light is diffusively reflected by the upper surface of the reflecting portion and recognition is carried out by the image input means with difficulty. While it is preferable that all the lights should be absorbed, it is also possible to permit the case in which all the lights cannot be absorbed but a part of the lights which cannot be absorbed is diffusively reflected.
The light emitting diodes are provided on an outer peripheral edge of the light guiding plate on almost the same level with the light guiding plate in such a state that the top of the light emitting surface is directed toward a central part of the light guiding plate. Consequently, it is possible to dispose a part or all of lighting fields of the light emitting diodes to overlap with the light guiding plate in a horizontal direction. As compared with the case in which the light emitting diodes are provided below the light guiding plate (in a little overlapping position), the size of the lighting apparatus for an inspection can be more reduced in a vertical direction.
Areas of the reflecting portions positioned on a side separated from image input means provided to fetch the light for inspection and to pick up an image are more reduced than those of the other reflecting portions.
For example, in the case in which the reflecting portion having the same area is provided over the whole area of the guide means to pick up an image by a camera to be the image input means, a visual field in the central part of the lens of the camera is darkened and a visual field in an outer peripheral edge portion excluding the central part of the lens becomes bright so that the brightness of the light fetched into the camera is varied depending on the portions of the lens. By setting the areas of the reflecting portions provided apart from the image input means to be smaller than those of the other reflecting portions as described above, consequently, it is possible to cause any portion of the lens to have a visual field having the same brightness. By gradually (stepwise) reducing the area of the reflecting portion from one corresponding to the center of the lens toward the others corresponding to the outer peripheral edge, it is possible to cause the visual field to have the same brightness in all the portions of the lens still more.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Marine geophysical surveys are often used for oil and gas exploration in marine environments. Marine environments may include saltwater, freshwater, brackish water, and other similar environments. Various types of signal sources and sensors may be used in different types of geophysical surveys. For example, one type of marine geophysical survey is based on the use of pressure waves. In such a survey, a vessel may tow an acoustic source (e.g., an air gun or a marine vibrator) and a plurality of streamers along which a number of pressure sensors (e.g., hydrophones) are located. Pressure waves generated by the source may then be transmitted to the Earth's crust and then reflected back and captured at the sensors. Pressure waves received during a marine seismic survey may be analyzed to locate hydrocarbon-bearing geological structures, and thus determine where deposits of oil and natural gas may be located. As another example, marine electromagnetic (EM) surveys may be conducted using EM signals transmitted by a submerged antenna and detected by EM receivers.
In a typical marine survey, the streamers on which the sensors are located are very long, typically multiple kilometers in length. Some surveys may be conducted with a single streamer, while some surveys utilize multiple streamer systems including one or more arrays of streamers. The individual streamers in such arrays are generally affected by the same forces that affect a single streamer. Equipment used to connect streamers to the towing vessel generally maintains the depth of the forward end of the streamers and maintains the forward ends of the streamers at selected lateral distances from each other as they are towed through the water.
Each streamer of the streamer array may include a tail buoy at the distal end of the streamer. Tail buoy may typically include geodetic position receiver such as a GPS receiver that may determine the geodetic position of the tail buoy. The geodetic position receiver may be in signal communication with other relevant survey equipment.
A typical streamer can extend behind the seismic vessel for several kilometers. Because of the great length of the typical streamer, the streamer may not travel entirely in a straight line (or other planned configuration) behind the towing vessel at every point along its length due to interaction of the streamer with the water and currents in the water, among other factors. As such, the streamers in the array may have a tendency to cross and tangle, resulting in operational downtime. During deployment or retrieval of the array of streamers, entanglement may be common. Generally, streamer positioning devices may be employed to prevent the entanglement of and detangle streamers. However, when the ropes or chains connecting the tail buoys become entangled, they may require manual untangling, because they are generally not equipped with such positioning device. Manually untangling the ropes or chains and the tail buoys to which they are attached can be time consuming and costly. Unless a nearby repair vessel has the capability and availability to untangle the ropes or chains and the tail buoys, the survey operation typically must be suspended so that the array of streamers and the attached ropes or chains and tail buoys can be retrieved to be untangled by the survey vessel crew.
Another instance of entanglement may arise when the array of streamers is being towed near an offshore structure or obstacle (such as ice floes). As the wind and current may push the array of streamers and the respective tail buoys into the offshore structure or the obstacle, the streamer or the array of streamers and the respective tail buoys may hook onto or cross the structure or the obstacle resulting in entanglement, and in some cases, damage to the streamers and the sensors attached to the streamers.
In addition to being a hazard to streamers and the sensors attached thereto, tail buoy entanglement can also be hazardous to the survey crew because untangling the tail buoys often requires manual operation. Particularly in deep sea survey operations, such manual operation can be dangerous and is thus highly undesirable.
Accordingly, in marine seismic, electromagnetic, and other types of surveying, the need exists for an apparatus in place of the tail buoys but without being physically attached to the trailing end(s) of the streamer or the array of streamers. The efficiency of a survey operation is likely to increase as the above mentioned entanglement and downtime may be curtailed. The efficiency may additionally increase as the quantity of the survey equipment and the complexity of operation may be reduced. Streamers without tail buoys may also reduce towing load, resulting in further cost savings of the entire survey operation. Moreover, streamers free of tail buoys may result in reduced tug noise thereby increasing survey data accuracy. Additional advantages may include less hazardous working environment for the survey crew.
This specification includes references to “one embodiment” or “an embodiment.” The appearances of the phrases “in one embodiment” or “in an embodiment” do not necessarily refer to the same embodiment. Particular features, structures, or characteristics may be combined in any suitable manner consistent with this disclosure.
This specification may use phrase such as “based on.” As used herein, this term is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based only in part on those factors. Consider the phrase “determine A based on B.” This phrase connotes that B is a factor that affects the determination of A, but does not foreclose the determination of A from also being based on C. In other instances, A may be determined based solely on B.
Various devices, units, circuits, or other components may be described or claimed as “configured to”, “usable to”, or “operable to” perform a task or tasks. In such contexts, “configured to”, “usable to” and “operable to” is each used to connote structure by indicating that the devices/units/circuits/components include structure that performs the task or tasks during an operation. As such, the device/unit/circuit/component can be said to be configured to, usable to, or usable to perform the task even when the specified device/unit/circuit/component is not currently operational (e.g., is not on or in operation). The devices/units/circuits/components used with the “configured to”, “usable to”, or “operable to” language include hardware—for example, circuits, memory storing program instructions executable to implement the operation, etc. Reciting that a device/unit/circuit/component is “configured to”, “usable to”, or “operable to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. §112(f), for that device/unit/circuit/component.
While at least a portion of the explanation of the need provided herein refers to seismic surveying, it is important to recognize that the survey system here is not limited to seismic survey but rather any survey system which includes a plurality of laterally spaced-apart sensor streamers towed by a vessel. Such other types of streamers may include, without limitation, electrodes, magnetometers and temperature sensors. Accordingly, the references to seismic streamers are provided as non-limiting examples.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to an apparatus and a method for treating containers. It has been known from the prior art for quite a long time that during the manufacture of plastic containers, for example of beverage bottles, plastic preforms are initially generated, which are subsequently heated and expanded into containers by blow moulding. The invention is in particular applicable to apparatus of this kind, however, it is to be noted that the apparatus according to the invention may also be used for other machinery such as for example machines for filling glass containers.
In the sector of the beverage producing industry it is important during the filling process to focus particularly on cleanliness and sterility. The various treatment steps of the containers require that the containers to be manufactured and filled are transported by a plurality of transport devices. This transport in turn can lead to contamination.
From WO 2008/125 216 A1, an apparatus for manufacturing containers and a method for manufacturing moulded bodies are known. In the context of this apparatus it is described that radiation means such as UV radiators are attached for example to a blowing wheel, and by means of these UV radiators, parts of the surfaces of the apparatus for manufacturing containers, such as for example housing walls, are cleaned. This apparatus thus allows a partially satisfactory sterilisation of machine parts to be carried out, however, especially the elements that carry the containers carry a particular risk factor with regard to contamination. This applies in particular to such holding elements which for transporting the preforms engage therein or for those that engage in the mouth of the containers.
The present invention is therefore based on the object of providing an apparatus and a method which allow an improved sterilisation effect and thus also an improved degree of purity of the system to be achieved.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
This specification relates to digital information processing, and particularly to processing video data.
The Internet provides access to a wide variety of resources, for example, video files, image files, audio files, or Web pages including content for particular subjects, book articles, or news articles. The resources are generally hosted on servers or server systems, which are computers that provide access to video and other resources over the Internet. The resources are accessed through uniform resource identifiers (URIs) such as uniform resource locators (URLs).
A search system crawls the Internet and indexes the resources in an index for use in searching. The search system scores resources based on their relevance to a search query and on their importance relative to other resources. The search system provides search results that link to the resources, and the search results are typically ordered according to the scores.
The search system can also use search queries for video-related searches to identify video resources that are relevant to the queries. Some search systems include an index specific to video resources to facilitate video related searches. However, for a video resource crawl, a much larger amount of processing resources are required than are required for a general crawl of web documents.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a light emitting device, and more particularly to a light emitting device capable of preventing light, emitted from a light emitting diode or produced via wavelength conversion, from being lost within the light emitting device.
2. Description of the Related Art
Light emitting devices manufactured with compound semiconductor light emitting diodes can realize various colors and are used for various applications including lamps, electronic display boards, and displays. In particular, since the light emitting device can realize white light, it is used for general lighting and light sources of liquid crystal display panels.
Generally, white light can be obtained by combination of a blue light emitting diode (LED) and phosphors, and one example of light emitting devices that realize white light based on the blue LED and YAG phosphor is disclosed in JP Patent Laid-open No. 2002-064220. However, the technique of this disclosure realizes white light by mixing blue light and yellow light, and exhibits poor properties in view of color reproducibility and color rendering characteristics due to lack of light in the range of red color wavelengths. On the other hand, white light can be realized by three LEDs including a blue LED, a green LED and a red LED, but in this case, the light emitting device exhibits poor color rendering characteristics irrespective of good color reproducibility due to narrow wavelength ranges of light emitted from the LEDs.
In order to solve the aforementioned problems, US Patent Publication No. 2004/0207313 A1 discloses a light emitting device, which comprises a blue LED, a green phosphor and a red phosphor to realize white light, or which comprises a red LED along with the blue LED and the phosphors to realize white light. According to this disclosure, the blue LED is sealed by a light-transmitting resin that contains both green and red phosphors to realize white light having good color reproducibility and color rendering characteristics. Further, the color reproducibility can be improved by adopting the blue LED, green phosphor and red LED. At this point, a light-transmitting resin containing the green phosphor encloses the blue LED and converts a fraction of light emitted from the blue LED into green light. Additionally, there is one example of the light emitting devices that includes a blue LED, a red LED and an ultraviolet LED such that the ultraviolet LED is enclosed by the light-transmitting resin containing the green phosphor to realize white light.
For the light emitting device including the blue LED, the green phosphor and the red phosphor, as disclosed in US Patent Publication No. 2004/0207313 A1, since the green and red phosphors are dispersed in the same light-transmitting resin, green light emitted from the green phosphor tends to be absorbed by the red phosphor. Generally, phosphors exhibit different efficiencies in wavelength conversion according to excited wavelengths. For example, the red phosphor serves to perform wavelength conversion of light emitted from the blue LED into red light, and thus exhibits good efficiency in wavelength conversion from blue light into red light. Accordingly, most of the green light absorbed into the red phosphor is lost through conversion into heat. As a result, in the case where both the green phosphor and the red phosphor are contained in the light-transmitting resin, the light emitting device experiences a lack of green light and a reduction in light emitting efficiency due to a great amount of light lost therein.
Further, light produced via the wavelength conversion in the phosphor can enter the blue LED again. After entering the blue LED, the light passes through the blue LED, and can be absorbed, and thereby lost, into the bottom surface of a substrate where the blue LED is mounted, so that the light emitting efficiency can be further reduced.
For the light emitting device further including the red LED, at least a fraction of light emitted from the red LED can enter the light-transmitting resin containing the phosphor, and other fractions can enter the blue LED or the ultraviolet LED. When red light enters the light-transmitting resin, the light does not excite the phosphor but is instead lost due to diffuse reflection from the phosphor. Further, when red light enters the blue LED or an LED for short wavelength visible light, it can be lost due to reflection within these LEDs. As a result, the is intensity of red light is decreased, which necessitates an increase in the number of red LEDs or in drive current of the red LEDs to compensate for the decreased intensity of red light.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Improvements in semiconductor technology and semiconductor manufacturing are the main drivers to the reduction of cost and the increase in speed of computers. There have been many advances for increasing the speed of semiconductor devices, ranging from packaging of integrated circuits ("chips") to the wiring of the devices on the chip, to the devices themselves.
Improvements in chip manufacturing techniques include new processes (or improving an existing process) for making the chip. Such improvements may include new, faster and more efficient ways of creating the necessary device structures. For example, many techniques have been developed for forming silicide regions for integrated device contacts, particularly for metal-oxide-semiconductor (MOS) devices formed on silicon substrates. Most of these techniques involve the formation of a metal layer over a gate, drain or source region upon which the silicide is desired to be formed. These techniques then use a thermal treatment to react the metal with the silicon composing the gate, drain and/or source regions, to form the low-resistivity silicide regions. The substrate is further processed by removing the unreacted metal layer, then forming an electrically-insulating layer over the substrate, and finally forming conductive metal lines on the insulating layer. These metal lines can contact the silicide regions over the gate, source and drain regions to form the desired circuit connections for an integrated MOS device.
Techniques for forming suicides are subject to several stringent process constraints that must be met in order for such techniques to be effective. These constraints include: (1) the metal used to form the silicide must be carefully selected to be a species that diffuses into the silicon, to avoid the formation of leakage paths between the source, drain and gate of an integrated device; (2) for self-aligned silicidation techniques, the metal layer must not react with the insulative material composing the self-aligning side walls of the gate; (3) the dopants must not segregate into the silicide regions, which makes it difficult to achieve low contact resistance; (4) the technique should have a process window that allows the silicide region to be formed on both crystalline-silicon and poly-silicon; (5) the silicide formation should be insensitive to dopants present in the silicon; and (6) the metal atoms should not diffuse beyond the suicide regions, that is, into the silicon. If metal atoms diffuse into the silicon, junction leakage will likely increase. The simultaneous fulfillment of all of the above-stated criteria is at best difficult for most conventional silicidation techniques, especially those that use relatively extensive thermal treatments. Most often, a failure to perform the conventional technique within its relatively narrow process margins manifests itself as defects due to thermal drift of the metal atoms beyond desired boundaries during the relatively prolonged thermal treatment periods. If the silicide region extends beyond its design dimensions, it can result in-leakage paths between the gate and the source and drain. Therefore a great need exists for a technique that enhances silicidation process margins beyond those conventionally available.
U.S. Pat. No. 5,888,888 (the '888 patent) discloses a method of producing a silicide region on a Si substrate. The '888 patent is incorporated herein by reference. The method disclosed in the '888 patent is useful for a variety of purposes, including the reduction of the electrical contact resistance to the Si substrate or an integrated electronic device formed thereon. The method includes the step of irradiating a metal layer formed atop the source and drain regions with front side irradiation i.e., irradiating the metal layer from the front side of the silicon substrate to initiate diffusion of the metal into the silicon substrate. While this method is very useful, it would still be preferable to be able to heat the metal layer by other means that result in quicker silicidation.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
This invention relates to a diaphragm and connector assembly for vacuum-actuated automobile control systems. Door lock systems for automatically locking and unlocking the doors are a common example of such a control system featured in many automobiles.
In both of two known automobile control systems, a vacuum tank provides suction in either one of two output tubes. An electrical switch which is accessible to the occupant of the automobile controls a valve on the vacuum tank. Pushing the switch in one direction causes the vacuum tank to remove air through one of the tubes and pushing the switch in the other direction causes the valve to expose the first tube to the atmosphere and depressurize the second tube. The tubes are connected to a diaphragm actuator which in turn is linked to the automobile control such as a door lock mechanism. The air lines and the link between the diaphragm actuator in the automobile control system are setup such that when air is pumped from the first tube, the automobile control such as a door lock, is urged into one position by the diaphragm actuator. When the air pump removes air from the second tube, the diaphragm actuator urges the door lock toward another position.
The main difference between the two different control systems resides in the diaphragm actuators used. One type of diaphragm actuator uses a single pair of diaphragm elements while the other type uses a double pair of diaphragm elements. In the single pair diaphragm actuator, two diaphragms are disposed on opposing sides of a plastic form. The diaphragms are selectively depressurized, depending upon the position of the valve switch. A U-shaped bracket is attached to the closed end of each of the diaphragms. One end of the bracket is also attached to a linkage element which is, in turn, attached to the control system. A metal connector is seated within the closed, molded end of the diaphragm. The connector has a housing with an inner recess for holding a nut. The nut is kept from turning by the contoured walls of the housing. The top of the housing has an opening to permit access to the nut within the recess of the housing. The end of the U-shaped bracket has an aperture which is registered with the aperture in the connector housing. The linkage element is a threaded rod which is then extended through the apertures in the U-shaped bracket and connector housing into the nut. In this way, the linkage element is connected to the diaphragms through the metal connector and U-shaped bracket. Depressurizing of the diaphragms will, therefore, cause the U-shaped bracket to move up and down, thereby moving the connector and linkage rod with it and thereby, in turn, for example, locking or unlocking the door of a door lock mechanism.
Another type of diaphragm actuator operates in a very similar manner except that it uses two pairs of diaphragms instead of one. Each diaphragm pair is disposed in side by side relation on opposite sides of a plastic form. Each pair of diaphragms is selectively depressurized to move the door lock through a linkage element. Each of the four diaphragms has a metal connector seated within the closed end of the diaphragm. The door lock is connected to a rod which is, in turn, connected to a bracket assembly having two pair of bifurcated brackets. Each metal connector has a recessed neck portion for receiving one of the wings of the bracket assembly. Thus, as the diaphragms are depressurized, the connectors and bracket move up and down, which, in turn, moves the rod that operates the lock.
Occasionally, the rubber material of a diaphragm will become brittle and crack. Presently, if the owner of a car equipped with either of these types of diaphragm actuators finds that the diaphragms need to be replaced, his only recourse is to purchase an entire diaphragm actuator. No separate diaphragms or connectors are available. Additionally, even if separate diaphragms were available the diaphragm usable with the single pair actuator is not compatible with that used for the double pair actuator due to the difference in the connector structure.
There is, therefore, a need for a connector/diaphragm assembly which will operate interchangeably in either the single or double diaphragm actuator configuration.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
A known example of a wave gear unit is a wave gear unit having an input shaft and a pair of input bearings supporting the input shaft, the axial position of the input shaft being defined by the input bearings. Wave gear units with input bearings having this structure are proposed in Patent Documents 1 to 3.
A wave gear unit with input bearings has a first unit end plate for rotatably supporting one first shaft end of an input shaft via a first input bearing, and a second unit endplate for rotatably supporting another second shaft end of the input shaft via a second input bearing. A wave gear mechanism is incorporated between the first and second unit endplates. The wave gear mechanism has a wave generator which rotates integrally with the input shaft, a flexible externally toothed gear made to flex into a non-circular shape by the wave generator, and a rigid internally toothed gear partially meshed with the flexible externally toothed gear. The flexible externally toothed gear and the rigid internally toothed gear are disposed so as to be capable of rotating relatively via a unit bearing (a crossed roller bearing).
To reduce the weight of the wave gear unit with input bearings, improvements are made for reducing the weight of both the wave gear mechanism and the crossed roller bearing. In Patent Documents 1 to 3, the rigid internally toothed gear is a composite member composed of a gear main body member of a lightweight material and a teeth formation member of an iron-based material. The inner and outer rings of the crossed roller bearing are composite members in which the main body portions are formed from a lightweight material, and the trajectory surface formation portions are formed from an iron-based material.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The exemplary embodiments described herein relate to optical analysis systems and methods for analyzing fluids.
Cementing operations are often used in wellbores for, inter alia, supporting casings and liners, providing zonal isolation, and protecting the casing from corrosive formation fluids. In such operations, it is often important to precisely know the location, characteristics, and setting status of cement slurries as they circulate and set in wellbores or other annuli therein. In situ analysis of cement slurries during cementing operations is often not achievable with conventional monitoring systems, which are incapable of operation in extreme environments such as downhole applications. Accordingly, the location, characteristics, and setting status of cement slurries are often required to be extrapolated from laboratory data, calculations of volumes to be filled, and calculations based on the conditions in the wellbore (e.g., temperature).
After the cementing operation has completed, the location, characteristics, and setting status of a cement slurry (or set cement) can be analyzed via logging techniques, which are time-consuming and costly. For example, if the cementing operation was successfully performed (e.g., the proper locations were cemented) and the cement is sufficiently set, subsequent subterranean operations can be performed (e.g., drilling operations, fracturing operations, completion operations, and the like). However, if an aspect of the cementing operation was incorrect, remedial operations are often necessary.
For example, if the cement is not sufficiently set, the operator allows for additional setting time and then runs another logging operation, which further contributes to costs and nonproductive time.
In another example, if too much cement slurry was added, a drill-out operation may be required, which is particularly prevalent in reverse cementing where the cement is pumped from the annulus side. In other instances, if too little cement slurry was added, another cementing operation may be needed.
These issues can be especially complex in normal primary cementing operations where the cement slurry is pumped down the casing and up the annulus. Generally, the cement slurry formulations are designed so that the ‘lead’ slurry (i.e., uppermost slurry after placement in the annulus) is of lower density than the ‘tail’ slurry that is the bottommost slurry placed near the bottom of the annulus. Proper placement of the ‘lead’ slurry behind casing and the sufficient setting of the cement near the casing shoe (i.e., near the bottom of the casing) are important for the casing to withstand pressures of the initial pressure test and subsequent drilling that are performed.
In other cementing operations, e.g., some remedial operations to plug thief zones, two fluids are utilized that, when contacted, viscosify and plug high permeability regions in the wellbore. Pumping calculated volumes is often insufficient to assure operation efficacy, which can lead to additional remedial operations and the use of high volumes of expensive fluids. Accordingly, in situ monitoring of the location of each of these fluids may reduce the cost and time associated with such remedial cementing operations.
As a whole, cementing operations are often performed multiple times during the lifetime of a well. Therefore, in situ analysis of cement slurries and/or set cements may have a compounding effect on reducing the cost and time associated with the drilling and maintenance of a well.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to an image-sensing apparatus having a photoelectric conversion device that outputs a signal that is logarithmically proportional to the amount of incident light.
2. Description of the Prior Art
A conventional area sensor having photosensitive devices such as photodiodes outputs a signal that is linearly proportional to the brightness of the light incident on the photosensitive devices as shown at (a) in FIG. 15. When a subject having brightness distribution as shown at (b) in FIG. 15 is shot with such a linear-conversion-based area sensor (hereafter referred to as a “linear sensor”), no brightness data is obtained outside the roughly two-digit brightness range (dynamic range) within which the linear sensor can effectively perform image sensing (this brightness range will hereinafter be referred to as the “shootable brightness range”).
Accordingly, when the signal from this linear sensor is reproduced as an image on a display or the like, the displayed image suffers from flat blackness in low-brightness portions thereof and saturation in high-brightness portions thereof outside the shootable brightness range. It is possible to avoid flat blackness by shifting the shootable brightness range leftward or avoid saturation by shifting it rightward. However, this requires varying the aperture value or shutter speed of a camera, or the integral time for which to allow light in, and thus spoils ease of use.
On the other hand, in U.S. Pat. No. 5,241,575, the applicant of the present invention once proposed an area sensor (hereinafter referred to as a “LOG sensor”) provided with a light-sensing means that outputs a photocurrent in proportion to the amount of incident light, a MOS transistor to which the photocurrent is fed, and a bias means for biasing the MOS transistor in such a way that a subthreshold current flows therethrough, so that the photocurrent is converted logarithmically. This LOG sensor outputs a signal whose level is natural-logarithmically proportional to the amount of incident light as shown at (a) in FIG. 16, and thus offers a wide, specifically five- to six-digit, dynamic range. This permits, even in cases in which the brightness distribution tends to shift, the brightness distribution of a given subject to lie most probably within the shootable brightness range as shown at (b) in FIG. 16.
However, a typical subject has a two- to three-digit brightness range, and therefore, if it is shot with a LOG sensor that offers a five- to six-digit dynamic range, the shootable brightness range is too wide relative to the actual brightness distribution of the subject, and thus a region where no brightness data is available is left in a low-brightness or high-brightness portion of the shootable brightness range. Specifically, as shown at (a) in FIG. 16, with respect to the dynamic range DRa of the LOG sensor, the range DRb of the output that corresponds to the brightness distribution of the subject is considerably narrow. Thus, when the output signal of this LOG sensor is subjected to level conversion so as to be converted, for example, into an eight-bit digital signal as shown in FIG. 17 in order to display an image on an output device such as a display, if conversion is so performed that the dynamic range DRc of the output device is adapted to the dynamic range DRa of the LOG sensor and that the maximum and minimum output values of the LOG sensor correspond to the maximum and minimum output levels (255 and 0), respectively, of the output device, the output device receives a signal whose level varies only within a range DRd which is merely a portion of the range covered by the eight-bit digital signal. Thus, when the image of a subject having brightness distribution as described above is reproduced using such a signal, the black portions of the image, where the brightness is lowest, are reproduced as dark gray, and the white portions thereof, where the brightness is highest, are reproduced as light gray, making the entire image low-contrast.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to a stripping column installation especially for separating starting materials with a high boiling point difference. More particularly, it relates to such a stripping column installation which has a stripping column with a column sump (a lower column port for draining), and a circulating boiler connected with the column sump and provided with pipe bundles through which a sump product flows from the stripping column.
Stripping columns of the above mentioned general type are known in the art. In a stripping column in which heating of the distillative starting material to be separated into its components is performed, the sump product or a portion of it is withdrawn from the stripping column, heated or evaporated in the circulating boiler in indirect heat exchange with a heating medium and then again supplied into the stripping column. The circulating boiler is normally provided with a vertically or horizontally arranged pipe bundle. The sump product flows through the pipe bundle and the pipe bundle is heated from outside by the heat exchange medium. An example of such a column is disclosed for example in "Ullmanns Encyklopadie der technischen Chemie," 4th edition, Vol. 2, page 506, FIG. 34. Such stripping column poses certain problems for preparation of starting products with a high boiling point difference, or in other words starting products in which the boiling points of the highest boiling component and the lowest boiling component are very different from one another. In these cases, only a convective heat transfer occurs in the pipe bundle of the circulating boiler over a greater part of its pipe length. An evaporation is not possible in this region since here the vapor pressure of the low boiling components of the starting products lies below the total pressure of the liquid column. Since moreover in many cases for operational reasons only a one-time passage of the sump product withdrawn from the stripping column is performed through the circulating boiler, only moderate and in many cases very low heat transfer values are obtained in the region of the convective heat transfer. This problem can be taken care of by an increase of the heat exchange surfaces. This leads however to an increase of the total circulating boiler which is naturally expensive. In addition, in many cases such an increase contradicts operational conditions.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Fluorescent dye-containing beads have been used for many years in diagnostics testing, microscope- and flow cytometry-based assays, and combinatorial library synthesis. As such they can be routinely manufactured with a variety of surface modifications which enable many classes of molecules to be coupled and subsequently read and manipulated using commercially available instrumentation. The fluorescent organic dye molecules suffer from a number of disadvantages however including photo-bleaching, different excitation irradiation frequencies and broad emissions. Alternatives to conventional fluorescent materials have therefore been investigated. The substitution of the fluorescent organic molecules with luminescent compound semiconductor nanoparticles or “quantum dots” (QDs) is one approach which is intended to circumvent many of these limitations.
The size of a QD dictates the electronic properties of the material; the band gap energy being inversely proportional to the size of the QDs as a consequence of quantum confinement effects. Different sized QDs may be excited by irradiation with a single wavelength of light to give a discrete fluorescence emission of narrow band width. Further, the large surface area to volume ratio of the QDs has a profound impact upon the physical and chemical properties of the QD.
Nanoparticles that comprise a single semiconductor material usually have modest physical/chemical stability and consequently relatively low fluorescence quantum efficiencies. These low quantum efficiencies arise from non-radiative electron-hole recombinations that occur at defects and dangling bonds at the surface of the nanoparticle.
Core-shell nanoparticles comprise a semiconductor core with a shell material of typically wider band-gap and similar lattice dimensions grown epitaxially on the surface of the core. The shell eliminates defects and dangling bonds from the surface of the core, which confines charge carriers within the core and away from surface states that may function as centers for non-radiative recombination. More recently, the architecture of semiconductor nanoparticles has been further developed to include core/multi-shell nanoparticles in which the core semiconductor material is provided with two or more shell layers to further enhance the physical, chemical and/or optical properties of the nanoparticles. To add further stability, a compositionally graded alloy layer can be grown epitaxially on to the nanoparticle core to alleviate lattice strain between adjacent layers that could otherwise lead to defects and reduce the photoluminescence (PL) emission of the QDs. The emission and absorption properties of the QDs can also be manipulated by doping wide band gap materials with certain metals or luminescence activators to further tune the PL and electroluminescence (EL) at energies even lower than the band gap of the bulk semiconductor material, whereas the quantum size effect can be exploited to tune the excitation energy by varying the size of the QDs without having a significant affect on the energy of the activator-related emission.
The surfaces of core and core/(multi)shell semiconductor nanoparticles often possess highly reactive dangling bonds, which can be passivated by coordination of a suitable ligand, such as an organic ligand compound. The ligand compound is typically either dissolved in an inert solvent or employed as the solvent in the nanoparticle core growth and/or shelling procedures that are used to synthesize the QDs. Either way, the ligand compound chelates the surface of the QD by donating lone pair electrons to the surface metal atoms, which inhibits aggregation of the particles, protects the particle from its surrounding chemical environment, provides electronic stabilization and can impart solubility in relatively non-polar media.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, the mask (reticle) may contain a circuit pattern corresponding to an individual layer of the IC, and this pattern can then be imaged onto a target area (die) on a substrate (silicon wafer) which has been coated with a layer of photosensitive material (resist). In general, a single wafer will contain a whole network of adjacent dies that are successively irradiated through the reticle, one at a time. In one type of lithographic projection apparatus, each die is irradiated by exposing the entire reticle pattern onto the die in one go; such an apparatus is commonly referred to as a waferstepper. In an alternative apparatusxe2x80x94which is commonly referred to as a step-and-scan apparatusxe2x80x94each die is irradiated by progressively scanning the reticle pattern through the projection beam in a given reference direction (the xe2x80x9cscanningxe2x80x9d direction) while synchronously scanning the wafer table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally less than 1), the speed v at which the wafer table is scanned will be a factor M times that at which the reticle table is scanned. In both types of apparatus, after each die has been imaged onto the wafer, the wafer table can be xe2x80x9csteppedxe2x80x9d to a new position so as to allow imaging of a subsequent die. More information with regard to lithographic devices as here described can be gleaned from International Patent Application WO 97/33205.
Up to very recently, apparatus of this type contained a single mask table and a single substrate table. However, machines are now becoming available in which there are at least two independently movable substrate tables; see, for example, the multi-stage apparatus described in International Patent Applications WO 98/28665 and WO 98/40791. The basic operating principle behind such multi-stage apparatus is that, while a first substrate table is underneath the projection system so as to allow exposure of a first substrate located on that table, a second substrate table can run to a loading position, discharge an exposed substrate, pick up a new substrate, perform some initial alignment measurements on the new substrate, and then stand by to transfer this new substrate to the exposure position underneath the projection system as soon as exposure of the first substrate is completed, whence the cycle repeats itself; in this manner, it is possible to achieve a substantially increased machine throughput, which in turn improves the cost of ownership of the machine.
The projection radiation in current lithographic devices is generally UV (ultra-violet) light with a wavelength of 365 nm, 248 nm or 193 nm. However, the continual shrinkage of design rules in the semiconductor industry is leading to an increasing demand for new radiation types. Current candidates for the near future include UV light with wavelengths of 157 nm or 126 nm, as well as extreme UV light (EUV) and particle beams (e.g. electron or ion beams).
In projection lithography, a very high-quality projection system is used to project a reduced image of the mask pattern onto the silicon wafer. As compared to other types of projection systems, lithographic projection systems have to satisfy very stringent requirements with respect to inter alia aberration correction, flatness of field and absence of distortion. This latter aberration is harmful regarding the aspect of xe2x80x9coverlay precisionxe2x80x9d: different patterns, projected onto the wafer in subsequent process steps, should superimpose upon one another with an accuracy of the order of about 30 nm (conventional figure) over the full image field, which has typical dimensions of the order of about 25xc3x9725 mm2. For this reason, the residual distortion of a high-quality lithographic objective should be extremely low. While the as-designed value of the residual distortion can be very low (only a few nm), the value of a manufactured objective may show larger values. Possible reasons for this residual distortion are small mounting errors of the (typically) large number of optical elements in a given projection system, but also small index variations in refractive material and/or reflective coatings used in such elements. In some cases, a highly expensive objective that satisfies all other specifications (e.g. aberration correction level, field flatness) may have to be rejected because of its residual distortion.
It is an object of the invention to address this problem. In particular, it is an object of the invention to provide a mechanism for reducing the residual distortion of a projection system to below a specified level, so as to avoid having to quality-reject such a system. Moreover, it is an object of the invention to provide a mechanism of correcting a potential drift in distortion during the installed xe2x80x9clifetimexe2x80x9d of a projection system in a lithographic projection apparatus.
These and other objects are achieved in a lithographic projection apparatus in which a correction mechanism is provided at a point outside the projection system but along its optical axis, the correction mechanism comprising a plate of material which is substantially transparent to the radiation supplied by the radiation system, the plate having a substantially uniform thickness and an aspherical surface profile, which surface profile is calculated so as to have a counteractive effect on a measured optical distortion of the projection system.
It should be explicitly noted that the term xe2x80x9cprojection systemxe2x80x9d as employed in this text encompasses not only lenses made of refractive material, but also projection mirror systems and catadioptric systems, for example.
According to the invention, an aspherically deformed plate with substantially constant thickness is positioned at some point along the radiation path through the lithographic projection apparatus, e.g. between the mask table and the projection system. By means of the locally varying inclination of the aspherical plate, the apparent position of an object point on the mask suffers a lateral shift. The lateral shift xcex4x on the mask from A to Axe2x80x2 (in the X-direction: see FIG. 2) is given by δ x = ( n - 1 ) n ϑ x · t
with a comparable expression for the shift xcex4y in the Y-direction.
Thanks to the constant thickness t of the correction plate, the field flatness of the projected image is not affected by the presence of the plate. Moreover, the plate""s constant thickness t ensures that any absorption of the projection radiation which occurs in the plate will be substantially homogenous across the extent of the plate, thus preventing the occurrence of substantial dose and uniformity errors at substrate level as a result of the presence of the plate.
To compute the shape of the correction plate required in a given situation, distortion data are measured at a certain number of sample points (e.g. 100 points) in the image field of the projection system. This can, for example, be done by exposing a test substrate with an image of a test mask (e.g. a special distortion measurement mask), then selecting a certain number of sample (object) points on the mask and measuring the corresponding (image) points on the substrate. The theoretical position of the image points on the substrate in the absence of distortion can be calculated by correcting for the magnification of the projection system. By comparing the positions of the calculated image points and those of the actual measured image points on the substrate, one can calculate the distortion (xcex4x, xcex4y)k at a particular point. These data yield a set of values (xcex4x, xcex4y)k which are translated into local inclination angles (xcex8x, xcex8y)k. The aspherical shape of the plate (with substantially constant thickness) is obtained by finding a least-squares solution of the resulting set of linear equations, with the required slopes as variables and with the continuity of the surface at all measured points as a physical boundary condition. In general, the inventors have observed a quick convergence towards a solution, and have found that a reduction of the distortion by a factor of the order of 3 is feasible.
The invention also relates to a method of manufacturing an optical correction plate (aspherical plate) as specified in claim 1. Because the plate according to the invention needs to have a substantially constant thickness, it can be quite difficult to manufacture. In this context, the principle applied by the inventors is the polishing of a surface while it is subjected to an elastic deformation. The primary step is to suck a plane-parallel plate against a base surface with the desired aspherical profile, and then work the exposed surface flat. When the plate is released by removing the retaining vacuum, the worked upper surface will assume the (negative) shape of the base plate, while the lower surface will resume its initial flat shape.
In a practical manufacturing process, the principle set forth in the previous paragraph is slightly modified, as illustrated in FIG. 3. A substantially flat plate made of appropriate refractive material (e.g. quartz, CaF2 or a glass with sufficient UV transmission) receives the calculated profile (typical height of several microns) on one side, by means of the deposition of a sequence of thin layers. Next, the plate is inverted and sucked to a vacuum table, and the upper surface is polished flat; the plate now has a substantially constant thickness. After releasing the plate, it is inverted, sucked to the vacuum table and worked flat again, thereby taking away the initially deposited aspherical profile. When the plate is finally released, it has a substantially constant thickness, and assumes the desired aspherical shape on both sides.
Several factors should be monitored during the calculation and manufacturing process described above:
The initial plane-parallel plate should be made in such a way that is has substantially no residual stresses. Initial stress in the plate can be released during the polishing process, and cause deformation of the required aspherical profile;
The thickness of the plate is typically chosen to be rather small, e.g. 3 to 5 mm. At these values, bending of the plate under its own weight is not negligible, and this can introduce an extra residual distortion of mainly third order, which should be compensated for in the calculated aspherical profile;
In a particular embodiment, the deposition process used to create the aspherical profile employs a certain number of deposition steps through geometric masks, causing a histogram-like profile to be built up. The number of steps and the total height determine the height steps present in the profile. The polishing process should average out these residual discrete steps in the aspherical profile.
In a final process step, the shape of the aspherical profile in the manufactured plate is measured. A particularly satisfactory measurement method is Phase Stepping Interferometry, with an accuracy of typically 50 nm across a total measuring range of 10 xcexcm (as a maximum). Initial results have indicated that it is possible to achieve an accuracy of better than 1.0 xcexcm in the aspherical profile of the plate. The possible influence of gravitation on the shape of the aspherical plate has already been mentioned; in this context, the position and orientation of the (rather thin) plate is of importance during the measurement procedure, and also in respect of the final positioning of the finished plate in the lithographic projection apparatus. The way in which the plate is mounted (in its holder) deserves specific attention. In this context, the inventors have designed a satisfactory plate holder whose rim shape is matched to the specific shape of the correction plate involved.
In theory, the correction plate according to the invention can be positioned at various different locations outside the projection system. However, in practice, many of these locations may be inappropriate due, for example, to a lack of space at the location concerned; e.g. there is generally very little room between the projection system and the substrate table. In this context, an advantageous embodiment of the apparatus according to the invention is characterized in that the correction plate is situated between the mask table and the projection system. However, if desired, the correction plate may also, for example, be located within the illuminator of the lithographic projection apparatus, i.e. between the radiation system and the mask table.
The optical correction plate according to the invention may comprise various materials, provided it remains substantially transparent to the radiation supplied by the radiation system (typically UV light). In principle, suitable materials include glass (including flint, crown and soda glass, for example), quartz, silica, and various fluorides, such as calcium fluoride. The material chosen should also be compatible with the process (grinding, polishing, etc.) by which the correction plate is given its aspherical profile.
The inventors have observed that a relatively thin correction plate gives highly satisfactory results. In practice, an appropriate thickness will be dictated on the one hand by the process used to manufacture the plate (issues such as flexibility and fragility) and on the other hand by optical demands on the plate (minimal absorption). In general, a thickness in the range 1-6 mm was found to be suitable, with thicknesses of the order of about 3-5 mm yielding particularly good performance.
In a manufacturing process using a lithographic projection apparatus according to the invention, a pattern in a mask is imaged onto a substrate which is at least partially covered by a layer of energy-sensitive material (resist). Prior to this imaging step, the substrate may undergo various procedures, such as priming, resist coating and a soft bake. After exposure, the substrate may be subjected to other procedures, such as a post-exposure bake (PEB), development, a hard bake and measurement/inspection of the imaged features. This array of procedures is used as a basis to pattern an individual layer of a device, e.g. an IC. Such a patterned layer may then undergo various processes such as etching, ion-implantation (doping), metallization, oxidation, chemo-mechanical polishing, etc., all intended to finish off an individual layer. If several layers are required, then the whole procedure, or a variant thereof, will have to be repeated for each new layer. Eventually, an array of devices will be present on the substrate (wafer). These devices are then separated from one another by a technique such as dicing or sawing, whence the individual devices can be mounted on a carrier, connected to pins, etc. Further information regarding such processes can be obtained, for example, from the book xe2x80x9cMicrochip Fabrication: A Practical Guide to Semiconductor Processingxe2x80x9d, Third Edition, by Peter van Zant, McGraw Hill Publishing Co., 1997, ISBN 0-07-067250-4.
Although specific reference may be made in this text to the use of the apparatus according to the invention in the manufacture of ICs, it should be explicitly understood that such an apparatus has many other possible applications. For example, it may be employed in the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, liquid-crystal display panels, thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms xe2x80x9creticlexe2x80x9d, xe2x80x9cwaferxe2x80x9dor xe2x80x9cdiexe2x80x9d in this text should be considered as being replaced by the more general terms xe2x80x9cmaskxe2x80x9d, xe2x80x9csubstratexe2x80x9d and xe2x80x9ctarget areaxe2x80x9d, respectively.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Fructans are linear or branched polymers of repeating fructose residues with usually one terminal glucose unit. The number of residues contained in an individual polymer, also known as the degree of polymerization (DP), varies greatly depending on the source from which the polymer is isolated. Several bacteria can produce fructans with a DP 5000 or greater, while low DP fructans (DP 3 to 200) are found in over 40,000 plant species.
Based on their structure, several types of fructans can be identified in higher plants. The most characterized plant fructan is inulin. Inulin contains linear β(2-1)-linked fructosyl residues and commonly occurs in the Asterales such as Jerusalem artichoke (Helianthus tuberosus), sunflower (Helianthus sp.), Belgian endive (Cichorium intybus) and artichoke (Cynara scolymus). Inulin synthesis is initiated by sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) which catalyses the conversion of sucrose into isokestose (also named 1-kestose) and glucose. Additional fructosyl units are added onto isokestose, by the action of a fructan:fructan 1-fructosyltransferase (1-FFT, EC 2.4.1.100) resulting in a β(2-1)-linked fructose oligomer.
A second type of fructan is called levan and consists of linear β(2-6) linked fructosyl residues. Grasses such as Dactylis glomerata and Phleum pratense contain levans with a DP up to 200. Levans are synthesized by a sucrose:fructan 6-fructosyltransferase (6-SFT; EC 2.4.1.10) that uses sucrose as a fructosyl donor and acceptor to produce 6-kestose. Polymerization of 6-kestose is believed to be catalyzed by 6-SFT as well, using sucrose as the fructosyl donor.
A third type of fructan, graminan (also called mixed-levan), is found in many Poales such as barley and wheat. These plants use an SST to produce iso-kestose from sucrose, and 6-SFT to further polymerize isokestose, resulting in a fructan containing both the β(2-1) and the β(2-6) linked fructosyl residues.
The fourth type of fructan is often referred to as the neo-kestose series of fructans. The neo-kestose series have fructosyl residues on the carbon 1 and 6 of glucose producing a polymer with fructosyl residues on either end of the sucrose molecule. The inulin-neoseries found in Liliales such as onion (Allium cepa), leek (Allium porrum), and asparagus (Asparagus officinales) contain mainly a β(2-1)-linked fructose polymer linked to carbon 1 and 6 of glucose, while the levan-neoseries contain mainly a β(2-6)-linked fructose polymer linked to carbon 1 and 6 of glucose. Neoseries fructans are believed to be synthesized by the concerted action of 1-SST (producing isokestose) and 6G-FFT, a specific fructan:fructan 6G-fructosyltransferase that polymerizes fructosyl units onto carbon 6 of glucose.
Industrial applications of fructans are very diverse and range from medical, food, and feed applications, as well as the use of fructans as a raw material for the production of industrial polymers and high-fructose syrup. Regardless of size, fructose polymers are not metabolized by humans and animals. Fructans can enhance animal health and performance by being selectively fermented by beneficial organisms such as Bifidibacterium in the large intestine of animals, at the expense of pathogenic organisms such as E. coli and Salmonella, leading to altered fatty acid profiles, increased nutrient absorption, and decreased levels of blood cholesterol. Also, fructans have a sweet taste and are increasingly used as low-calorie sweeteners and as functional food ingredients.
Accordingly, there is a great deal of interest in understanding fructan biosynthetic pathways. With the isolation of nucleic acid fragments encoding various enzymes involved in the pathway, it may be possible to engineer transgenic plants to produce desired levels of different types of useful and novel fructans.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
Embodiments of the invention relates to the field of semiconductor, and more specifically, to semiconductor fabrication.
2. Description of Related Art
Low dielectric constant (low-k) materials are used in interlayer dielectrics (ILD) in semiconductor devices to reduce propagation delay and improve device performance. As device sizes continue to shrink, the dielectric constant of the material between the metal lines should decrease to maintain the improvement. The eventual limit for the dielectric constant is k=1, which is the value for vacuum. This can be achieved by producing a void space between the metal lines, effectively creating an air gap. Air itself has a dielectric constant very close to 1. As integrated circuit (IC) technology scales, there is an increasing need to integrate low-k dielectric or even air as ILD material in order to meet the performance targets. However, the consequence is the drastic deterioration of the ILD mechanical properties. The intrinsic and extrinsic stresses become more concentrated on the metal interconnects.
Existing techniques to enhance the mechanical robustness of interconnects have a number of drawbacks. One technique is to increase the via density. However, the electrical nature of the conducting vias severely limit the via density or device layout due to the potential shorting of adjacent circuitry. Another technique is to integrate strong dielectric materials, usually with higher k value, at the via level as discrete dielectric lines or as mechanical pillars. This technique increases the complexity of the fabrication process and introduces additional dielectric materials. In air gap techniques, new materials are necessary to enable the process.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
KPIs have been calculated in the past to evaluate networks. Self-adaptive triggers based on KPI values have not been used as triggers for alarms in network monitoring in user or data independent manners.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to an electrical outlet of the type mounted in a wall outlet box. More particularly, the invention relates to an electrical outlet which is adapted to simultaneously accommodate at the same time two plugs, each having a set of ground and electrical contacts.
2. Description Relative to the Prior Art
Many electrical appliances have a multi-conductor cable attached to an oblong-shaped plug. The cable usually contains two wires for the current and a third wire for grounding the appliance. The conventional plug has three prongs, one for the ground contact and two for the electrical contacts. An oblong-shaped plug is often used to relieve strain which may be caused by bends or twists in the cable where it is attached to the plug. Depending on the configuration of the prongs, the plug is either in a horizontal or vertical position when it is inserted into an outlet with the cable being close and parallel to the face plate of the outlet. With the cable in this position, the likelihood of damage to the cable or accidents is reduced.
Conventional electrical outlets of the type specified above are generally described in U.S. Pat. Nos. 3,688,239 and 2,618,677. The disadvantage of using the type of outlet described in these patents is that in most instances, only one three prong plug can be used at a time even though the outlet contains two receptacles. When attempts are made to use two plugs at the same time, the shape of one plug usually interferes with the insertion of the second plug into the unused receptacle. This problem has been addressed in U.S. Pat. No. 3,975,075. The patentee chose to solve the problem by changing the configuration of the plug. It is, of course, an inconvenience and an expense to change existing plugs to the type described by the patentee.
It is therefore an object of this invention to provide an improved electrical outlet which is suitable for use with conventional three prong plugs.
It is another object of this invention to provide an electrical outlet which is capable of simultaneously accommodating more than one conventional three prong plug at the same time.
These and other objects of the invention are accomplished as set forth in the following summary of the invention.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to semiconductor memories. In particular, the present invention relates to semiconductor memories having redundancy thereon. In particular, the present invention relates to semiconductor memories which are organized to output more than one bit simultaneously, e.g. to a memory which is organized according to nine-bit bytes, so that each read cycle provides nine bits of information simultaneously at nine I/O pads.
As is well known in the art, there are substantial advantages to byte-wide memory organization. ("Byte-wide" is frequently used to refer only to by-8 memories, but is used in the present application to refer to any memory which is more than one bit wide.) This reduces the board-level overhead, and in general provides additional convenience to the system-level designer.
A further known desideratam in large memories is redundancy. Most bad memory chips at reasonable maturity of process have only a few bad bits. If these bad bits can be replaced by redundant elements, yield improvement can be obtained. Initially when yields with an aggressive design are small, redundancy can enhance the yield by as much as an order of magnitude. Even in a mature product the loss in yield due to increased chip area is likely to be offset by yield improvement due to repaired chips.
Memory chips which are organized as byte-wide are particularly desirable for small systems. Where the whole memory requirements of a sub-system can be satisfied with, e.g., three or four 64k memory chips, it would be exceedingly wasteful to go to a memory board using a by-one organization. A further advantage of byte-wide chips from a designer's point of view is in expandable memory configuration systems. That is, where a board can be used with various memory size options, and the smallest option is at most a small multiple of the number of bits per chip, it is much more efficient from the system designer's point of view to be able to use byte-wide memory chips.
One method of implementing redundancy in a byte-wide memory would be to have a whole redundant block, which could be substituted for one redundant bit position. That is, for example, in a 4k.times.9 half-array, one entire 16 column by 256 row block could be provided as a redundant bit position which could be substituted for any bit position which happens to contain one or more defects. However, this approach is not only tremendously wasteful of area, but also would not solve the problems of defects in more than one bit position.
It is desirable to minimize the row decode delays, which means (preferably) minimizing the length of word lines. In a large memory, this means that the memory is preferably partitioned in subarrays. This in turn means that redundancy is preferably provided separately for each subarray. The present invention could be implemented in an embodiment where a redundancy block was shared between subarrays, but this is not preferable due to the increased complexity of wiring, and at chip-level logic (i.e. subarray-select logic).
A byte-wide memory could be organized as, for example, two half-arrays each containing nine bit positions. Each "bit position" is a set of 16 columns side by side, all of these columns (with their respective 16 primary sense amplifiers) being multiplexed into a secondary sense amplifier corresponding to that bit position. Thus, where there are 256 rows, each half array contains 16.times.256 nine-bit words and each of these words can be provided from the half array as a completely parallel output.
However, there have heretofore been difficulties in combining these two improvements. That is, it has not been practical to configure a byte-wide memory having redundancy.
Thus it is an object of the present invention to provide a byte-wide semiconductor memory having redundancy.
A problem in the prior art of redundant memory circuits is the conservation of wiring space. Redundant memory designs have typically been modifications of memory designs which do not incorporate redundancy. This subsequent modification of an existing design is likely to induce great pressure on the available wiring space on the chip.
It is an object of the present invention to provide a memory, incorporating redundancy, which requires only a minimal amount of metal wiring to embody the redundancy.
In particular, it would be relatively simple to provide one redundant column for each bit position, but this approach is far from optimal, for a least two reasons. First, this occupies an excessive amount of real estate with redundancy circuits. That is, in an 8k.times.9 memory at least nine redundancy circuits would be required (or, even worse, 18, if each bit position includes columns in each half-array), rather than the 2 or 3 redundant columns per array unit which would otherwise be desirable. A second problem is that this approach would be hopeless in the case where more than one defective column is found within a single bit position. That is, in a 4k.times.9 half array, of those half arrays which have exactly two defective columns, approximately one-ninth of them will have the two defective columns located in the same bit position. Thus, a significant fraction of defect cases could not be fixed by this approach.
A further reason for using column redundancy rather than row redundancy is that upper-level metal patterning is typically a lower-yielding process than polysilicon, polycide or first-level metal patterning. That is, upper level metal patterning is not only subject to much more topographic excursion, but metal patterning in general is less intimately involved in cell area and is therefore typically not as intensively refined as polysilicon patterning processes. Thus, patterning defects which will cause a whole column of the memory array to fail are more likely than patterning defects which will cause a whole row to fail. That is, defective bits are not randomly distributed, but exhibit an anomalous correlation along the column access, and the redundancy mechanism should replicate this for optimal efficiency.
In conventional memory architecture, column redundancy is generally preferable to row redundancy. That is, metal is typically used for the bit lines, whereas the word lines are usually made of polysilicon or some other higher-resistance material. Thus, the bottleneck in access time is the row line delays. Thus a small amount of logic can be incorporated in the column-selection circuitry without increasing the total accessing delay of the memory, whereas no such additions can be made to the row-line logic. For this reason, it is preferable to incorporate both the logic for byte-wide parallel access and also the logic for redundancy in the column organization. It would obviously be easier from a design standpoint to organize these along orthogonal axes of the array, but this would increase the total delay of the memory, and is therefore not acceptable. However, it should be noted that, even if the physical organization of these elements can not be orthogonal, their functions are properly orthogonal. That is, a redundant column should preferably be capable of substitutions for any column in any bit position in the array, and multiple redundant columns should be capable of independent substitution decisions, including substitution for multiple columns at a single bit position of the array.
It is an object of the present invention to provide a semiconductor memory having byte-wide organization by columns and also having redundant columns which can each be substituted for any defective columns within any one of multiple bit positions.
It an object of the present invention to provide a semiconductor memory organized in sub-arrays each containing columns corresponding to two or more bit positions, and each subarray containing a plurality of redundant columns which can each be substituted for a defective column in any bit position of that sub array.
One important constraint on the memory system which incorporates redundant columns available to any bit position in a byte-wide memory is the relative timing between select and deselect. It is important that the defective column be deselected before it can again provide erroneous output information, when its address is accessed. That is, it is desirable that the defective column should be disabled before the row access time has elapsed. It is also preferable, to avoid excessive delay, that the redundant column should be enabled before the row access time has elapsed. Finally, it is also desirable that the defective bit position be disabled before the redundant column is enabled. This is not strictly necessary, but is a desirable precaution to avoid the possibility of the sense amplifier of the defective column fighting against the sense amplifier of the redundant column, which could lead to excessive current on the buss and possible damage to the devices.
It is an object of the present invention to provide a semiconductor memory having byte wide column organization and column redundancy, wherein a predetermined defective column position is always disabled prior to enablement of a redundant column which replaces that defective column position.
Many of the problems of redundant memories are most easily solved in laser-selected redundancy, wherein a laser (or electron beam) can destroy inter-connects or devices at essentially any position on the chip. That is, the problem of overhead circuitry is immensely simplified when the whole chip area can be spatially addressed during an independent redundancy programming process, and high-current pathways can be made or broken. However, the problem with such approaches is that they require an expensive and slow processing step which is preferably performed prior to final packaging of the device. Thus, not only is throughput greatly degraded, which sacrifices many of the advantages of redundancy programming in the first place, but since subsequent processing is required after redundancy programming, defects which first manifest themselves during the subsequent processing steps may not even be compensated for or even detected.
The alternative to such externally spatially-addressed redundancy programmation schemes is electrical redundancy programmation typically using a fuse-blowing operation. That is, after the chip has been probed, on-chip fuses using thermal-write/electrical read mechanisms (such as blowing a thin polysilicon fuse link or spiking through a junction) are used to change the static voltage on certain circuit nodes. (This can even be done after final packaging, if sufficient pin-outs are provided, but is preferably done at the multiprobe stage.) Not only are these electrically written mechanisms limited to certain circuit nodes, but also the read mechanisms thus used are typically low-current, so that amplification and buffering stages must be used to provided useful outputs. High voltage for such electrically-accessed programmation steps may be externally supplied or may be generated on chip, or (which is slightly more difficult) fusible devices which will reliably self destruct at normal power supply voltages may be used, although these must be carefully positioned.
Thus it is an object of the present invention to provide a byte-wide semiconductor memory having column redundancy, wherein the redundancy information programmation is electrically accessed.
It is an object of the present invention to provide a byte-wide semiconductor memory with column redundancy, wherein the redundancy information programmation can be performed after final packaging.
The present invention teaches a semiconductor memory including multiple bit positions in each subarray, wherein each bit position contains several columns of memory cells. When the memory is read out, one bit will be read out at each bit position, from a bit within one of the columns which are located at that bit position. Fuse information is programmed, after the memory has been probed, to indicate which columns in the subarray are defective. For each redundant column, a separate address decoder block continually tests the input column addresses received by the memory, to see if one of the column addresses received corresponds to the unique defective column in one particular bit position which that redundant column has been programmed to replace. The sense amplifier at the bit position in which the accessed column is defective is then disabled, a sense amplifier for the redundant column is enabled, and a multiplexer connects the output from the redundant column sense amplifier to the appropriate output buss so that the information read out from the redundant column is inserted at the appropriate bit position in the output word. This operation can be seen more clearly in the following specific example, although the present invention is certainly not limited to the preferred embodiment or to any of the specific features thereof.
The preferred embodiment uses a 8k.times.9 memory array which is partitioned into two 4k.times.9 sub arrrays. Each 4k.times.9 sub array contains nine bit positions, each including 16 columns, each containing 256 bits accessed by respective wordlines. Each subarray also contains two redundant columns, each with its own fuse-programmed redundancy information. One bit of the input address is used to select which half array is to be accessed, and this first one-bit decode step is preformed at higher-level array overhead. Therefore the following discussion relates to only one of the sub arrays, i.e. to a 4k by 9 subarray containing nine bit positions of 16 columns each. Suppose that, for example, a particular subarray contains a defective column (which may contain only one defective bit, or may contain many defective bit locations) in column 3 of bit position 1, and also contains another defective memory column at column 6 of bit position 2. The input address will contain four bits which specify the column position (i.e. which specify some one of the 16 columns in each bit position), and will also contain 8 bits to specify one of the 256 rows. Suppose, in this example, that column one and row one is selected by the address input. Then, in each bit position, column 1 of the 16 available columns will be activated, and the first cell in that column (selected by wordline WL1) will be selected. The information contained in the cell at row one of column one at each of the nine bit positions will be fed into the nine primary sense amplifiers which correspond to those nine columns, the output of those nine primary sense amplifiers will be connected to nine respective secondary sense amplifiers, and the output of those nine secondary sense amplifiers will be provided to output busses which lead to the I/O buffers, amplifiers, and external contact pads. There is one primary sense amplifier for each column of cells, i.e. 16 primary sense amplifiers for each of the nine bit positions, but there is only one secondary sense amplifier for each four primary sense amplifiers, i.e. a total of 36 secondary sense amplifiers. At each bit position one of the four secondary sense amplifiers is multiplexed onto the output buss. Thus, information corresponding to nine bits will simultaneously appear on the contact pads of the device.
In this same example (where the defective columns are column 3 of bit position one and column 6 of bit position 2), let us suppose that the address information externally received now corresponds to row 100 and column 3. In this case, the address decoder in the logic associated with the first redundant column will detect that a match has occurred (on column 3) but no match will be detected by the logic associated with the second redundant bit. Four fuses in the redundant column store information which indicates that column 3 is defective in one of the bit positions. Four more fuses are used to encode information which shows exactly which bit position contains the defective column. Thus, once an address match with the defective column address has been detected, the logic in the first bit position then accesses one of nine disable blocks. (The disable block is a novel circuit taught by the present invention, which will be described in more detail below.) In effect there are nine disable blocks, one for each bit position. The bit position information in the first redundant column logic is used to select which of the disable blocks a disabled signal will be provided to. In this case, a disable signal is provided to the disable block at bit position one. The disable block at bit position one is connected to the secondary sense amplifier at bit position one, and disables this sense amplifier, so that no information whatever can be placed onto the bus from the 16 columns included in bit position one.
Thus, the first operation performed in this case by the first redundant circuit logic is to disable the bit position at which a defective column was about to be addressed. A second operation was also performed to properly substitute the information stored in the memory cells of the redundant column for the information which was contained in the defective column, namely column three of byte position one. That is, redundant column one contains 256 memory cells, accessed by the same wordlines as the memory cells in the other 144 columns of the main memory of the half-array. This row of memory cells has its own primary and secondary sense amplifiers, and the secondary sense amplifier incorporates a disable circuit (as do the secondary sense amplifiers for the 144 primary columns of the half-array). When an address match to the column address stored in four of the fuses for the first redundant column is detected, the sense amplifier for this redundant column of memory cells is enabled. Thus, when the wordline for the selected row (number 100 in this example) finally goes high, the bit stored at position 100 in the redundant column will be accessed, and the primary and secondary sense amplifiers of redundant column number one will amplify the information which was stored in this memory cell. The information stored in the remaining four fuses of redundant column one now selects which of the output busses the output of a secondary sense amplifier of the redundant column will be connected to. A simple one-of-nine multiplexer accomplishes this.
All of the foregoing operations are completed before the delay normally associated with word line decoding and access has expired. That is, after an address transition (when both the row and column inputs provided from the external pins of the memory package typically change), it will typically take 2-5 NS for the address buffer to change state, and 5-6 NS thereafter until the column decoders raise lines corresponding to the selected column. In the present invention, the secondary sense amplifier of the disabled column (column 3 in the above example) will also be disabled at about this time. About 7-10 NS later, the redundant column will be enabled. Thus, all of these events have occurred in a total delay of about 15-20 NS after the address transition at the input pads. However, it will typically not be until 4-5 NS after the address buffer transition that the row decoder will change state, and, due to wordline delay, it will typically not be until an additional 4-5 NS later that the row-selected memory cell in each column is accessed. Typically another 15-20 NS will be required for the sense amplifiers to change state. It should be understood that all of these timings are approximate, contingent, and in no way essential to the present invention, but they are incorporated here to provide some understanding of the general characteristics of operation of the present invention.
It should be noted that the byte-wide redundancy implementation of the present invention is relevant to any semiconductor memory, that is to static rams, dynamic rams, nonvolatile rams, EPROMS, EEPROMS, or to other memory types. The presently preferred embodiment relates to a static ram, but the invention is also applicable to all of these other types. A further feature of the present invention, which is important in most but not all of these other memory technologies, is the write control. That is, the operation described above relates to the read operation of a memory retaining a redundant column, but the control of the write operation of a redundant-column byte-wide memory also presents significant problems. It is necessary that any write cycle which attempts to write information into a defective column should in fact write that information into the corresponding cell of the particular redundant column which has replaced that defective column. Thus, in a write cycle in the present invention the detection of the address match on the accessed column is the same as above. That is, if redundant column one replaces column three in bit position one, then whenever a write into (e.g.) cell number 100 in column three is attempted, the information of bit one of the nine bit word which is sought to be written into the memory must be written into redundant column one rather than into column three of bit position of the main array.
The write operation in this case will be described, again by way of example rather than as any necessary limitation. An address match between the column address ("3") and the information stored in the column address bits in the fuses of redundant column one will first be detected. When this match is detected, the write buffer for redundant column one will be enabled. The second four bits of redundancy information stored in fuses and in redundant column one will again be used to control a multiplexer, which is now demultiplexing the nine bits of the input buss into the write buffer. That is, in this example, the second four bits of stored fuse information say that the bit position at which column three is defective is bit position one. Therefore, the input buss which contains information being sent into the chip will provide the appropriate bits to be stored in the main array (in row 100 of column three) for each of bit positions two through nine. However, the multiplexer will connect the input buss line corresponding to bit position one into the write buffer of redundant column one. This write buffer is connected to the sense amplifiers for redundant column one, so that the externally-generated information corresponding to bit position one of the word being stored in memory is latched onto the bit lines of the first redundant column, and therefore, when word line 100 eventually goes high, the stored information in cell 100 of redundant column one will be written over by the externally received information. Thus, when a later attempt is made to read out the word stored at row 100 of column three, the correct information for the first bit of this word will be stored in redundant column one.
A further important advantage of the present invention is that the demands on metal wiring area are minimized. Only those signals which require high speed are routed through metal wiring to accomplish the redundancy function, and the other signals are routed through moat levels. That is, in effect, the bit position output from each redundancy logic block is maintained as a dc signal, which is coupled to the disable block for each bit position by conductive paths at the moat level. These dc signals are decoded to provide a dc signal which, for each redundant column, controls a pass transistor. Each pass transistor controls a connection, for only one bit position, between the output of the address-match detector in the redundant column logic and the disable logic in the sense amplifiers corresponding to that bit position. Thus, only one high-speed connection is provided from each redundant column logic to all the disable blocks, and thus only one metal wire is required. This extreme efficiency in conserving metal wiring means that redundancy according to the present invention can be retrofitted into a wide variety of prior art byte-wide memories.
Thus the present invention provides a byte-wide memory with column redundancy. The redundant columns can each be substituted for any column in the half-array, without regard to which bit position the defective column relates to. Fuses store the address information of the defective columns, and when a match between the column address and the stored defective-column column address is found, the sense amplifier for the bit position which contains that defective column is disabled, and the output of the redundant column (selected by whichever row line is activated) is multiplexed into the I-O buss. Thus, before the row address signal has ever been decoded, the defective column has been disabled and one of the redundant columns has effectively been substituted. This configuration means that it is not necessary to have one redundant column for every bit position, but each redundant column can substitute for a defective column in any bit position, and more than one defective column in a single bit position can each be replaced.
According to the present invention there is provided:
A memory comprising:
a plurality of memory cells arranged in rows and columns, said columns of memory cells being organized by bit positions, each bit position including more than one of said columns of memory cells and at least one sense amplifier;
at least one redundant column of memory cells, and a sense amplifier operatively connected thereto;
at least two output means, said output means being connected to respective ones of said array sense amplifiers to provide simultaneous data output corresponding to memory cells at different ones of said bit positions;
redundancy select logic storing defect position information, including both defective column address information and also bit position defect information indicating which of said positions includes said defective column;
and wherein said redundancy select logic connects said redundant column sense amplifier to said output means corresponding to the one of said bit positions which is encoded by said bit position defect information, wherever said externally received column address matches said stored defective column address;
and wherein said array cells, said redundant cells, said sense amplifiers, said output mens, and said redundance select logic are all integrated on a single chip.
According to the present invention there is also provided:
A memory array comprising input means, output means, and a plurality of subarrays, each memory subarray comprising:
A plurality of memory cells arranged in rows and columns, said columns of memory cells being organized by bit positions, each bit position including more than one of said columns of memory cells;
At least one sense amplifier for each of said bit positions, whereby respectively independent bits of information are selectively provided as output from more than one of said bit position simultaneously;
At least one redundant column of memory cells, and a sense amplifier connected to each said redundant column of said memory cells;
At least two output means, said output means being connected to respective ones of said array sense amplifiers to provide data outputs corresponding to different ones of said bit positions;
An address decoder, connected to receive externally generated row and column addresses, said address decoder being connected to a plurality of said bit positions sense amplifiers to access a plurality of memory cells, each corresponding to said externally received row and column addresses, at more than one of said bit positions simultaneously;
Where said redundancy select logic stores defect position information, said defect position information corresponding to the position of a defective column in said array of memory cells, said defect position information including both a column address corresponding to said defective column and also bits indicating which bit position includes said defective column;
Wherein said redundancy select logic is operatively connected to said address decoder, to monitor said externally received column addresses and to detect whenever a match occurs between one of said externally received column addresses and said stored defective column information;
And wherein, whenever said redundancy select logic has detected a match between said external column address and said stored defective column address information, said redundancy select logic connects said redundant column sense amplifier to said output means corresponding to the one of said bit positions which is encoded by said bit position defect information;
And wherein said array cells, said redundant cells, said sense amplifiers, said output means, and said redundancy select logic are all integrated on a single chip.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
This invention relates to a mixing box for an air condition system such as that shown in FIG. 1. The purpose of the system is to maintain a comfort condition, for example, a dry bulb temperature of about 75 degrees F., a suitable relative humidity and an air circulation rate not less than 0.4 cubic foot per minute per square foot of floor space (CFM/SF), for occupants of a room 10. The system includes a duct 11 and a flexible line 12 through which primary, conditioned air from a riser 13, is circulated through a mixing box 14*, and downwardly through a grill 15 into the room 10. The conditioned air flowing through the duct 11 into the mixing box 13 is typically at a temperature of about 50 degrees F., and bust be delivered to the room 10 at a rate adequate to provide ventillation or fresh air. The minimum ventilation requirement varies, according to code, and might be, for example, 0.05 CFM/SF. Hence air must be supplied to the room 10 at the minimum circulation rate of 0.4 CFM/SF, and must contain the minimum ventilation, e.g., of 0.05 CFM/SF of primary air. Where a single mixing box 14 serves a room 10, all of the required ventilation air must be supplied therethrough. However, when several mixing boxes serve a single room or zone, some of the boxes can furnish all of the required ventilation air, at least under some conditions of operation, while the others merely recirculate air. FNT *The instant invention involves details of construction, operation or both of the mixing box 14, these details are not shown in FIG. 1.
The mixing box 14 is positioned within a plenum 16 between a false ceiling 17 for the room 10 and a floor 18 of a room (not illustrated) thereabove. Air within the plenum 16 is heated, for example, to approximately 85 degrees F. by air rising from the room 10 through openings 19 in diffuser panels 20 of the lighting fixtures 21, and then through openings 22 in reflectors 23 of the lighting fixtures 12 and into the plenum 16. Air so circulated from the room 10 through the lighting fixtures 21 and into the plenum 16 is heated by the lights in the fixtures 21, which are shown as fluorescent tubes 24, so that the plenum 16 is a source for heated air. Additional, or alternate, heat sources, such as ducted hot air which might be at a temperature of 110 degrees F., can be positioned within the plenum 16 to augment the heat provided by the lights 24 in the fixtures 21.
The load in the room 10 can vary substantially from time to time depending on such factors as the occupancy of that room at a given time, the load imposed by the lights 24, computers, copiers, and other equipment that may be used within the room 10, and the load that may be imposed thereon by solar energy. Accordingly, the mixing box 14 is required to maintain the desired comfort temperature of 75 degrees F. notwithstanding variations in the air conditioning load which occur from time to time for the indicated and other reasons.
2. Description of the Prior Art
Numerous mixing boxes* of the induction type have been suggested. In some such boxes, for example, the rate at which primary conditioned air is delivered to the mixing box 14 can be varied, with a compensating variation in the rate at which a flow of air, for example from the plenum 16 and/or from the room 10, is induced into the mixing box for mixture with the primary air, so that a mixture of supply air flows from the box at a substantially constant rate not less than the minimum circulation rate, but at a temperature which varies depending upon the proportions of primary conditioned air and induced air in the mixture. It has further been suggested that primary conditioned air can be by-passed around the induction portion of a mixing box to provide a maximum flow of primary conditioned air, with no induction for times of peak load on an air conditioning system. FNT *See, for example, U.S. Pat. No. 3,114,505; 3,390,720; 3,516,606; 3,583,477; 3,604,625; 3,610,522; 3,611,908; 3,823,870; 3,883,071; 3,929,285; and 4,084,389.
U.S. Pat. No. 3,883,071 discloses a mixing box which receives and delivers to the room 10 primary conditioned air at a rate which is varied between a maximum, not less than the minimum circulation rate, and a predetermined lesser rate, the minimum ventilation requirement, as the air conditioning load on the room 10 varies between a maximum and an intermediate load. The apparatus includes an induction nozzle for inducing a flow of air from the plenum 16 and/or from the room 10, for mixture with primary conditioned air; the resulting mixture is delivered as supply air.
U.S. Pat. No. 3,929,285 and 4,084,389 both disclose mixing boxes which use a continuously operating fan, positioned downstream from the mixing region, rather than an induction nozzle, to induce air flow by drawing supply air from the mixing region for delivery to the room 10 at a constant rate not less than the minimum circulation rate. U.S. Pat. No. 3,929,285 also disclose apparatus wherein the rate at which primary conditioned air is delivered to the room 10 is varied between a maximum, not less than the minimum circulation rate, and a predetermined lesser rate, the minimum ventilation requirement, as the air conditioning load on the room 10 varies between a maximum and an intermediate load. When the air conditioning load on the room 10 is below the intermediate load, primary conditioned air continues to be delivered at the predetermined lesser rate while an induced flow from the plenum 16 and/or room 10 includes heated air, as required, for temperature control.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to absorbent articles, and more particularly to absorbent articles having wetness indicating graphics providing an interactive training aid.
The toilet training process may incorporate a wide variety of different aspects, including many training techniques and training aids that may be used by parents and caregivers, hereinafter simply referred to as caregivers. One aspect of the total toilet training process is the change from diapers to training pants to help the child understand that he or she should now use the toilet just like adults. Another aspect of the total toilet training process includes caregiver instruction as a positive encouragement and reinforcement to the child that he or she should now be using a toilet instead of diapers. Although the use of training pants and positive encouragement from the caregiver has been helpful in the toilet training process, there is still much room for improvement. Specifically, caregivers are still searching for easier and quicker ways to guide their children successfully through the toilet training process.
Many caregivers have difficulty in determining the readiness of a child to begin the toilet training process, and underestimate the difficulty of teaching the toilet training process to young children. If a child does not respond to an initial toilet training instruction or introduction, the caregiver can be at a loss for finding techniques, methods, or teaching tools to encourage the child to master the art of toilet training. Thus, while various teaching tools such as books, videotapes, charts with stickers, personalized toilets, and interactive toilet training kits are available, there remains a need for new and improved educational and motivational mechanisms to facilitate the toilet training process.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to an apparatus and method for ascertaining the position, velocity and direction of travel of a vehicle at a remote location and for transmitting such information to a network-based server using a wireless communication system.
2. Description of the Related Art
Various apparatus and methods for ascertaining the position of individual vehicles and for communicating that information to a user at a location remote from said vehicles are known in the art. For example, U.S. Pat. No. 5,043,736 to Darnell, et al., discloses a cellular position locating system for ascertaining the latitude and longitude of an individual or object at a remote location and transmitting such information to a base station using a portable hand-held remote unit. The portable unit includes a receiver circuit for use with a satellite navigation system, a microprocessor for analyzing coded signals, cellular phone and modem circuits for transmitting encoded signals to a base station and a time of day clock. The base station includes a computational system for decoding position data and a visual display device for presenting the remote unit map coordinates.
In U.S. Pat. No. 5,742,509, Goldberg, et al., discloses a personal tracking system integrated with a base station. The tracking system includes a remote unit that includes a location determination means, a microprocessor, a modem, and a communication means connected to the modem. The base station includes a computer with software and a modem. The remote unit and the base station communicate with one another through a communication link.
In U.S. Pat. No. 6,131,067, Girerd, et al., discloses a client-server computer network and the use of such a network to access remote sensors having associated position determination sensors. In one embodiment of the invention, a remote sensor transmits positioning data to a server where it is analyzed to derive the location of the remote sensor. The location so determined is then transmitted from the server to the client and is displayed at the client so that the user can identify the location of the remote sensor. Use of the Internet as the client-server computer network is disclosed, along with use of a web page at the server having means for the user to identify a particular remote sensor.
The available means with which to determine the position of a remote sensor, or of a plurality of remote sensors, can be improved upon. For instance, there is a need to reduce the elapsed time that is presently required of a user in determining the position of each vehicle of a fleet of vehicles—e.g., each rental car of a fleet of rental cars or each truck of a fleet of transportation trucks. The present invention improves upon the currently available means for determining the several positions of a plurality of remote sensors by combining a fully integrated remote positioning sensor with currently available high speed telecommunications networks. The fully integrated remote positioning sensor carries out all position determining calculations, including and desired differential corrections and auxiliary calculations, on-board at the remote location. This enables all position and tracking data to be readily available for continuous or intermittent transmission of said data to a network-based server for data-basing the positional information. The data-based information is then available, on demand, when a user accesses the server to view positional information with regard to one or a plurality of vehicles. This obviates the need for polling the remote vehicle and substantially reduces the time required to access the positional information.
The device is also configured to store data on-board at the remote location during periods that the device is outside the communication range of a wireless network, and to automatically transmit the stored data as soon as the device returns to within the communication range of the wireless network. This last feature permits a history of the vehicle route and speed, etc., to be preserved for periods in which the vehicle is outside the communication range of the wireless network.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Field of the Invention
The present invention relates to improved drug formulation methods, products formed by these methods, as well as methods of their use.
Background
Some formulated drug products are subject to chemical instability resulting in limited shelf life and potentially inaccurate drug dosing. In addition, sub-optimal rates of drug delivery to intended target tissues can result from uncontrolled drug release from the drug product. Overcoming these problems would enhance the safety and efficacy of many existing drug formulation products and new products in development.
In fact, multiple drug products have been recalled or withdrawn from the market due to low product stability. For example, products containing Liothyronine sodium, the L-isomer of triiodothyronine (T3), have had multiple recalls based on instability that resulted in lower than claimed dosing and possible formation of degradation products with unintended side effects. The brand name Cytomel® product (King/Pfizer) of Liothyronine sodium, as well as the generic version of Liothyronine sodium (Mylan, Watson and Paddock Laboratories) as referenced in the Abbreviated New Drug Applications (ANDAs) for these generic products, have all had documented problems with product stability and have been either recalled or withdrawn from the market. To claim substantial equivalence of the generic to the innovator product in the case of Cytomel®, the ANDA generic products were all required to be formulated with the same excipients (i.e., calcium sulfate, gelatin, starch, stearic acid, sucrose and talc) for bioequivalence and FDA approval. Therefore, it is not surprising that the equivalent generic product with the same Liothyronine formulation had similar instabilities as the reference drug. Likewise, multiple products other than Liothyronine sodium have also been recalled due to loss of potency.
Accordingly, there is a need in the art for improved drug formulation methods, and products formed thereby as well as uses thereof, that produce a homogeneous distribution of drug substances in a final drug product. There is also a need in the art for improved drug formulation methods that produce final drug products having a more consistent and controlled rate of drug release and/or enhanced product stability.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to an optical transmission system comprising a transmitter for transmitting optical pulses via an optical transmission medium to a receiver, the receiver comprises optical clock recovery means for generating a sequence of optical pulses with a frequency related to a pulse frequency of the optical pulses received from the transmission medium, the optical clock recovery means comprises an optical amplifier having its input coupled to its output via a feedback loop, said feedback loop comprises a non linear element, the optical clock recovery means comprises injection means for injecting the optical signal received from the optical transmission medium.
The invention further relates to an optical receiver, clock recovery means and a non-linear optical element.
Such a transmission system is known from the article xe2x80x9c10 Gbit/s all-optical regeneratorxe2x80x9d by W. A. Pender et. al. in Electronics Letters 31st August 1995, Vol. 31, No. 18. pp. 1587-1588.
The transmission rate of optical transmission systems is increasing rapidly, due to improvements of optical components such as lasers, modulators, multiplexers and demultiplexers. The transmission rate approaches the limit of capabilities of the used electrical components such as photo detectors and modulators. To overcome this limitations there is a trend to use time division multiplex in which a plurality of optical signals with a bitrate of e.g. 10 Gbit/s are multiplexed into an optical signal with a higher bitrate e.g. 40 Gbit/s. This multiplexing can completely be performed by optical means.
In the receiver the received optical signal has to be demultiplexed by optical means because using electrical components for handling such a high bitrate signal is very difficult. Such optical demultiplexing requires the availability of an optical clock signal. Because this clock signal has to be synchronized to the received input signal, the receiver comprises clock recovery means to extract the required optical clock signal from the received signal. In the optical transmission system according to the above mentioned article, clock recovery means using only optical components are used.
The clock recovery system according to the above mentioned article is based on mode locking of a ring-laser in which the received optical signal is injected. A ring laser comprises an optical amplifying device having its output coupled to its input by means of a feedback loop. Mode locking is a phenomenon that results in the generation of optical pulses having a repetition rate which is a multiple of the reciprocal of the round trip delay of the combination of amplifier and feedback loop. The phenomenon is caused by non-linear amplitude and phase transfer in the feedback loop. To obtain said non-linear amplitude and phase transfer a non-linear element is present in the feedback loop.
In the transmission system according to the above mentioned article the non-linear element comprises 1 km dispersion shifted fiber followed by a polarizer. A first non-linear effect comprises a change of the polarization state in dependence of the amplitude of the optical signal in the 1 km dispersion shifted fiber. A second non-linear effect is a phase shift in the fiber which is dependent on the amplitude in the fiber. The polarizer is adjusted such that it passes the light signals only for a polarization state corresponding to the polarization state for a signal with a high amplitude.
A problem with the clock recovery system according to the above mentioned article is that it requires 1 km of optical fiber, making integration of said system impossible.
The object of the present invention is to provide a transmission system according to the preamble of which the receiver has substantially smaller dimensions than the receiver according to the prior art.
To achieve said object, the present invention is characterized in that said non linear element comprises a four port coupling element, two ports of the coupling element being included in the feedback loop and two ports being included in a secondary loop, the coupling element being arranged for coupling a first optical signal into a first branch of the secondary loop and for coupling a second optical signal into a second branch of the secondary loop, the secondary loop being arranged for causing signal level dependent interference between the first and second optical signal when re-entering the coupling element
By using a secondary loop in which two optical signals propagate in opposite directions, it becomes possible to use level dependent interference between said two optical signals to obtain a non-linear operation. If e.g. for a first level of the optical signals non-destructive interference occurs and for a second level destructive interference occurs it is obtained that the non-linear element passes signals having the first level, and attenuates signals having the second level. A non-linear element according to the invention can have much smaller dimensions than the non-linear element used in the prior art transmission system.
It is observed that the article xe2x80x9cAll-optical clock recovery using a modelocked figure eight laser with a semiconductor non-linearityxe2x80x9d by L. Adams, E. Kintzer and J. Fujimoto in Electronics Letters No. 20, Vol. 30, Sep. 29, 1994 an optical clock recovery system is disclosed in which a primary and a secondary loop is used. In this system however, the input signal of the receiver is injected into the secondary loop instead of into the feedback path of the amplifier. This has as consequence that the laser will not be modelocked when the input signal is absent, but the laser will generate a CW signal. This is in general undesirable in a time domain multiplexed system, because it causes the input signal to be passes to all tributary outputs. It has further been shown that the pulse rate of the xe2x80x9cFIG. 8xe2x80x9d laser is lower and the pulse width is higher than the corresponding values of the system according to the invention.
An embodiment of the invention is characterized in that the first branch of the secondary loop is coupled to a first port of a further optical amplifier, in that the second branch of the secondary loop is coupled to a second port of the optical amplifier and in that the delay values of the branches of the secondary loop are different.
An optical pulse entering the coupling element will split in two optical pulses propagating in the secondary loop in opposite directions. The optical pulse propagating through the branch with the shorter delay value will arrive earlier at the amplifier.
If the level of the optical pulse exceeds a given level, the amplifier will be saturated and the gain will decrease. When the second pulse arrives at the amplifier, this pulse will be amplified by a smaller factor that the first pulse. Consequently the two optical pulses will have different amplitudes when re-entering the coupling element. Also the phases will be different due to the amplitude dependent phase shift in the amplifier. If this phase difference is properly chosen non-destructive interference will occur in the coupling element.
If the level of the optical pulses is small, the amplifier is not influenced by the optical pulses. Consequently both pulses remain equal after having propagated in the secondary loop. If the properties of the coupling element are chosen correctly, destructive interference will occur for such low level pulses.
A further embodiment of the invention is characterized in that the amplitude transfer factors of the branches of the secondary loop are different.
By making the amplitude transfer functions of both parts of the secondary loop different, it is prevented that the amplifier is also saturated by the second pulse, causing the amplifier faster to recover. This results in a faster non-linear element.
A still further embodiment of the invention is characterized in that the secondary loop comprises an attenuator to make the amplitude transfer factor of the first branch of the secondary loop different from the amplitude transfer factor of the second branch of the secondary loop.
By using an attenuator for obtaining different amplitude transfer factors for the parts of the secondary loop it is obtained that the dimensions of the secondary loop can be substantially reduced because the different attenuation factors do not have to be obtained by different fiber lengths.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Preimplantation embryo genetic testing is a process wherein a sample containing one or several cells is taken using an inverted microscope and micromanipulator and then tested to determine if the respective embryo is chromosomally (genetically) or metabolically normal.
After the sample is taken from an embryo it remains in the drop under oil until it is manually moved into the testing tube with a small amount of solution under control of a dissecting microscope.
This sample transfer represents a considerable challenge to the operator for two reasons. One is that holding a small tube with one hand, while a pipette with a sample in another hand limits operator's ability to focus a dissecting microscope on the sample.
Merely placing a sample onto the edge of a Petri dish solves this problem only partially, because the tube still can wiggle considerably.
Another problem is matching the tube and a sample numbers. Usually there are several samples from several biopsied embryos. It is critical that the sample would be placed into the corresponding tube number. However, the tube is usually too small to place a number on it in such way that it can be readily observed under the microscope without obstructing the view inside of the tube.
As a result, an operator has limited opportunity to verify that the right sample goes into the right tube leading to errors.
In fact, it has been reported that this type of errors is the leading cause of misdiagnosis in preimplantation genetics.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
This invention relates generally to modular housings and connectors, and relates more particularly to a modular telephone housing adapted for structurally and electrically coupling to other like modular telephone housings.
2. Description of the Prior Art
A wide range of telephone products are available to telephone users. Product features such as touch-tone dialing, telephone number memory, and automatic redialing can be obtained in single telephone units. Some telephones incorporate additional features such as automatic call-forwarding and access to multiple outside lines. In addition, stand-alone devices such as answering machines, speaker telephones, and portable telephones add to the range of available telephone products.
Although many telephone products are available, choices are somewhat limited. If a customer desires a specific combination of features, it may be difficult to find a telephone that offers those specific features. Some telephones may have too few features, while others may have too many. The customer may end up buying a telephone with fewer features than desired, or may end up spending more money for a telephone with more features than desired.
Other problems arise in relation to the interconnection of telephones and stand-alone devices. Typically, each device is connected to an incoming telephone line as well as interconnected to other devices. Many of the devices may also require a separate electrical power connection. These electrical interconnections create an unsightly jumbled mass of wires.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention generally relates to a crop processor in the form of an attachment to a round hay baler for cutting, chopping and shredding various crops, especially hay and all types of crops with stems or stalks extending above ground. The cut, chopped or shredded crop is discharged into a round hay baler to form the processed crop into a round hay bale with the cut lengths of the crop material being useful for bedding, dry feeds, silage and other wet feeds and is especially useful in a total mixed ration mixing machine. The crop processor includes an open bottom housing having a high speed rotor with multiple knives mounted thereon. An adjustable shear bar is mounted in the housing to enable the crop to be processed to be cut at desired cut length by the knives on the spinning rotor as they pass the shear bar. The housing is located generally under the hitch area and forwardly of the existing wheels, hay entrance area and pickup tines of the round bale hay baler with the processed crop material being delivered to the round hay baler in the same location that hay would normally enter the baler to be baled. The shear bar is horizontally adjustable toward and away from the rotor and knives to vary the cutting, chopping and shredding characteristics of the crop processor in order to vary the cut length of crop material. The rotor is driven by a drive system which includes a forwardly positioned hitch extension and a gear box oriented forwardly of the baler drive system. The gear box is driven by the existing power takeoff shaft from a towing tractor. The hay baler is also driven from the gear box. The gear box drives an output shaft which is drivingly connected to the rotor through a chain coupler, PTO shaft and belt and pulley assemblies. The crop processor is supported from the hay baler to enable the apparatus to float upwardly when traversing uneven terrain such as through dips, small ditches, gopher mounds and the like with the apparatus returning to its normal cutting height due to gravity when traversing level terrain. The rotor is in the form of square tube with the pivotal knives being mounted on the flat side surfaces of the tube in staggered relation.
2. Description of the Prior Art
Shredding devices are well known for shredding stubble or stalks from a harvested crop. Such devices usually deposit the shredded material back onto the ground surface which would require a raking or pickup operation to collect and make use of the shredded material. Shredding devices also exist which discharge the shredded material into the baler to form bales of shredded material. Such devices are in the form of attachments to hay balers including hay balers which produce generally rectangular bales as well as hay balers which produce round hay bales. The following U.S. Patent Nos. relate to this subject matter. U.S. Pat. Nos:
2,817,945 PA0 3,295,299 PA0 3,362,144 PA0 3,483,688 PA0 3,604,188 PA0 3,606,748 PA0 3,641,754 PA0 3,894,484 PA0 4,280,320 PA0 4,559,770 PA0 5,052,170
The above listed prior patents do not disclose the crop processor for round hay balers of the present invention.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The following patents were developed in the search of the art covering the present invention. U.S. Pat. Nos.:
1,154,745; 3,051,424; 1,716,702; 3,161,425; 1,904,315; 3,765,343; 2,835,464; PA1 German Pat. No. 116,093
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Abrasive compounds for a glass substrate for an optical disk platter and a magnetic disk platter is an aqueous dispersion of abrasive grain containing cerium oxide obtained by calcinating and dry milling bastnaesite ore or rare earth chloride. The abrasive grain is relatively inexpensive. However, its cerium oxide content is at most 50 to 90% and it is difficult to increase the purity any more since natural ore is used as a raw material. The average secondary particle size of the powder is 1 to 3 μm. It is difficult to decrease the average secondary particle size to 1 μm or less when the powder is made finer by a breakdown method such as dry milling.
Regarding the abrasive compound for SiO2 oxide film of a semiconductor device, Japanese Patent Application Laid-open No. Hei 5-326469 discloses an abrasive compound comprising cerium oxide having an average particle size of 1 μm or less and a cerium oxide purity of 99.5% or more. Japanese Patent No. 2864451 discloses that polishing with an abrasive compound having an average particle size of 0.1 μm or less and a cerium oxide purity of 99.5% or more gives rise to an oxide film of high quality.
On the other hand, in polishing a glass substrate for an optical disk platter and a magnetic disk platter, Japanese Patent Application Laid-open No. Hei 11-60282 discloses a method for polishing a glass substrate for a magnetic disk platter in which the cerium oxide content in an abrasive liquid is set to 0.5 to 8 wt %. International Publication No. WO98/21289 discloses a method for using an abrasive material having an average particle size of primary particle is 0.002 to 3 μm in an abrasive composition for a substrate for a magnetic recording medium comprising an abrasive compound, an abrasive auxiliary compound and water.
In recent years, the performance of a glass substrate for an optical disk platter and a magnetic disk platter tends to be higher in density and speed and therefore a polished surface of high quality having smaller surface roughness and average waviness is desired. However, it becomes increasingly difficult to obtain a good polished surface by use of cerium(IV) oxide abrasive grains having a cerium oxide purity of 50 to 90% and an average secondary particle size of 1 to 3 μm obtained by calcinating and dry milling bastnaesite ore or rare earth chloride.
It has been found out that in order to solve the problems, a abrasive compound for a glass substrate for an optical disk platter or a magnetic disk platter that can give a polished surface of high quality and that allows high speed polishing can be obtained by setting an average secondary particle size of cerium(IV) oxide particles to 1 μm or less and increasing the cerium amount for 95% or more in terms of oxide of the total amount of rare earth elements in the abrasive in order to supplement a decrease in polishing speed as a result of a reduction in the average secondary particle size of cerium(IV) oxide particle. The present invention has been achieved based on this discovery.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Dry eye disease encompasses any condition where the tear film loses water and becomes more concentrated. It is a common complaint, affecting three million people in the United States alone, yet it is difficult to diagnose and treat. The loss of water from the tear film causes a corresponding rise in tear osmolarity. The increased osmolarity results in symptoms such as a sandy-gritty feeling in the eye, burning, irritation, or a foreign-body sensation that worsens during the day. Patients suffering from dry eye disease complain of mild to severe symptoms, with signs ranging from minimal superficial punctate keratitis to corneal perforation.
Dry eye disease has a chronic remitting and relapsing nature and may result from a number of factors. The disease may be a natural part of the aging process, affecting 15%–20% of adults over age 40. It may also result from pathological processes such as diseases of the lacrimal glands, mucus glands, and/or lipid producing glands, and may occur with cell infiltration or atrophy of the lacrimal gland (Sjögren's syndrome). Estrogen deficiency in postmenopausal women is also postulated to result in dry eye disease.
One method to treat dry eye disease is by topical administration of over-the-counter drugs that serve as artificial tears. Numerous varieties of these artificial tears are available (TheraTears® (Advanced Vision Research), Refresh® and Celluvisce® (Allergan), Tears Natural® and Bion Tears® (Alcon), GenTeal® and HypoTears® (CIBA Vision), each of which contain electrolytes and has varying pH levels, osmolarities, and surface tensions. Another method to treat dry eye disease is by surgery to close the lacrimal drainage ducts using punctum plugs. Neither method, however, is completely desirable. Artificial tears do not have a constant flow rate as do human tears, and treat the symptoms rather the cause of the disease. Surgery has its attendant risks, and may not be a viable option in older patients.
It is known that Cyclosporin A (cyclosporine, Allergan Inc.), may treat dry eye disease because patients administered Cyclosporin A for other disorders have shown a marked increase in tear flow. A topical formulation containing Cyclosporin A (Arrestase®, Allergan Inc.) is currently under review by the Food and Drug Administration. Cyclosporin A is an immunomodulator, suggesting that immune-mediated inflammation contributes to dry eye disease. Cyclosporin A has been used to treat various ocular pathologies such as glaucoma, corticosteroid-induced ocular hypertension, allograft rejection, infections, and ocular surface disease. It is also known that Cyclosporin A may be used in the eye to treat uveitis (inflammation of the uvea) by topical, intravitreal or systemic administration. Doses of 0.05%, 0.1%, and 0.5% Cyclosporin A have been reported. Cyclosporin A has good penetration into the cornea but not into the anterior chamber, and does not increase intraocular pressure or cause cataracts.
Tacrolimus (Prograf®, previously known as FK-506) is an immunomodulating drug that has been applied topically to treat a variety of dermatoses. Topical administration of tacrolimus at doses ranging from 0.03%–0.3% resulted in significant clinical improvement in atopic dermatitis after 2–3 weeks treatment, and tacrolimus treatment of other dermatologic diseases shows promise. Tacrolimus, like cyclosporine, blocks the signal transduction pathway needed to induce interleukin-2 gene expression and thereby activate T lymphocytes. In addition to suppressing T cell activation, tacrolimus inhibits anti-IgE-triggered histamine release and inhibits prostaglandin D2 synthesis in human skin mast cells. While oral administration produces limiting adverse effects (systemic immunosuppression, infection, neural toxicity, nephrotoxicity, and hypertension), topical administration for treatment of dermatoses at concentrations up to 0.3% showed no significant difference in effects between treated and control groups. In addition, tacrolimus is well tolerated locally and only occasionally causes mild irritation. The use of tacrolimus to treat a variety of ocular conditions, including dry eye disease, has been reported in U.S. Pat. No. 6,489,335.
Other compositions and methods to treat ocular conditions and enhance ocular lubrication would be desirable.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Data communication via light-based sources generally involves the modulation of light between a light source and a detector (e.g., a photodiode). The modulation is structured in such a way as to represent coded information. For example, a pulse of light emitted by the light source during an interval of time may represent a binary one (“1”), and the absence of light during a subsequent time interval may represent a binary zero (“0”). In another example, shifts in the frequency or polarity of the light can represent coded information. The sequence of detected light pulses, or lack thereof, may then be decoded and converted into a meaningful piece of information according to some predefined coding scheme. Information coded by such a data communication method is similar in form to information transmitted over other types of media (e.g., electronic, acoustic, radio, etc.), which generally require an active source of power. However, such techniques are not suitable for applications where a power source is not available, is not cost effective or where the supply of power is limited and therefore must be conserved.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
A display device used in a conventional MFP, etc. includes a customizing function that enables a user to select a frequently-used function with a small number of operation times. The device is described in Patent Document 1 below.
In the device disclosed in the patent literature, it is possible to customize to arrange a frequently-used function selection button on a setting screen that is often used by a user. Therefore, a frequently-used function can be selected with a small number of operation times.
[Patent Document 1] Japanese Unexamined Patent Application Publication No. 2005-195816
In the conventional device, it is possible to customize a function selection button arranged on a basic screen. However, it is impossible to change a layout thereof to a user's preferred arrangement. In other words, even if it is possible to operate with a small number of operation times, it is still not always possible to provide an interface satisfied by a user.
An image processing apparatus and a method for controlling the image processing device that improve user operation are desired.
An image processing apparatus disclosed in the application includes a function selection receipt screen display part that displays a function selection receipt screen that displays a plurality of function selection objects arranged thereon, the function selection objects being for selecting functions related to information processes; a function selection object management unit that manages screen configuration information that respectively relates the plurality of function selection objects displayed on the function selection receipt screen by the function selection receipt screen display part to information of functions of the information processes corresponding to the function selection objects; an editing receipt part that receives an editing instruction for editing the function selection receipt screen that is for editing the functions related to the information processes corresponding to the function selection objects on the function selection receipt screen, or for editing an arrangement position of the function selection objects on the function selection receipt screen. The function selection object management unit edits the screen configuration information based on the editing instruction received by the editing receipt part, and the function selection receipt screen display part displays the function selection receipt screen based on the screen configuration information managed by the function selection object management unit.
A method disclosed in the application for controlling an image processing apparatus that comprises a function selection receipt screen display unit, a function selection object management unit, and an editing receipt unit includes causing the function selection receipt screen display unit to display a function selection receipt screen on which a plurality of function selection objects for receiving function selection related to image processing are arranged, causing the editing receipt unit to receive an input of an editing instruction from the function selection receipt screen as using a position selection screen for selection a position of the function selection receipt screen to be edited and an editing operation contents receipt screen for receiving editing operation contents of the position selected on the position selection screen when the function selection object management unit manages screen configuration information that a function identifier related to the function selection object and an arrangement position identifier of the function selection object are corresponded for the function selection object displayed on the function selection receipt screen by the function selection receipt screen display unit, and causing the function selection object management unit to update the screen configuration information based on the editing instruction received by the editing receipt unit.
According to the present invention, it is possible to provide an image processing apparatus and a method for controlling the image processing device that improve user operation
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates generally to the field of gene expression array technology. More specifically, the present invention relates to the making and uses of larger format miniarrays that have similar analytic and diagnostic values as expression microarrays.
2. Description of the Related Art
Prior to the development of high density expression microarrays, low density nucleic acid hybridization arrays were commonly manufactured by hand or with limited automation. These low density nucleic acid hybridization arrays were used to detect concentration or sequence differences between samples or to simultaneously detect and compare complex analyte samples containing unknown products or a mix of multiple products. Genetics research has routinely employed such hand-made arrays commonly known as “dot blots”, “slot blots” or “reverse dot blots”.
With these large format macroarrays, microliter quantities of various reagents or test samples are manually pipetted or vacuumed onto a porous membrane in defined locations to create an array or grid of such products against which a mix of test samples or probes is applied. For such macroarray assays, the DNAs spotted on the arrays are typically bound to the membrane by UV or microwave radiation, and then the membrane is coated or immersed in milliliter quantities of analyte sample under controlled hybridization conditions. After hours of hybridization and washing, and depending on the labeling employed, the results are typically rendered visible by either x-ray film, staining, or enzymatic color reactions. Since these procedures are largely manual, usually only one array is made at a time and the spot density rarely exceeds a few dozen per array. Such macroarray formats are unsuitable for repetitive applications or high throughput, high-density analyses.
Higher density hybridization arrays have been made with a block of pins that were dipped into multiple wells at a time and then spotted on a membrane in an interspersed pattern Lehrach et al., 1990). However, this approach remains largely a manual procedure with variation in spot size and volume, and limitations on reproducible manufacture.
Higher density arrays of oligonucleotide probes were first developed by Fodor et al. (1991) and Pirrung et al. (U.S. Pat. No. 5,143,854), wherein nucleic acid segments were synthesized in place at the different array locations. These methods involved complex methods and equipment, and the probes generated were short (20 to 25 bases). A related method was described by Southern et al. (1992). Oligonucleotide arrays have also been described by Khrapko, et al. (1991) in which DNA was hand spotted on a polyacrylamide gel with a micropipetter. However, oligonucleotide arrays were principally developed for detecting DNA sequences and only recently were they reapplied to make gene expression microarrays similar to cDNA-based microarrays (U.S. Pat. No. 6,040,138). In the past year. several biotechnology companies have begun making microarrays and sample components based on synthetic, long oligonucleotides suitable for printing.
The recent development of cDNA based expression microarrays provides a ready means to simultaneously assess the relative expression of hundreds or thousands of different genes from cellular or tissue samples (Schena et al., 1995, 1996; Shalon et al., 1998; DoRlsl et el., 1996; Haller at al., 1997; Khan at al., 1998, 1999). These analyses were accomplished by first preparing miniature grids or arrays on membranes or coated glass substrates by spotting robotically small but dense cDNA samples of individual genes in a two dimensional pattern. Then, the mRNA transcripts of a sample were copied using reverse transcriptase, a poly-T primer and labeling agents to create a pool of cDNA based probes. These labeled probes were then hybridized to their respective gene spots in the expression microarray in order to detect and determine the relative frequency of each transcript in the original sample. These expression microarrays, which are also commonly called cDNA chips, DNA chips or BloChips, can also be manufactured from gene specific synthetic oligonucleotides that likewise were created or distributed on an array in a two dimensional pattern (U.S. Pat. No. 5,445,934, U.S. Pat. No. 5,800,992 and U.S. Pat. No. 8,040,138).
In high density gene expression microarrays, picoliter quantities of cDNA-based reagents are deposited in close proximity on solid supports, with assay spots typically 75 to 150 microns in diameter and with center to center (CTC) spacing of 100 to 375 microns. Most of these devices spot the microarrays with a row of fine pins that load and dispense by capillary action. The pins may be solid, split, pinched like a quill pen, scored with channels, or encircled with a floating ring to hold larger quantities of sample per loading and to allow dispensing a defined smaller sample per spot. Typically, 0.5–2.5 nanoliter quantities are dispensed by capillary action as the spring-loaded pin is brought into contact with the substrate surface (U.S. Pat. No. 6,110,426). Alternatively, piezoelectric or inkjet technology has been employed to load larger quantities and to dispense small microdroplets by electronic activation without contacting the surface. Gamble at al. reported a piezoelectric or thermally activated pulse Jetting device where the tip of the print head or pulse jet can dispense microdroplets of about 0.5 nanoliters or less to achieve spots on a chip spaced 80 microns CTC with 15 microns between spots (U.S. Pat. No. 6,001,309).
The technologies described above were intentionally developed to create very high-density microarrays with thousands of different gene specific assay spots per chip. The need to miniaturize these expression arrays is due to the fact that mRNA samples available for such analyses are frequently quite limited and methods to amplify the sample products are inefficient. Moreover, hybridization kinetics is very slow in large volumes of hybridization solution. Therefore, in order to assess the expression of hundreds or thousands of genes per sample, the spot density of the array format must be greatly increased without increasing the size dimensions of the array, the volume of hybridization solution, the time of hybridization, or the overall sensitivity for detecting each analyte in the sample. However, the development of these miniaturized, high density arrays comes at great cost and limitations, since the equipment required is complex and delicate, the pin heads or jets must be thoroughly washed and cleaned between sample loadings, specialized temperature and humidity controls and enclosures are required, and complex robotic procedures must be programmed for each run. Very high-density microarrays must also employ dust free “clean room” conditions and equipment that parallel the specialized facilities required for the manufacture of computer chips. Such miniaturization also requires the use of very expensive, specialized labeling reagents. Moreover, while these expression microarrays allow a high throughput overview and assessment of the relative frequency of different gene transcripts in a sample, these methods are limited by significant deficiencies in quantification and sensitivity (DeRisi et al., 1996; Duggan et al., 1999; Rajeevan et al., 1999).
One approach to improve chip detection would be to amplify mRNA derived probes by the polymerase chain reaction (PCR) or related enzymatic methods. However, effective multi-analyte amplification typically requires the provision of at least one unique primer for each type of gene product amplified, and commonly available PCR procedures such as RT-PCR and multiplex PCR have only been used successfully to amplify a limited number of the gene products in a sample (U.S. Pat. No. 5,807,680). In methods such as differential display or other older procedures that are used to explore expression differences, global amplification methods have been employed based upon using simple arbitrary primers, hexamers or various random primer constructs instead of unique primers to amplify DNA or RNA. Inconsistency of these methods renders them useful only for identifying unusual or novel gene expression products, and they have not been devised or employed for use with expression microarrays or DNA chip analyses (Liang et al., 1993; Mou et al., 1994; Welsh et al., 1990; U.S. Pat. Nos. 5,262,311; 5,665,547; 5,580,726; 5,104,792; 5,789,206; 5,882,856).
The prime difficulty with many of these amplification methods stems from the use of short arbitrary or random primers mat can give variable results from gene to gene under different temperature and hybridization conditions such that they are unsuitable for repeated diagnostic analyses. Even RT-PCR or multiplex PCR methods which employ unique primers can produce semi-quantitative rather than quantitative results because different primer sets vary considerably in efficiency. Moreover, kinetic factors favor copying the smaller and more abundant products in these methods. Therefore, some products may not amplify well, and rare or down-regulated transcripts may be under-represented (Khan et al., 1999). Additionally, mammalian mRNA samples include very large gene transcripts 6 to 12 thousand nucleotides long that cannot be amplified reliably by routine PCR methods. Consequently, global PCR amplification of a pool of mRNA-derived cDNA probes has not been attempted or successfully accomplished with DNA chip or expression microarray analyses. Based on the above reasons, currently available exponential amplification methods cannot be validly applied to multi-analyte gene expression analysis.
Less robust linear amplification methods have been developed and employed for chip analyses by adding a RNA polymerase promoter to the end of the poly-T primer used for RT. However, such amplification is incremental and finite, with a typical duplication of 20–60 coples, and the amplified products it produces are antisense RNAs which are degradable (Philips at al., 1996; U.S. Pat. Nos. 5,972,607; 5,716,785). Wang at al. (U.S. Pat. No. 5,932,451) refined such methods to allow asymmetrical amplification of double stranded cDNA made from a mRNA sample. However, this amplification method is also limited in the number of copies typically made from a sample (only 68 fold duplication demonstrated).
Thus, prior art regarding gene expression arrays is deficient in methods and instruments to amplify a test sample effectively, to create and analyze arrays easily and reliably, and to provide less costly arrays that possess equivalent or improved analytic and diagnostic value. The present invention fulfills this long-standing need and desire in the art.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present relates to a method and a system of switching-over from a regular communication control processor (hereinafter abbreviated to "CCP") connected to a plurality of host computers to a backup CCP, and particularly relates to a method and a system of automatically switching-over from a regular CCP to a backup CCP in case of failure of the regular CCP.
A system having regular and backup CCPs connected to a plurality of host computers has been disclosed in HITAC manual "Program Product VOS3 Communication Management XNF, Introduction and Practical Use", 8090-3-172, 63-7 (1988), Hitachi, Ltd. One program is stored in both the regular and backup CCPs before a link state is established between the regular CCP and the respective host computers. In case of failure of the regular CCP in the system, all the communication lines connected to the regular CCP are manually switched over to the backup CCP through a line switch. Then, an operator command is issued from the respective host computers to release the link state established between the regular CCP and the respective host computers and establish a new link state between the backup CCP and the respective host computers to thereby perform switching-over for the regular CCP to the backup CCP (Prior Art 1).
On the other hand, a communication system in which dual-system CCPs are connected to each other through health check lines has been disclosed as "Load Distributed Communication Control Processor" in JP-A-6354846. In the system, one CCP monitors the state of the other CCP so that, in case of failure of one CCP, the communication line connected to the failure CCP is connected to the other CCP (Prior Art 2).
Now consider the case where the Prior Art 1 is applied to a communication system having a plurality of host computers operated on the basis of one program and separated into one master host computer and slave host computers, two CCPs of the same hardware construction separated into a regular CCP connected to the respective host computers to be operated on the basis of the program and a backup CCP, and a line switch for collectively switching lines between the two CCPs. In case of failure of the regular CCP, a long time is required for recovery from the failure because operator commands must be issued from all of the host computers connected to the new regular CCP which is changed from a backup CCP into a regular CCP (that is, human thought and operation must be used).
On the other hand, in the case where the Prior Art 2 is employed, health-check lines must be provided between the regular CCP and the backup CCP, so that wasteful physical resources are required. Further, it is necessary to newly provide a technique for informing the host computers that the CCP to be connected to the host computers should be a backup CCP.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The invention relates to a projector apparatus, and more particularly to a projector apparatus which separates white light into light components of the primary colors, modulates the separated light components, and then composes the modulated light components.
There are various conventional projector apparatuses for projecting images according to image signals. These projector apparatuses are classified into a system wherein white light from a light source is passed through a full-color light modulator followed by projection, and a system wherein white light from a light source is separated into light components or the three primary colors which are passed through respective light modulators and then composed, followed by projection. The invention belongs to the latter system.
Japanese Patent Laid-Open No. 171045/1998 discloses a projector apparatus which separates light using two dichroic mirrors and composes the separated light components using a cross-dichroic prism. Technique described in this publication will be explained as a first example of prior art.
FIG. 3 is a side view illustrating the structure of the first example of the conventional projector apparatus.
The projector apparatus shown in FIG. 3 comprises a light source optical system 600, a light separating optical system 700, a light guide optical system 720, a light composing optical system 780, an projection lens 770.
Light having random polarization components emitted from a light source 611 is reflected from a concave mirror 612 and then enters first and second integrators 620, 630.
The first and second integrators 620, 630 each comprise a number of minute rectangular lenses, which have been continuously arranged in a planar matrix form, and function to homogenize the illuminance distribution of the incident light and then to output the homogenized light.
The polarization light converter 640 arranges the light, output from the first and second integrator, in a specific linear polarization direction and outputs the arranged light. This light from the light source 611 is then passed through a focusing lens 650 and a reflecting mirror 660 and is applied to irradiation areas near light valves 750, 752 and a light guide lens 730.
A first dichroic mirror 710 reflects red light and green light components among the components of the incident light, and permits only a blue light component to be passed therethrough. The transmitted blue light component is passed through a reflecting mirror 718, a condenser lens 744, and a light valve 750 in that order, and then enters a cross-dichroic prism 760.
The second dichroic mirror 712 permits the transmission of only the red light component out of the red light and green light components as the incident light, and reflects only the green light component. The reflected green light component is passed through the condenser lens 742 and the light valve 752 in that order, and then enters the cross-dichroic prism 760.
On the other hand, the red light component passed through the second dichroic mirror 720 is passed through a light guide lens 730, a reflecting mirror 722, a light guide lens 734 a reflecting mirror 724, a condenser lens 744, and a light valve 754 in that order, and then enters the cross-dichroic prism 760.
The red light, green light, and blue light components input into the cross-dichroic prism 760 are composed to form a full-color image which is then projected in an enlarged manner onto a projection screen 800 through a projection lens 770.
Thus, the projector apparatus as the first example of the prior art has a structure such that light components of the three primary colors are introduced into the second cross-dichroic prism 760 from three sides around the second cross dichroic prism 760 to compose the introduced light components.
Japanese Patent Laid-Open No. 158167/1993 discloses a projector apparatus which separates light using a cross-dichroic mirror and composes the separated light components using another cross-dichroic mirror. The technique described in this publication will be explained as a second example of prior art.
FIG. 4 is a perspective view illustrating the structure of the second example of the conventional projector apparatus.
The projector apparatus shown in FIG. 4 comprises a light source 911, a concave mirror 933, a first cross-dichroic mirror 931, reflecting mirrors 934, 935, 937, 938, 940, 941, liquid crystal panels 936, 939, 942, a second cross-dichroic mirror 932, and a projection lens 943.
Light having random polarization components emitted from the light source 911 is reflected from the concave mirror 933 and then enters the first cross-dichroic mirror 931.
The first cross-dichroic mirror 931 comprises a combination of a red transmission cross-dichroic mirror and a blue transmission cross-dichroic mirror which each are disposed on the optical axis 911x of the light source 911 so as to be inclined at 45 degrees to the optical axis 911x and to be orthogonal to each other and functions to separate white light from the light source 911 into light components of the three primary colors, red light, green light, and blue light components.
A pair of reflecting mirrors 934 and 935, a pair of reflecting mirrors 937 and 938, and a pair of reflecting mirrors 940 and 941 are disposed respectively on the optical paths of green light, red light, and blue light components to bend each of the optical paths to form a xe2x80x9c⊃xe2x80x9d shape.
The second cross-dichroic mirror 932 comprises a combination of a red reflection dichroic mirror and a blue reflection dichroic mirror which each are disposed so as to be inclined at 45 degrees to the output optical axis and to be disposed orthogonal to each other. The second cross-dichroic mirror 932 is disposed just under and adjacent to the first cross-dichroic mirror 931, and composes the green light, red light, and blue light components reflected by the reflecting mirrors 935, 938, 941 to form a full-color light which is then output.
The full-color light composed by the second cross-dichroic mirror 932 is projected as a projection image by the projection lens 943 onto the projection screen 944.
Thus, in the projector apparatus according to the second example of the prior art, the adoption of a structure, wherein the first and second cross-dichroic mirrors 931, 932 are put on top of the other respectively as upper and lower cross-dichroic mirrors so as to be adjacent to each other, has eliminated the need to provide the light guide optical system 720 in the projector apparatus according to the first example of the prior art.
The projector apparatuses according to the above examples of the prior art, however, had the following problems.
In the projector apparatus according to the first example or the prior art, the light components of the three primary colors should be introduced from the three sides around the second cross-dichroic prism 760. Therefore, the provision of the light guide optical system 720 is indispensable for the structure.
Since, however, the optical path length of the red light component passed through the light guide optical system 720 is different from the optical path lengths of the green light and blue light components not passed through the light guide optical system 720, the illuminance distribution on a light valve 733 on the optical path of the red light component is unfavorably different from the illuminance distributions on light valves 731, 732 on the light paths of the green light and blue light components. Consequently, when white is displayed on the whole projection screen, a problem of color shading occurs, that is, there is a difference in color between the center portion of the projected image on the projection screen 800 and the periphery of the projected image.
Likewise, since the quantity of the red light component incident to the projection lens 770 is different from the quantity of the green light and blue light components, when white is displayed on the whole projection screen 800, a problem of color shading occurs in the projected image on the projection screen 800.
Unlike the first example of the prior art, the projector apparatus as the second example of the prior art does not have the light guide optical system 720 and thus does not pose the above problem. Instead, however, since the structure, wherein the first and second cross-dichroic mirror 931, 932 are vertically put on top of the other, is indispensable for the projector apparatus as the second example of the prior art, a light source having a large volume should be disposed adjacent to these cross-dichroic mirrors. This poses a problem of an increased height of the projector apparatus.
Further, since the projector apparatus as the second example of the prior art does not have any optical device for homogenizing the illuminance distribution, such as integrators, in the light source section, the illuminance distribution of the projection screen 944 is heterogeneous, that is, such that the center portion is bright while the peripheral portion is dark.
Accordingly, it is an object of the invention to provide a projector apparatus which is small and thin and can produce projected images having high illuminance and having no significant color shading.
The above object can be attained by the following features.
According to the first feature of the invention, a projector apparatus comprises:
a light modulation optical system (1 in FIG. 2) which separates white light into a plurality of light components with respective wavelength bands, controls the intensity of each of said plurality of light components, and then composes the controlled plurality of light components;
a projection lens (460) for projecting the light composed in the light modulation optical system (1);
a light source optical system (100) for permitting the white light to exit therefrom, the light source optical system (100) being disposed so that the optical axis (10x) of the light source optical system (100) is displaced relative to the optical axis (200x) of the light modulation optical system (1); and
a focusing lens (150) which is disposed so that the optical axis (150x) of the focusing lens is coincident with the optical axis (200x) of the light modulation optical system (1), for focusing the light output from the light source optical system (100) and inputting the focused light into the light modulation optical system (1).
According to the second feature of the invention, a projector apparatus comprises;
a light separating optical system (200 in FIG. 2) which separates white light into a plurality of light components with respective wavelength bands;
a light guide optical system (250) for bending the optical paths of said plurality of light components, which have been output from the light separating optical system (200), so as to form a xe2x80x9c⊃xe2x80x9d shape;
a light composing optical system (400) which is disposed adjacent to the light separation optical system (200) and composes the plurality of light components output from the light guide optical system (250);
light modulators (431 to 433) which are disposed respectively on optical paths between the light separating optical system (200) and the light composing optical system (400) to control the intensity of the plurality of light components;
a projection lens (460) for projecting the light composed in the light composing optical system (400);
a light source optical system (100) for permitting the white light, which has been polarized in a specific polarization direction, to exit therefrom, the light source optical system being disposed so that the optical axis (100x) of the light source optical system (100) is displaced relative to the optical axis (200x) of the light separating optical system (200); and
a focusing lens (150) which is disposed so that the optical axis (150x) of the focusing lens is coincident with the optical axis (200x) of the light separating optical system (200), for focusing the light output from the light source optical system (100) and inputting the focused light into the light separating optical system (200). Preferably, the projector apparatus may further comprise: a first relay lens (510) disposed between the focusing lens (150) and the light separating optical system (200); and a second relay lens (521 to 523) disposed between the light separating optical system (200) and the light modulators (431 to 433).
Thus, according to the projector apparatus of the invention, the light guide optical system is provided on all the optical paths of the three primary colors so that, for all the three primary colors, the optical path length and the structure of the optical systems on the optical paths are identical Therefore, the occurrence of color shading can be prevented even at the time of the display of white on the whole projection screen.
The provision of the relay optical system can enhance the efficiency for light utilization, and thus can enhance the illuminance of projected images as compared with the projector apparatus according to the first example of the prior art.
The vertical displacement of the optical axis of the light source optical system relative to the optical axis of the light separating optical system enables the height of the projector apparatus to be reduced to the sum of the height of the light separating optical system and the height of the light composing optical system, and thus can significantly reduce the thickness of the projector apparatus as compared with the projector apparatus according to the second example of the prior art.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
This invention relates to a liquid containing pouch in a carton having a pouring spout with opening means connected thereto. The improved liquid pouch with pouring spout includes provisions for valve means to prevent entrance of air into the pouch after the pouch is opened.
Containers which include a flexible liquid containing pouch with a dispensing structure associated therewith or formed therein are generally old. Such pouches are normally attached to the container or carton for support. Examples of such prior constructions will be found in my prior U.S. Pat. Nos. 3,938,707; 3,995,773; 4,076,147; and in my pending U.S. appln. Ser. No. 817,816, filed July 21, 1977, now U.S. Pat. No. 4,165,023, and entitled STACKABLE CARTON.
Such prior structures have employed arrangements in which the dispensing structure is formed integral with the flexible pouch upon manufacture and the opening through the dispensing structure is made at the time of assembly of the dispensing structure on the pouch material. These structures are designed to counteract the problems of permeation of gas through the packaging which may be detrimental to the material or fluid packaged therein. However, certain fluids, such as wines or other alcoholic beverages, are also susceptible to contamination once the pouch is opened through the passage of air into the pouch as fluids are dispensed. Thus, the pouches with liquid therein do not collapse as fluids are dispensed due to the entrance of air therein and the presence of air in contact with the liquid in the pouch after reclosure has a deleterious effect on the liquid.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to bone implants and methods for implanting them. More specifically, the invention relates to a threaded, flexible implant and method for threading a curved hole.
2. Description of the Related Art
Various methods and apparatuses have been developed for joining bone fragments of a fractured bone. One such method is utilized in a fractured femoral neck. This method includes the use of a side plate/hip screw combination, i.e., a bone plate affixed to a lateral aspect of the femur and having a lag screw operably connected thereto, with the lag screw extending into the femoral head. Another method used to treat a fractured femoral neck utilizes an intramedullary rod to support a lag screw, rather than a side plate. Various other bone fixation and anchoring methods and devices are known, including various fixation pins or screws which can be implanted in the various bones of the body.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The invention relates to alkoxy-crosslinking one-component sealant materials based on alkoxyorganosilane-terminated polymers having an outstanding shelf-life and outstanding curing characteristics.
2. Description of the Related Art
Organic polymers having terminal silane groups in the form of one-component materials curing with atmospheric humidity (RTV-1) are known and are widely used for the preparation of flexible sealants and adhesives. Such polymers may be composed of different building blocks. Usually, these are polyurethanes, polyethers, polyesters, polyacrylates, polyvinyl esters, ethylene/olefin copolymers, styrene/butadiene copolymers or polyolefins. It is known that, for stabilization during the processing and storage of the compounds, low molecular weight compounds which have hydrolyzable groups which have a higher reactivity to water than the silane-terminated polymers are added to these one-component materials. The amount of added water scavengers depends on the water content of the components of the formulation and on the desired shelf-lives and processing times. In general, these are organofunctional silanes, the organic radical often being critical for the reactivity. Examples of such silanes are vinyltrimethoxysilane and alkylaminopropyltrimethoxysilanes, but also, for example, silanes which bind water with the formation of ammonia, such as hexamethyldisilazane.
In general, substituted propyltrimethoxysilanes are used for the termination since they are as a rule economically available and have very good reactivity in the materials. However, owing to the high reactivity, the polymers are also problematic with regard to processing, for example in the incorporation of water-containing fillers or additives which increase the reactivity further; moreover, the shelf-lives are often insufficient.
For example, the addition of relatively large amounts of aminosilanes as adhesion promoters can greatly reduce the shelf-life. The materials generally have to be stabilized by means of further added components, such as, for example, the phosphoric esters described in DE-A-19923300, in order to moderate the catalyst activity. Furthermore, the addition of standard water scavengers, such as vinyltrimethoxysilane, is suitable only to a limited extent for stabilizing the materials.
Analogously to the organic polymers already described above, polydiorganosiloxanes having high reactivities are also known. U.S. Pat. No. 5,254,657 describes moisture-curing silicone-based materials in which the crosslinkable silane units are prepared analogously to the organic polymers via the reaction of an aminosilicone with an isocyanatoalkylalkoxysilane. These too have a problematic shelf-life owing to the high reactivity of the terminal silane groups.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
It is well known that shoes and feet come in a variety of sizes and shapes. Consequently, in order to provide a particular consumer with a pair of shoes, a shoe retailer must determine that particular consumer's shoe size. If the consumer is unaware of his or her shoe size, the shoe retailer typically measures the consumer's feet to determine the appropriate shoe size. One of the most commonly used devices for measuring feet for fitting shoes is the Branach device. This manual device includes two levers slidably mounted upon a labeled platform for determining the length and width of a particular foot. Since shoes have traditionally been available in men, women, and children sizes, three different types of Branach devices, corresponding to each of these sizing schemes, have been utilized by shoe retailers. The manual nature of the Branach device, as well as the need for using three different devices for men, women, and children, suggest the need for a system which automatically measures all types of feet for fitting shoes.
Various types of automatic feet measuring devices have been developed in the past. Many of these devices utilize complex mechanical moving components which are subject to ordinary shortcomings of moving mechanical parts. Other devices include one or more light sources located to shine light onto the top or bottom of a foot to cast planar outlines of the foot onto light sensitive sensors which are monitored to produce foot length and width measurements. Although length and width measurements are useful and relatively easily obtained from such systems, additional desirable measurements which are difficult or impossible to obtain from such prior systems include, among others, foot height, foot volume, foot shape, and force distribution throughout the foot.
There is a need, therefore, in the industry for a method and an apparatus for measuring feet for fitting shoes which address these and other related and unrelated, problems.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The invention relates to a portable electronic device and, more particularly, to form factor configuration of a portable electronic device.
2. Brief Description of Prior Developments
Ultra thin telephone products have emerged in the market, pioneering a new approach in mechanical architecture for flip-phone designs (also known a clam-shell handset). Priority for these products is mechanical thinness, allowing the feature set and industrial design to be adjusted to suit this goal. New flip-phones include the Motorola RAZR, the Motorola V3, the Motorola V3x, the Samsung SCH-V740, the NEC L1. For example, the Motorola RAZR has a thickness of about 0.54 inch. Candy-bar shaped mobile phones can have smaller thicknesses, such as the Motorola SLIVR with a thickness of about 0.45 inch and the Motorola SCALPEL with a thickness of about 0.25 inch.
There is a desire for an architecture for an ultrathin fold product, such as a flip-phone style of mobile telephone, which can maintain aesthetic balance in proportions, and allow added thickness to avoid a “squeezed” appearance as seen with the RAZR™ mobile telephone.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Mass transit systems serve the public interest in alleviating vehicle overcrowding of streets. Unfortunately, it seems that many commuters would simply rather drive a private car than commute to and from work via mass transit. This is due at least in part to the fact that an individual in a private car remains "in touch" with the outside world through news and information heard over the radio, while a mass transit commuter is relatively isolated. To the extent that mass transit systems can be adapted to provide advantages over commuting by private car, or alleviate presently perceived disadvantages of mass transit commuting, these systems will attract more riders and alleviate overcrowding on public roadways, an overcrowding situation which worsens with increasing population and number of vehicles.
Cellular telephone systems enable motorists to converse by telephone with other motorists or with someone located at a land line telephone. Basically, a cellular telephone network includes a geographical area divided into a number of cells, with each cell having a transmitting and receiving station connected to the land line telephone system. As a motorist with a cellular telephone traverses the geographical area, the cellular telephone within the vehicle communicates with the telephone system via radio signals to the station located in the nearest cell, or to the station located in the cell which provides the strongest signal. As the vehicle exits one cell and enters another, the stations of the adjacently located cells "hand off" the communication in order to ensure that the strongest signals are received and transmitted. Hand off also occurs when one cell senses an overload condition due to a high number of users and transfers one or more of the users to an adjacent cell. In other words, a communication link with a cellular telephone may be handed off even though the telephone itself remains stationary. Occasionally, hand off causes some signals to be lost, resulting in missing syllables in a conversation and necessitating repetition of a word or phrase by the speaker. An article entitled "Advance Mobile Phone Service System Description," published on Oct. 12, 1982, describes a cellular telephone system developed by Bell Telephone Laboratories. This article is expressly incorporated herein by reference in its entirety.
Due to increasing popularity, cellular telephone systems have been adapted to a variety of new uses. For instance, Champion, III et al. U.S. Pat. No. 4,812,843 describes an information system in which a subscriber located in a private car may obtain access to information of interest via a cellular telephone. Unfortunately, this system is only available to individual subscribers, and would not be practical for public use on a mass transit vehicle such as a bus, due in part to the fact that the average commute on such a vehicle is only about 15 minutes duration and most passengers would simply not have enough time or room to move freely to a public telephone mounted onboard. Moreover, the ambient noise level on a commuter vehicle such as a bus is generally too high to permit a coherent telephone conversation between a passenger using a cellular telephone and an individual located at a remote telephone.
Vaello U.S. Pat. No. 4,797,914 discloses a conventional pay telephone equipped with a telephone display that can be programmed from a remote site in order to display messages in a time dependent mode to the user of the telephone booth, or at another display mounted nearby. The system utilizes only land line telephone connections, and therefore it does not address any of the problems that are inherent to cellular telephone systems, such as hand off, which would be critical to error-free transmission of messages via the cellular network.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
In the past few decades, water-based amusement rides have become increasingly popular. Such rides can provide similar thrills to roller-coaster rides, with the additional features of the cooling effect of water and the excitement of being splashed.
The most common water-based amusement rides are flume-style waterslides in which a participant slides along a channel or “flume”, either on his or her body, or on or in a vehicle. Water is provided in the flume to provide lubrication between the body/vehicle and the flume surface, and to provide the above-mentioned cooling and splashing effects. Typically, the motion of the participant in the flume is controlled predominantly by the contours of the flume (hills, valleys, turns, drops, etc.) in combination with gravity.
As thrill expectations of participants have increased, demand for greater control of participants' movement in the flume has correspondingly increased. Thus various techniques have been applied to accelerate or decelerate participants by means other than gravity. For example, a participant may be accelerated or decelerated using powerful water jets. Other rides use a conveyor belt to convey a participant to the top of a hill the participant would not otherwise crest on the basis of his or her momentum alone. For safety reasons, such techniques are generally used only on waterslides where the participant slides along the flume in a vehicle.
However, such existing means of controlling the movement of a participant can raise safety and comfort concerns even when he or she is riding in a vehicle. For example, a water jet powerful enough to affect the motion of a waterslide vehicle could injure the participant if he or she is hit in the face or back of the head by the jet, as might be the case if the participant falls out of the vehicle. Similarly, a participant extending a limb out of a vehicle could be injured by a fast-moving conveyor belt.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to image analysis and pattern recognition with a mirror.
A study from AOL and the Today show found that women spend an average of 55 minutes in front of the mirror every day, whereas men spend 39 minutes every day. The mirror is thus an integral part of life that has not yet joined the digital age.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
This invention relates to a device for positioning and securing plate-shaped tools on a supporting and heating plate, intended for cutting of portions of metallic films and their hot-pressure transfer onto a paper or cardboard substrate, this device comprising means for securing said tools on said supporting and heating plate.
Relatively thick plates known as honeycomb plates in which are bored a plurality of evenly distributed rows of holes are already in use. These plates are adapted to receive a defined number of tools, constituting a type of printing plate, positioned and secured on the supporting plate. Such a supporting plate, thus provided with printing plates, is mounted in a machine that is fed with cardboard or paper blanks on the one hand and with metallic film webs on the other hand, for the cutting of metallic film portions and their hot transfer onto the cardboard blanks by the tools positioned on the supporting plate. Such mechanisms are, for example, used for printing onto packages. Usually the transfer or deposit of metallic films follows the operation of printing on the cardboard blanks. Thus, it is important that the printing plates be positioned accurately so that the transfer or deposit of the metallic films registers exactly with the imprints made by the printing operation.
One of the difficulties encountered in this process is that the transfer and the printing of these metallic film portions are performed in the hot state. Due to this fact, it is necessary to accurately adjust the position of the printing plates with respect to the operating temperature, taking into account the expansion of the supporting and heating plate from the ambient temperature to the operating temperature and the corresponding change of the respective positions of the printing plates on the supporting and heating plate.
Because of the cost of such a supporting and heating plate, in which the holes are highly accurate borings, it would be too expensive to use it to print only one packaging pattern. Consequently, only one supporting and heating plate is generally used for each machine. When changing the printing job it is, thus, necessary to remove the printing plates from the supporting plate and to position other printing plates corresponding to the next job. Since the printing plates operate in the hot state, this positioning must be performed on a plate having a temperature that corresponds to the operating temperature. Consequently, these requirements make the positioning operation difficult and exceedingly long. This operation typically takes a working day for each job change on a supporting and heating plate. Obviously, the cost of this operation impacts more heavily the cost of the printed workpieces in the case of relatively small printing jobs. Moreover, since the function of the supporting plate is not only to position the tools but also to heat them by contact, the use of a perforated plate substantially diminishes the contact surface at which the heating exchange takes place, and, thus reduces the efficiency of heating the tools.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Combines are large self-propelled vehicles used for harvesting and threshing agricultural crop in the field. A harvesting head is typically disposed across the front of the combine vehicle supported on a feederhouse. This harvesting head is configured to cut and convey the crop into the combine vehicle itself where it is threshed, separated, and cleaned.
Traditional harvesting heads included an elongate rigid frame to which harvesting implements are added such as cutter bars, augers, reels, and endless belt conveyors. More recently, the once rigid frame has been replaced by multiple frame sections that are coupled together to pivot with respect to each other.
A typical arrangement has a center frame and left and right wing frames that are coupled to the center frame to pivot with respect to the center frame. This arrangement requires that the other elements in the harvesting head also be pivotable with respect to each other. This multiple pivoting frame arrangement permits wider harvesting heads to more accurately follow the contours of the ground as they are harvesting and therefore to cut more crop.
One problem with larger harvesting heads with pivoting frames is their susceptibility to damage. The newer draper frames are longer than traditional frames. They are made lighter per unit length in order to limit their weight. As a result, if they hit obstructions in the field, they are more prone to damage, particularly at the pivot joints where the impact forces are highly concentrated.
This multiple frame arrangement is employed in harvesting heads that use endless belt conveyors to convey material. Such harvesting heads are commonly called “draper platforms”. As the frame sections pivot with respect to each other the conveyor belts can change their tension or alignment and be damaged. The conveyor belts can also rub against other components.
Many devices exist to prevent damage to agricultural equipment driven through agricultural fields planting, harvesting or cultivating crops.
GB 2264619 shows a breakaway shank for a spade mounted on a rectangular toolbar. The upper end of the shank clamps to the toolbar. When an overload condition exists, a bolt breaks due to excessive tensile load and the clamp halves spread apart. This permits the spade to rotate rearwardly, away from the ground around the longitudinally extending toolbar. The spade rotates about a horizontal and laterally extending axis and may even fall off the rectangular toolbar. The toolbar does not breakaway. Instead, individual implements (the spade) mounted on the toolbar break away.
U.S. Pat. No. 5,957,216 shows an arrangement for a lightweight marker boom. It has a resettable breakaway coupling for a laterally extending boom that supports a disc marker for disc marking the field. The boom has a spring loaded detent that permits the boom, when hit with an obstruction, to pivot rearward about a generally vertical axis. The implement-carrying toolbar itself is not configured to break away, just the slender marker boom.
U.S. Pat. No. 4,829,957 shows another arrangement for a lightweight marker boom. It has a breakaway coupling for a lightweight boom supporting a row marker at the end of a planter.
In the above examples, the toolbar carrying the working implements does not break away. The implements do, or the lightweight marker boom does.
U.S. Pat. No. 6,675,668 shows a frame for a multi-section draper platform having three frame sections (five in FIG. 12). It requires an array of linkages and load-balancing elements that extend across the three sections. Pivot pins couple the wing frames to the center frame sections. No means for breaking the toolbar or frame of the draper platform is provided.
DE 102006022480 shows a forage harvester having a header with a center frame section, and with two wing frame sections that are foldable to a transport position. Unlike the above examples, the frame is hinged for transport. The hinge pin coupling the sections can be sheared under high loads permitting the wing frame sections to breakaway when the wings are in their extended operating position. When the hinge pin is sheared no means is described or illustrated to support the wing section and prevent it from falling on the ground and being dragged behind the vehicle.
None of the examples above solve the problem of a draper platform with an implement-carrying frame that can yield to impact, yet is strong enough to support the yielded draper section together with its many components.
This problem is solved by the arrangement described in claim 1. Further advantages are provided by additional claims dependent upon claim 1.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
A number of renewable energy sources exist that are adapted to use forces of nature to generate power. Examples of such sources include, but are not limited to offshore wind, ocean currents, and ocean waves. These sources, however, are intermittent and/or time-variable in nature. Since their productive time intervals are not generally correlated with the time intervals of load demand, these renewables are not well accepted by the power industry.
In order to be more useful, such intermittent, but otherwise sustainable power sources must be integrated with large, readily accessible means of systemic energy storage and subsequent power production. Existing, accepted energy storage means are generally terrestrial (pumped storage), that are not readily available to offshore renewable energy sources. Those that are, such as batteries, are excessively heavy, short lived and expensive, and may be dangerous to the environment.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to a light absorptive antireflector and a process for its production.
Heretofore, antireflection and shielding of electromagnetic waves for e.g. a screen portion of a display, have been accomplished by laminating a low refractive index dielectric film, a high refractive index dielectric film and a high refractive index conductive film which are substantially transparent to visible light, from a substrate side (JP-A-60-168102). However, with an antireflection film of such a multilayer structure, it has been necessary to increase the number of layers constituting the antireflection film in order to broaden the wavelength range for low reflection, and there has been a problem that the production cost increases accordingly.
Further, a double layer antireflection film having a light absorptive film and a silica film laminated from a substrate side (DE3942990) has been proposed as one wherein the film structure has been simplified to accomplish the above-mentioned antireflection and shielding of electromagnetic waves. However, even if this light absorptive antireflection film of double layer structure comprising a light absorptive film such as a titanium nitride layer, and a silica film, was employed, the wavelength range for low reflection, of the obtainable light absorptive antireflector, was narrow, and the antireflection characteristics were inadequate.
It is an object of the present invention to provide a light absorptive antireflector which exhibits adequate antireflection characteristics with a simple layer structure, and a process for its production.
Another object of the present invention is to provide a light absorptive antireflector excellent in heat resistance with a simple layer structure, and a process for its production.
The present invention provides a light absorptive antireflector which comprises a substrate, and a titanium oxy-nitride film having a geometrical film thickness of from 5 to 25 nm and a film composed mainly of silica and having a geometrical film thickness of from 70 to 130 nm formed in this order on the substrate, to reduce reflection of incident light from the side of the film composed mainly of silica, wherein the ratio in the number of atoms of oxygen to titanium in said titanium oxy-nitride is from 0.11 to 0.33 (hereinafter referred to as the first invention).
Further, the present invention provides a light absorptive antireflector which comprises a substrate, and a titanium oxy-nitride film having a geometrical film thickness of from 15 to 30 nm, a dielectric film having a geometrical film thickness of from 10 to 30 nm and a refractive index of at least 1.7 and being substantially transparent to visible light, and a film composed mainly of silica and having a geometrical film thickness of from 50 to 90 nm formed in this order on the substrate, to reduce reflection of incident light from the side of the film composed mainly of silica, wherein the ratio in the number of atoms of oxygen to titanium in said titanium oxy-nitride is from 0.11 to 0.33 (hereinafter referred to as the second invention).
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
When seated for extended periods of time, such as occurs when riding or driving long distances, or operating heavy equipment such as a bulldozer or tractor, the posterior area is subjected to prolonged compression which often results in general discomfort, numbness and even pain. The discomfort and pain is often exacerbated by the constant vibration and repetitive bouncing which often accompanies long distance travel and operation of heavy equipment.
It is a common practice for persons suffering such effects to stop traveling or working and get out of the vehicle or equipment in order to stand, stretch and/or walk. While effective for relieving the discomfort, numbness and/or pain, such relief is only temporary and repetitive stops are undesired and unpractical.
U.S. Pat. Nos. 4,175,297, 5,103,518, 5,109,560, 5,500,965, 5,839,140, 5, 963,997, 6,014,784, 6,216,299 and 6,668,405 disclose wheelchair cushion systems wherein the cushion includes an array of inflatable cells including first and second interconnected groupings of cells interspersed throughout the array which are alternately inflated and deflated on a predetermined schedule in order to vary the location of contact between the cushion and the posterior of a person seated on the cushion. Inflation and deflation of the cell groups are linked so that inflation of one group of cells automatically causes deflation of the other group of cells.
While effective for reducing the development of discomfort, numbness and pain when seated for extended periods, such cushions are expensive, noisy and not well suited for use in environments with limited room, such as the driver's side area of an automobile or a motorcycle. Hence, a continuing need exists for a low-cost, quiet, compact inflatable cushion capable of reducing or eliminating the discomfort, numbness and pain which can accompany prolonged seating.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. The Field of the Invention
This invention relates to a method and system for transmitting high frequency communication signals over a preexisting building power line network. More particularly, the present invention relates to a method and system for using anti-resonance isolation and virtual earth ground signaling to transmit communication signals over wires of a power line network.
2. The Relevant Technology
The ability to freely access data on a network and to transfer information between electrical apparatus can dramatically increase productivity and efficiency. Networking is beneficial for businesses, as well as for residential uses. Transfer of data over a network is typically accomplished with a telephone line or cable. Accordingly, many buildings are wired for local access network (LAN) connectivity. Some buildings, however, particularly older residential, business, and military buildings, are not appropriately wired for LAN. These buildings must either be rewired, or an alternative means for networking must be used. Because the costs of rewiring a building can be prohibitive, it is desirable to provide an efficient means of networking over preexisting building wires. One such means includes the transfer of communication signals over preexisting power transmission lines.
The use of power transmission lines as a communication network is well known in the art. Early inventors contemplated sending communication signals directly over the load carrying conductors of the power line. There are problems, however, associated with transmitting communication signals over load carrying conductors (wires). Perhaps the most significant problem, is xe2x80x98noise,xe2x80x99 which is resident in all power line networks.
Noise is generated in the load carrying conductors by the high voltage alternating power, the discontinuities in impedances caused by various branch circuits, transients and impedance changes produced by power load switching, and isolation of the power line network into separate circuits. Noise makes it difficult to transmit high frequency signals over long distances due to line losses, radiation, and impedance mismatches.
Noise also interferes with the transmission of communication signals by limiting the capacity of the network to transmit reliable communication signals. The constraining effect of noise on data transmission is defined by the Hartley-Shannon Law, in which C=B*log2(1+P/N)bits/s. In this equation, C establishes the upper limit for the rate of reliable information that can be transmitted over the conductor, B is the bandwidth, P is the average power of the transmitted signal, and N is the average power of the noise component. Accordingly, as the noise in the conductor increases, the capacity of the conductor to transmit reliable data decreases.
Various approaches have been proposed to overcome the constraints of noise and to enable reliable transmission of communication signals over power line networks. For example, in one approach, which is disclosed in U.S. Pat. No. 4,697,166, issued to Warnagiris et al., selective filters are used to separate power signals and communication signals at the transmitting and receiving ports of a communication system on a power line network. In another approach, which is disclosed in U.S. Pat. No. 4,864,589, issued to Endo, different transmission frequencies (frequency hopping) and xe2x80x9cspread spectrumxe2x80x9d systems are utilized to transmit communication signals over a power line network. In yet another approach, as disclosed in U.S. Pat. No. 5,982,276, issued to Stewart, electromagnetic signals are transmitted through magnetic modulation of the magnetic flux surrounding the load carrying wires. These various approaches disclose various means of transmitting communication signals over the main current carrying conductors of a power line network. They do not, however, directly address or overcome the underlying problems associated with noise, namely, limited bandwidth and slow transfer rates. Rather they simply enable the transmission of communication signals over the resident noise.
To effectively overcome slow transfer rates and limited bandwidth of noisy channels, communication signals may be transmitted over conductors with less noise, such as between the earth ground and the power line neutral, instead of using the xe2x80x9chotxe2x80x9d power line, as disclosed in the prior art. By transferring communication signals between the earth ground and the power line neutral, the effects of noise are minimized because these conductors have less noise. One problem with this approach, however, is that to transmit signals between the building ground and neutral power lines, it is necessary that the two conductors be electrically isolated, which they are not.
In the prior art, as disclosed in U.S. Pat. No. 3,702,460, issued to Blose, adequate isolation between the building ground and neutral lines is accomplished by placing a transformer winding between the two conductors at the transmitting end and at the receiving end of the power line network. Although this resolves many of the problems associated with noise when using the current carrying wires of the power line network, this method is not appropriate for buildings that are wired to current electrical codes. In present residential and commercial buildings, for example, the uniform electrical code requires that the building ground, earth ground and the power line neutral be conductively tied into a common heavy bus or xe2x80x9ctiexe2x80x9d at the service panel. This xe2x80x9ctiexe2x80x9d is commonly referred to as a ground bar.
In U.S. Pat. No. 4,433,326, issued to Howell, an alternative method of isolating the building ground from the neutral line is proposed, which involves replacing the xe2x80x9ctiexe2x80x9d at the service panel with an inductor or transformer. This modification is intended to isolate the ground and neutral lines at high frequencies for transmitting communication signals while at the same time enabling a tie between the conductors at lower power line frequencies, so as to satisfy the safety codes. This, however, requires modification to the building wiring at the service panel and generally requires the services of a licensed electrician and the use of a special approved inductor, which can be costly. This prior art also does not resolve problems of parasitic capacitive coupling between the neutral and building ground wires.
Furthermore, by replacing the xe2x80x9ctiexe2x80x9d with an inductor or transformer, the problems associated with having to rewire a building to enable network connectivity are not resolved. In particular, costly professional rewiring of the power line network is still required. Accordingly, it would be desirable to provide a method and system for networking over preexisting power lines without requiring any electrical modifications to the preexisting power lines or service panel.
In accordance with the invention as embodied and broadly described herein, a system and method for sending and receiving high-frequency signals over a previously installed building power line network is provided. A suitable environment for practicing the present invention is a previously installed building power line network that includes an electrical service panel, a building ground line, a hot line, and a neutral/earth ground line. The service panel connects a utility phase I power line, a utility neutral power line, and a utility 115V phase II power line to preexisting building wires that include the hot line, the neutral/earth ground line and the building ground line. To comply with electrical safety standards, the service panel also includes a ground bar that provides a common conductive xe2x80x98tiexe2x80x99 for various ground and neutral wires, including an earth ground wire that connects the ground bar to the physical ground (earth).
The building wires are insulated and routed through cabling to various power outlets throughout the building. The power outlets include at least one set of three electrical contacts that are correspondingly connected to the hot, neutral and ground power lines. Each of the electrical contacts is configured to receive and electrically couple with a corresponding prong of a standard three-prong house electrical plug.
The power line communication system comprises a transmitter and a receiver. The transmitter includes a high-frequency transmitter, and at least two tuning elements, or devices. As used herein, the terms xe2x80x9ctuning elementsxe2x80x9d and xe2x80x9ctuning devicesxe2x80x9d are interchangeable. One tuning element is connected between a xe2x80x9chotxe2x80x9d wire and a neutral wire of the transmitter and the other tuning element is connected between the neutral wire and a ground wire of the transmitter. The two tuning elements and the high-frequency transmitter are all encased within a transmitter chassis.
Two additional tuning elements are also connected to the transmitter. One of the additional tuning elements is connected between the building ground line and the chassis of the transmitter. The other additional tuning element is connected between the neutral line and the chassis of the transmitter.
The receiver includes a high-frequency receiver enclosed in a chassis along with two tuning elements. Two additional tuning elements are also connected to the receiver. One of the additional tuning elements is connected between the building ground and the chassis of the receiver. The other is connected between the neutral line and the chassis of the receiver.
The receiver and the transmitter are electrically coupled with the hot, building ground, and neutral wires, of the power line network, at remote outlet receptacles with conventional three-prong house electrical plugs. The receiver and transmitter may be located on different circuits of the power line network and may even be connected to different phases of the xe2x80x9chotxe2x80x9d power. The transmitter and receiver can be located on any outlet or circuit, of the power line network, so long as they share a common service panel and ground xe2x80x9ctie.xe2x80x9d
The positions of the transmitter and the receiver on the power lines may be reversed to allow the possibility of using switches or analog multiplexing circuits to reverse the transmit and receive functions of the transmitter and receiver, and to achieve half or full duplex communication, depending upon the type of multiplexing circuits used.
The tuning elements comprise one-port networks that include electronic circuitry for performing desired tuning. The electronic circuitry may include passive capacitors, inductors, and/or resistors, arranged to provide the desired tuning function for each of the tuning elements. The desired tuning may also be implemented with active filter components, which may employ operational amplifiers, gyrators or other active devices along with passive components.
The high-frequency transmitter generates a sinusoidal carrier signal that is modulated in accordance with an input signal. The type of modulation used may include amplitude modulation, frequency modulation, frequency shift keying, phase modulation, quadrature amplitude modulation or any other method of modulating a carrier signal to encode either analog or digital signals on the carrier. The carrier signal is impressed between the neutral and building ground wires at the power outlet where the high-frequency transmitter is installed. Even though the building ground and neutral wires are conductively tied to a common ground bar at the service panel, they will not appear as a short circuit to the high-frequency transmitter, at the power outlet, because the inductance of the electrical wires as well as the wire-to-wire capacitance is significant at high-frequencies and effectively isolates the conductors at high-frequencies. Depending on the particular tuning elements chosen for the transmitter and the receiver, the building ground and neutral wire may exhibit a transmission line effect or an antenna effect when the carrier signal is impressed between them.
The carrier signal is chosen to be at a frequency that creates a parallel resonance (anti-resonance) between the building ground and earth ground/neutral lines. This electrically isolates the building ground from the neutral line. The tuning elements, that were previously identified, further isolate the building ground from the neutral line. This anti-resonant isolation effectively provides a means for transmitting communication signals over low noise power conductors, without requiring transformer windings or other modifying hardware to isolate the earth ground line and the building ground line.
In the foregoing manner, the power line network of an existing building can be used to send and receive high-frequency signals without modifying the power line network. This feature is a significant improvement over conventional techniques that require an existing power line network to be modified or physically retrofitted to be used to transmit network data in the building. Moreover, the methods of the invention overcome high voltage noise, frequency and bandwidth limitations, impedance mismatches, and other reliability problems associated with many conventional approaches to transmitting data over power line networks. In addition, the invention can be practiced in ways that comply with generally accepted building codes.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to a program processing device, and more particularly, to a control LSI optimal for use when testing the operation of built-in software (firmware).
In recent years, an evaluation chip is normally used when developing software. The evaluation chip includes a CPU of a target system and an interface circuit, which supports software debugging. The evaluation chip, which is mounted on a user board, is connected to an in-circuit emulator (ICE (a registered trademark)). The ICE provides a debug command to the CPU to perform software debugging. Japanese Laid-Open Patent Publication No. 11-282712 describes an example of a debug system that uses an evaluation chip.
In a semiconductor package device, such as a system on a chip (SOC) that lays out a plurality of peripheral circuits including a CPU to realize system level functioning, the bus for the CPU and control signals are concentrated in the chip. This structure decreases the debugging efficiency. More specifically, when developing software for the SOC, CPUs must separately be connected to an evaluation board to undergo debugging. Thereafter, the CPUs and a plurality of peripheral circuits are ultimately integrated in a single chip. This increases the developing cost, prolongs the designing time, and lengthens the turn around time (TAT).
Generally, the number of terminal pins that are used for debugging in an SOC is small to minimize the cost for conducting testing, such as software debugging. Thus, debugging cannot be performed efficiently.
When developing software in a prior art, a breakpoint is set in the source code for a program. The execution of the program is interrupted when reaching the breakpoint to perform debugging. However, the program memory must be rewritten to set the breakpoint. This makes debugging complicated.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
This invention relates generally to methods, systems and apparatus for managing digital communications systems. More specifically, this invention relates to identifying types of modems or other communication devices, such as by manufacturer, model number, and software version, used in a communication system such as an ADSL system.
2. Description of Related Art
Digital subscriber line (DSL) technologies provide potentially large bandwidth for digital communication over existing telephone subscriber lines (referred to as loops and/or the copper plant). Telephone subscriber lines can provide this bandwidth despite their original design for only voice-band analog communication. In particular, asymmetric DSL (ADSL) can adjust to the characteristics of the subscriber line by using a discrete multitone (DMT) line code that assigns a number of bits to each tone (or sub-carrier), which can be adjusted to channel conditions as determined during training and initialization of the modems (typically transceivers that function as both transmitters and receivers) at each end of the subscriber line.
In recent years, various DSL modems from a variety of manufacturers and vendors have been deployed to customers in a variety of DSL and other communication networks. While some customers are using the latest and/or popular types of modems, other customers may be using very old and/or less common types of modems. Very little effort is made to track the implementation, use and changes to modem type used by customers, meaning that operators and/or other parties have little information about what those customers are using on their respective networks. Generally, an “operator” is a telecom or other service provider who operates the network and provides the service itself. Standardized mechanisms within the existing deployed base of modems that supposedly allow the modems to identify their vendor ID, version ID, and serial number have not been implemented, or have been implemented incorrectly, and are thus ineffective for identification of modems.
Current techniques for acquiring such customer/modem type information are costly and generally ineffective. They may include making a special effort to contact customers directly to collect such information, which is time consuming, highly inefficient and very costly. Operators and others also may collect information whenever there is a “truck roll” (that is, a service call to the customer's premises for repair and/or maintenance work). However, operators and the like attempt to keep the number of truck rolls to a minimum and this is a very inefficient way to collect information about customers and the types of modems they are using.
Systems, methods and techniques that permit identification of modems, modem types and software version used by customers in communication systems such as DSL systems would represent a significant advancement in the art. In particular, identification of modem types using readily available data and/or other information in the communication system would represent a considerable advancement in the field of DSL service rates and associated ranges.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to a hair cosmetic composition.
In the invention, an oxidation hair dye, a hair bleach and a hair-dye-remover are generally called hair colors. The process of washing off with water (hot water) after applying a hair color during the treatment with the hair color is called “plain rinsing”, and the dry state after the treatment with the hair color is called “dry state”.
Each component content means “the amount of the component contained in the mixture of the agents” unless otherwise specifically noted.
Because a hair color contains an alkali agent and an oxidant such as hydrogen peroxide, the treatment with the hair color is conducted in an environment in which the texture of the hair is damaged. Thus, various components including an oily component are added to the hair color to prevent the deterioration of the texture of the hair.
However, many of the conventional hair colors do not always meet the needs of the market sufficiently in terms of the texture. For example, some hair colors provide excellent texture in the dry state, but the evaluation of the texture during plain rinsing in the treatment is not satisfactory.
JP-A 2008-074705 discloses a composition to be added to a hair treatment agent containing a fatty acid ester, an alcohol, a cationic surfactant, a nonionic surfactant and fat or oil and a hair treatment agent (a hair conditioner, a hair dye, a waving agent or a finishing agent) containing the composition to be added to a hair treatment agent. However, JP-A-2008-074705 does not disclose that a cationic polymer is added.
With the hair treatment agent according to JP-A-2008-074705, the hair is finished by rinsing and drying with a dryer after predetermined hair treatment. According to this document, various kinds of texture of the hair such as suppleness, gloss, softness, moistness, lack of tangles or friction and smoothness in the dry state after the treatment with the hair color have been evaluated, and all the items have been excellent. However, the texture of the hair during rinsing (during plain rinsing) in the treatment has not been evaluated.
Here, cationic polymers are known as components which adhere well to hair and which exhibit an excellent effect of improving the texture, and cationic polymers are generally used also in the technical field of hair colors. However, the “texture” referred to with respect to the conventional hair colors containing a cationic polymer is basically the texture in the dry state but does not mean the texture during plain rinsing.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
A wireless network adapter (WNA) may be used to facilitate communication between a computing device and a network, and may function as a station (STA), which may be, for example, a network access point. A WNA may be a dual connection device, for example a WNA that may include an implementation of dual access technology, e.g. Cliffside, and may connect to two networks from an individual access point, and may use, for example Time Division Multiplexing (TDM). A WNA implementing this, or similar, technology may enable a single WNA to behave as, for example two independent WNAs, and a functioning of each may be for a predetermined and static bandwidth. Each of these functional WNAs may communicate over a network using a standard communication protocol, e.g. Bluetooth or IEEE 802.11 protocols, each network may be connected by a different communication protocol. A WNA that may implement dual access technology may act as, for example, a STA on one network and an Access Point (AP) on another network, and may perform both functions virtually simultaneously by using fixed time slots from a allocation method, e.g. TDM. Multiple devices may connect to a WNA connected on either network, and there may be a plurality of bandwidth demands, each limited in available communication bandwidth by an allocated bandwidth from a WNA.
Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like reference numerals indicate corresponding, analogous or similar elements. It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The invention is concerned with holding sheets or batts of relatively soft material such as insulation against a plate of a relatively rigid material such as metal. More particularly the invention is concerned with a retainer for accomplishing such a holding operation and with a method of attaching insulation to a plate. Still more particularly, the invention is concerned with such a retainer and method as applied to a vehicle firewall plate or a cab wall plate.
2. Prior Art
Current practice in installing batts of insulation against firewalls and the like involves welding the head end of a multiple number of pins or nails at a predetermined location on the plate with the sharp end of the pins extending from one side of the plate. A batt of acoustic sound and heat absorbent insulation is then pushed over the points of the pins and thus held in place against the plate. Push on caps are generally forced over the sharp pins ends with the caps being of the self-locking variety. The push-on caps hold the insulation in place as well as to protect persons from injury by the sharp pin ends. Generally, the pins are prewelded to the plates and the plates are stored until needed for final assembly on to a vehicle or the like. Damage to the pins has sometimes been encountered when the plates are stacked or handled. Also, those people handling the plates must be very careful to avoid injury to themselves when handling them. Further, since the pins are generally prewelded to the plates, the plates have required extra room for storage and the like. Further yet, the welding operation takes a good deal of time and requires the talents of a trained welder. Another disadvantage of the current practice is that the configuration of the pins becomes an assembly (is fixed with respect to any particular plate) once the welding has been completed. Thus, separate plate assemblies must be prepared to accept insulation on different parts thereof.
The present invention eliminates completely the welding operation and allows stacking the plates in a very compact manner without any pin ends extending therefrom. Thus damage to the pin ends is eliminated. Further, the plates can if desired, have holes predrilled into them over substantially their entire area thus allowing their use for a number of applications or only specific preselected locations thus allowing easy and safe stacking and storing along with quick conversion to usable form by insertion of the insulation retainers of the invention in the holes. That is, in some applications one may make use of some of the holes in the plates to position studs therethrough while in other applications other of the holes in the plates will be utilized by positioning of studs therethrough. When final assembly of the plates is desired to provide studs with generally sharp ends thereon extending therethrough a unique blind-assembled rivet is used as the retainer for the insulation and a plurality of these rivets are assembled through any selected plurality of the holes in the plate dependent upon the size and shape of the insulation batt to be used on the particular plate. The insulation batt which is assembled to the plate may be relatively easily changed in thickness as by removing it and removing the blind-assembled rivets which were holding it in place without the necessity for breaking any welds and then new rivets can be inserted in some of the holes in the plate, which rivets have studs of a longer or shorter length than the original studs, and then insulation material which is either thicker or thinner than the original insulation material can be inserted over the new and different length studs. It is clear that any holes which are not utilized to attach the selected insulation will generally be closed off or covered by the remainder of the insulation blanket or batt.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
This invention relates to reflector antennas. More particularly, the invention relates to a cost efficient adjustable antenna mount with improved alignment stability.
2. Description of Related Art
Reflector antennas, for example terrestrial microwave reflector antennas, may be highly directional. To maximize electrical performance, the antenna mount of a reflector antenna may be finely adjustable for ease of obtaining a boresight alignment between antenna pairs forming an RF communications link. The antenna mount should maintain the selected alignment despite exposure over time to wind and/or ice loads acting upon the reflector antenna that, depending upon the installation location, may rise to extreme levels during short periods such as storms. As a distance to the target antenna increases, even very small alignment shifts become significant. Should the antenna mount lose the desired boresight alignment, for example due to transient wind and/or ice loads, a significant expense may be incurred to return to a remote location such as atop a radio tower and repeat the alignment procedure.
Antenna mount ease of alignment adjustment and alignment stability characteristics may be improved in a trade-off with manufacturing cost and dimensional characteristics of the resulting antenna mount.
Competition in the antenna mount market has focused attention on improving alignment stability and ease of alignment adjustment while also minimizing overall manufacturing, inventory, distribution, installation and maintenance costs. Therefore, it is an object of the invention to provide a reflector antenna mount that overcomes deficiencies in the prior art.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
In general, 3-dimensional display devices comprise membranes or films that project an illusion of depth in a photograph, movie or other 2-dimensional image. A 3-dimensional illusion can be projected to a viewer by displaying two 2-dimensional images, which represent two perspectives of the same photograph, movie or image. However, such 3-dimensional display devices generally require viewers to wear specialized eyeglasses.
On the other hand, some 3-dimensional projection devices, such as swept-volume displays, comprise a plurality of image projectors that project images on a display surface undergoing rotational motion. As the display surface rotates, the images projected on the 2-dimensional display surface changes, which creates a 3-dimensional illusion. However, such 3-dimensional projection devices have limited viewing angles.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
A single electrode has proven to elicit the perception of a spot of light, a so-called phosphene, in humans with vision impairment. U.S. Provisional Application 60/473,304, filed May 29, 2003 disclosed the implantation of electronic devices wholly or partially at the retina, with an array of electrodes provided to deliver electrical stimulation to remaining intact retinal neurons. An improved arrangement of electrodes was disclosed comprising a stimulation array whereby electrodes are arrayed, in whole or in part, in a staggered pattern allowing for a high density of phosphenes, but wherein the elicitation of discrete phosphene is nonetheless achievable. (See FIG. 1)
In such an array each electrode of said stimulation array is relatively large by comparison to remaining intact retinal neurons, stimulating many neurons when actuated. In such an array, an electrode primarily activates intact retinal neurons that lie on the small, retinal region directly adjacent to the center of said electrode. With increased stimulation, said region of activation increases, a phenomenon approximately modeled by circular regions of increasing radii, concentric to said adjacent region.
For an electronic retinal prosthesis, electrodes effectively render an image by way of phosphenes in the implant recipient's visual field. This is achieved by way of each electrode activating a population of retinal neurons in a discrete region; each population pertaining to the perception of a phosphene. A high density of rendered phosphenes (and therefore a high density of electrodes) is desirable for it allows better visual acuity in the implant recipient. This density, however, is constrained by interference. If any two regions of activation are too close, injected charge will interfere, meaning that the elicitation of discrete phosphenes can not be achieved. For example, an intraocular array of two, small, stimulating electrodes which, when actuated maximally, can activate two large, circular regions of retinal tissue. The two stimulating electrodes need be disparate enough such that the two, said circular regions do not interfere. However, since high density is desirable, the two electrodes should be close enough such that the two circular regions meet tangentially.
In light of the above, the problem as to how to array said stimulating electrodes is analogous to the geometric problem regarding optimally packing equi-sized circles on an unbounded plane. It is a geometric result that the densest packing of equi-sized circles on an unbounded plane is a mosaic exhibiting staggering between successive rows and columns, as illustrated by the four rows and seven columns in FIG. 1. An example of this mosaic is the hexagon.
A stimulating prosthesis of non-trivial complexity must be configured to deliver electrical stimuli. Typically this is achieved by way of switching, via a multiplexing circuit, current or voltage sources to the intended electrodes. Configuring said multiplexing circuit requires instructions to configure, time to convey, and time to act upon said instructions. It is therefore advantageous to reduce either or both the instructions necessary to configure the multiplexing circuit, or the time required for said instructions to be delivered and acted upon.
Utilizing the hexagonal mosaic for electrode layout, or abstracts thereof, a novel multiplexing method for configuring and delivering the stimulus or stimuli from said electrode layout is described.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a seed layer structure for a spin valve sensor and, more particularly, to a trilayer seed layer structure which improves the magnetic and giant magnetoresistive properties and the thermal stability of the spin valve sensor by improving its microstructure.
2. Description of the Related Art
The heart of a computer is an assembly that is referred to as a magnetic disk drive. The magnetic disk drive includes a rotating magnetic disk, a slider that has write and read heads, a suspension arm that supports the slider above the rotating disk and an actuator that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The suspension arm biases the slider into contact with the surface of the disk when the disk is not rotating but, when the disk rotates, air is swirled by the rotating disk adjacent an air bearing surface (ABS) of the slider causing the slider to ride on an air bearing a slight distance from the surface of the rotating disk. When the slider rides on the air bearing the write and read heads are employed for writing magnetic impressions to and reading magnetic impressions from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.
The read head includes a sensor that is located between nonmagnetic electrically insulative first and second read gap layers and the first and second read gap layers are located between ferromagnetic first and second shield layers. The write head includes a coil layer embedded in first, second and third insulation layers (insulation stack), the insulation stack being sandwiched between first and second pole piece layers. A write gap is formed between the first and second pole piece layers by a nonmagnetic gap layer at an air bearing surface (ABS) of the write head. The pole piece layers are connected at a back gap. Current conducted to the coil layer induces a magnetic field into the pole pieces that fringes across the gap between the pole pieces at the ABS. The fringe field writes information in tracks on moving media, such as in circular tracks on a rotating disk.
In recent read heads a spin valve sensor is employed for sensing magnetic fields from the rotating magnetic disk. The sensor includes a nonmagnetic conductive layer, hereinafter referred to as a spacer layer, sandwiched between first and second ferromagnetic layers, hereinafter referred to as a pinned layer and a free layer, respectively. First and second leads are connected to the spin valve sensor for conducting a sense current therethrough. The magnetization of the pinned layer is pinned perpendicular to an air bearing surface (ABS) of the head and the magnetization of the free layer is oriented parallel to the ABS but free to rotate in response to external magnetic fields. The magnetization of the pinned layer is typically pinned by exchange coupling to an antiferromagnetic pinning layer.
The thickness of the spacer layer is chosen so that shunting of the sense current and a magnetic coupling between the free and pinned layers are minimized. This thickness is less than the mean free path of conduction electrons through the sensor. With this arrangement, a portion of the conduction electrons is scattered by the interfaces of the spacer layer with the pinned and free layers. When the magnetizations of the pinned and free layers are parallel with respect to one another, scattering is minimal and when the magnetizations of the pinned and free layers are antiparallel, scattering is maximized. Changes in scattering alter the resistance of the spin valve sensor in proportion to cos xcex8, where xcex8 is the angle between the magnetizations of the pinned and free layers. In a read mode the resistance of the spin valve sensor changes proportionally to the magnitudes of the magnetic fields from the rotating disk. When a sense current is conducted through the spin valve sensor resistance changes cause potential changes that are detected and processed as playback signals by the processing circuitry.
The spin valve sensor is characterized by a giant magnetoresistance (GMR) coefficient that is substantially higher than the anisotropic magnetoresistance (AMR) coefficient of an AMR sensor. The GMR coefficient is xcex94RG/R∥ where xcex94RG is the difference between the resistance measured when the magnetizations of the pinned and free layers are antiparallel with respect to one another and the resistance (R∥) when the magnetizations of the pinned and free layers are parallel with respect to one another. A spin valve sensor is sometimes referred to as a GMR sensor. When a spin valve sensor employs a single pinned layer it is referred to as a simple spin valve sensor.
Another type of spin valve sensor is an antiparallel (AP) pinned spin valve sensor. The AP pinned spin valve sensor differs from the simple spin valve sensor in that an AP pinned structure has multiple thin film layers instead of a single pinned layer. The AP pinned structure has an AP coupling layer sandwiched between first and second ferromagnetic pinned layers. The first pinned layer has its magnetization oriented in a first direction by exchange coupling to the antiferromagnetic pinning layer. The second pinned layer is immediately adjacent to the spacer layer and is antiparallel exchange coupled to the first pinned layer across the AP coupling layer (having a thickness of the order of 8 xc3x85) between the first and second pinned layers. Accordingly, the magnetization of the second pinned layer is oriented in a second direction that is antiparallel to the first direction of the magnetization of the first pinned layer.
Antiferromagnetic nickel-manganese (Nixe2x80x94Mn), platinum manganese (Ptxe2x80x94Mn) and iridium manganese (Irxe2x80x94Mn) films have been used extensively as pinning layers for both simple and AP pinned spin valve sensors. The Nixe2x80x94Mn and Ptxe2x80x94Mn films must be annealed at about 280xc2x0 C. after deposition to cause a transformation from a nonmagnetic face-centered-cubic (fcc) phase to an antiferromagnetic face-centered-tetragonal (fct) phase. The anneal is not needed for the Irxe2x80x94Mn film which contain an antiferromagnetic face-centered-cubic phase after deposition. Spin valve sensors using an Nixe2x80x94Mn antiferromagnetic layer require post deposition anneals of about 12 hours at 280xc2x0 C. to develop a unidirectional anisotropy field (HUA) of 622 Oe, however this extended anneal causes a decrease in the GMR coefficient from 5.8% to 2.4% when a conventional tantalum seed layer is used.
Therefore, there is a need for an improved seed layer structure to allow Nixe2x80x94Mn spin valve sensors to be suitably annealed to develop a high unidirectional anisotropy field with good thermal stability without degradation of the GMR coefficient.
We found by employing a trilayer seed layer structure between a simple spin valve sensor having a nickel manganese (Nixe2x80x94Mn) pinning layer and an aluminum oxide (Al2O3) first read gap layer that the giant magnetoresistance coefficient (GMR) is 9.4% as compared to 5.8% and 6.8% when single seed layers of Ta and NiMnOx, respectively, are used. The trilayer seed layer structure includes a first seed layer made of polycrystalline nickel oxide (NiO), a second seed layer made of amorphous-like nickel manganese oxide (NiMnOx) and a third seed layer made of copper (Cu). The first seed layer interfaces the aluminum oxide (Al2O3) first read gap layer, the second seed layer interfaces the first seed layer, and the third seed layer is disposed between the second seed layer and the free layer. The trilayer seed layer may be employed in either a simple spin valve sensor or an antiparallel pinned spin valve sensor.
An object of the present invention is to improve the magnetic and GMR properties of a spin valve sensor when the pinning layer is made from a class of materials including nickel manganese (Nixe2x80x94Mn) and nickel manganese based alloys (Nixe2x80x94Mnxe2x80x94M) where M is a third metallic element such as chromium (Cr), iron (Fe), iridium (Ir), paladium (Pd), platinum (Pt), rhodium (Rh) and ruthenium (Ru).
Another object of the present invention is to provide a read head with a spin valve sensor that has improved thermal stability.
A further object of the present invention is to provide a seed layer structure for a spin valve having a nickel manganese (Nixe2x80x94Mn) pinning layer to improve its magnetic and GMR properties with good thermal stability.
Other objects and advantages of the invention will become apparent upon reading the following description taken together with the accompanying drawings.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a steam generator, which is preferably used as a skin care apparatus such as facial steamer.
2. Disclosure of the Prior Art
In the past, a steam generator has been widely used as a humidifier for controlling indoor moisture levels, skin care apparatus such as facial steamer for moisturizing skin, facilitating cell metabolism and opening up pores to remove dead skin cells and clean skin surface, and a steam inhaler for providing warm moist air to nose and throat and relieving or minimizing symptoms of hay fever and a cold.
In this kind of apparatus, since water is heated to boiling to obtain steam, safety is the most important subject. For example, Japanese Patent Early publication [kokai] No. 2001-190632 discloses a steam beauty machine with the purpose of improving the safety. This beauty machine 1M is, as shown in FIG. 9, formed with a water tank 3M, heater 4M for heating water of the water tank to generate steam, and a nozzle 80M for providing a steady flow of steam. Since a condensate guide member 82M is disposed at a rear end portion of the nozzle, condensation generated at the periphery of the nozzle is efficiently returned to the water tank. Therefore, it is possible to prevent that hot drops of water accidentally jetted out from the nozzle.
Besides the improvement of safety, it is desired to improve usability of the steam generator, ease of maintenance such as a removal of water scale, and resistance to water leakage in the case that the steam generator is accidentally tilted or toppled over.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Chemokines constitute a family of small cytokines that are produced in inflammation and regulate leukocyte recruitment, activation and proliferation (Baggiolini, M. et al., Adv. Immunol. 55: 97–179 (1994); Springer, T. A., Annu. Rev. Physiol. 57: 827–872 (1995); and Schall, T. J. and K. B. Bacon, Curr. Opin. Immunol. 6: 865–873 (1994)). Chemokines are capable of selectively inducing chemotaxis of the formed elements of the blood (other than red blood cells), including leukocytes such as neutrophils, monocytes, macrophages, eosinophils, basophils, mast cells, and lymphocytes, including T cells and B cells. In addition to stimulating chemotaxis, other changes can be selectively induced by chemokines in responsive cells, including changes in cell shape, transient rises in the concentration of intracellular free calcium ions (Ca2+), granule exocytosis, integrin upregulation, formation of bioactive lipids (e.g., leukotrienes) and respiratory burst, associated with leukocyte activation. Thus, the chemokines are early triggers of the inflammatory response, causing inflammatory mediator release, chemotaxis and extravasation to sites of infection or inflammation.
Two subfamilies of chemokines, designated as CXC and CC chemokines, are distinguished by the arrangement of the first two of four conserved cysteine residues, which are either separated by one amino acid (as in CXC chemokines SDF-1, IL-8, IP-10, MIG, PF4, ENA-78, GCP-2, GROα, GROβ, GROγ, NAP-2, NAP-4) or are adjacent residues (as in CC chemokines MIP-1α, MIP-1β, RANTES, MCP-1, MCP-2, MCP-3, I-309). Most CXC chemokines attract neutrophil leukocytes. For example, the CXC chemokines interleukin 8 (IL-8), platelet factor 4 (PF4), and neutrophil-activating peptide 2 (NAP-2) are potent chemoattractants and activators of neutrophils. The CXC chemokines designated MIG (monokine induced by gamma interferon) and IP-10 (interferon-γ inducible 10 kDa protein) are particularly active in inducing chemotaxis of activated peripheral blood lymphocytes. CC chemokines are generally less selective and can attract a variety of leukocyte cell types, including monocytes, eosinophils, basophils, T lymphocytes and natural killer cells. CC chemokines such as human monocyte chemotactic proteins 1–3 (MCP-1, MCP-2 and MCP-3), RANTES (Regulated on Activation, Normal T Expressed and Secreted), and the macrophage inflammatory proteins 1α and 1β (MIP-1α and MIP-1β) have been characterized as chemoattractants and activators of monocytes or lymphocytes, but do not appear to be chemoattractants for neutrophils.
CC and CXC chemokines act through receptors that belong to a superfamily of seven transmembrane spanning G protein-coupled receptors (Murphy, P. M., Pharmacol Rev. 52:145–176 (2000)). This family of G-protein coupled receptors comprises a large group of integral membrane proteins, containing seven transmembrane-spanning regions. The receptors are coupled to G proteins, which are heterotrimeric regulatory proteins capable of binding GTP and mediating signal transduction from coupled receptors, for example, by the production of intracellular mediators.
Generally speaking, chemokine and chemokine receptor interactions tend to be promiscuous in that one chemokine can bind many chemokine receptors and conversely a single chemokine receptor can interact with several chemokines. There are a few exceptions to this rule; one such exception has been the interaction between SDF-1 and CXCR4 (Bleul et al., J Exp Med, 184(3): 1101–9 (1996); Oberlin et al., Nature, 382(6594): 833–5 (1996)). Originally identified as a pre-B cell growth-stimulating factor (Nagasawa et al., Proc Natl Acad Sci USA, 91(6): 2305–9 (1994)), SDF-1 has been the only reported human ligand for CXCR4. The SDF-1 gene encodes two proteins, designated SDF-1α and SDF-1β, by alternative splicing. These two proteins are identical except for the four amino acid residues that are present in the carboxy-terminus of SDF-1β and absent from SDF-1α.
There are many aspects of chemokine receptor signaling and selectivity for ligands that were not previously understood. For example, there are a number of orphan receptors for which no function has been previously determined. RDC1, for example, though earlier thought to be a receptor for vasoactive intestinal peptide (VIP), is now considered to be an orphan receptor because its endogenous ligand has not been identified. See, e.g., Cook et al., FEBS Letts. 300(2):149–152 (1992).
The present invention addresses these and other issues.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to game calling devices, and in particular, to an adjustable grunt tube that can produce sounds having varied pitch, intensity, tone and inflection.
Game calling devices for large mammals and predators are known. In particular, devices known as “grunt tubes” are used to simulate the grunts, snorts, bleats and other sounds produced by white-tailed deer. Hunters and wildlife enthusiasts use grunt tubes to attract deer and other animals.
Grunt tubes generally include a tubular member through which air passes and a reed supported within the tubular member. The passing air excites the reed causing it to vibrate and produce sounds. Some grunt tubes allow the user to vary the sounds produced by the calling device. In one existing device the sound is varied by adjusting the position of an o-ring along the length of the reed. One problem with this device is that the o-ring can be difficult for the user to access since the reed/o-ring assembly is positioned inside the central housing of the device. Another problem with this device is that it can be difficult for the o-ring to make contact all the way around the circumference of the reed which can hinder the reed's vibration and distort the sound. Yet another problem with this device is that the o-ring requires periodic lubrication to prevent it from drying out.
There is therefore a need for an improved grunt tube which overcomes these and other disadvantages in the prior art.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
This invention relates generally to an exposure apparatus for projecting and printing a circuit pattern formed on a mask, onto a substrate being coated with a photosensitive material, in a reduced scale. More particularly, the invention is concerned with an exposure apparatus which uses deep ultraviolet light or an excimer laser as an exposure light source.
Reduction type projection exposure apparatuses are used in a process of manufacturing a semiconductor device which is formed with a very fine pattern such as LSI or VLSI. Miniaturization of a pattern has been required strongly due to increases in the integration density of a semiconductor device, and exposure apparatuses have been modified to meet such miniaturization, as well as improvements in a resist process.
The resolving power of an exposure apparatus can be improved by two methods, that is, a method in which the exposure wavelength is shortened, and a method in which the numerical aperture (NA) of a projection optical system is enlarged. Generally, the resolution is proportional to the exposure wavelength and it is inversely proportional to the NA. Besides the improvement of resolution, many attempts have been made to keep the depth of focus of a projection optical system. Generally, the depth of focus is proportional to the exposure wavelength, and it is inversely proportional to the square of the NA. Thus, improving the resolution and keeping the depth of focus are contradictory matters. As an attempt to solve such a problem, a phase shift method and a FLEX (Focus Latitude Enhancement Exposure) method, for example, have been proposed.
As regards the exposure wavelength, recently, KrF excimer lasers having an emission wavelength of about 248 nm are prevalently used in place of i-line of 365 nm. Also, ArF excimer lasers having an emission wavelength of about 193 nm are currently being developed, as a next generation exposure light source.
From the viewpoint of the production cost of a semiconductor device, further improvements in the throughput of an exposure apparatus have been attempted. For example, the power of an exposure light source is enlarged to thereby shorten the exposure time per one shot. Another example is enlarging the exposure area to thereby increase the number of chips per one shot.
In recent years, in order to meet the requirement of enlargement in chip size of a semiconductor device, the stream is shifting from step-and-repeat type exposure apparatuses (steppers) in which a mask pattern is printed sequentially in association with stepwise motion, to step-and-scan type exposure apparatuses in which a mask and a wafer are scanningly exposed in synchronism with each other, followed by stepwise motion to place a subsequent shot. In such step-and-scan type exposure apparatuses, the exposure field has a slit-like shape and, therefore, the exposure area can be enlarged without enlargement in size of the projection optical system.
Where ultraviolet light is used as an exposure light source, as described above, there may occur a phenomenon that, due to long-period use, ammonium sulfate (NH4) or silicon dioxide (SiO2) is deposited on the surface of an optical element disposed on the light path, to cause considerable degradation of the optical characteristic. The deposition is produced because of chemical reaction of ammonia (NH3), sulfurous acid (SO2) or silicon compound contained in the surrounding ambience caused in response to irradiation with ultraviolet light. In order to prevent such deterioration of optical elements, conventionally, the whole of the light path is purged by use of a clean dry air or an inert gas such as nitrogen.
As regards deep ultraviolet light, particularly, ArF excimer lasers having a wavelength of about 193 nm, it is known that there are plural absorbing bands for oxygen (O2) in the bandwidth about that wavelength. Also, ozone (O3) will be produced when oxygen absorbs light, and this ozone acts to increase light absorption, causing considerable decrease of transmission factor. Additionally, various products, as described above, attributable to the ozone will be deposited on the surface of an optical element, thus causing a decrease of the efficiency of the optical system.
In consideration of it, in an exposure optical system for projection exposure apparatuses having a deep ultraviolet light source such as an ArF excimer laser, for example, purge means using an inert gas such as nitrogen, for example, may be provided to keep the oxygen density along the light path at a low level.
An example of such inert gas purge means for an illumination optical system in a projection exposure apparatus, will be described with reference to FIG. 8.
As illustrated in the drawing, there are an excimer laser 201, and a container or housing 202 for the illumination optical system. Further, there are a reticle 203 and mirrors 204, 205 and 206. Denoted at 207 is a beam shaping optical system, and denoted at 208 is an optical integrator. Also, there are condenser lenses 209, 210 and 211.
A laser beam emitted by the excimer laser 201 is shaped by the beam shaping optical system 207 into a predetermined beam shape. Thereafter, the light enters the optical integrator 208 and, in response, secondary light sources (not shown) are produced near the light exit surface of the optical integrator 208. The light rays from the secondary light sources are directed through the condenser lenses 209, 210 and 211 to uniformly illuminate the reticle 203. Thus, the arrangement provides a Koehler illumination optical system.
In order to provide an inert gas ambience around the optical elements described above and along the light path of them, inert gas supply means (not shown) supplies a nitrogen gas, for example, into the housing 202 through a gas inlet port 202a. The thus applied inert gas flows through the interior of the illumination optical system. After substitution to remove any residual gas such as atmospheric gas, for example, the inert gas is discharged outwardly through a gas outlet port 202b, by gas discharging means (not shown).
The gas supply quantity may be controlled so as to minimize the substitution time by the inert gas, to thereby increase the system throughput, or minimize the consumption quantity of the inert gas after substitution, to thereby decrease the system running cost (Japanese Laid-Open Patent Application, Laid-Open No. 216000/1994).
On the other hand, a currently prevailing illumination method is a variation illumination method (e.g., Japanese Laid-Open Patent Application, Laid Open No. 204114/1994) wherein the distribution of the secondary light source as described above is changed in various ways. This is to accomplish both a high resolution and a large depth of focus. In order that the illumination condition is made variable, many optical elements of an illumination optical system should be made interchangeable. With the above-described inert gas substitution method, on that occasion, it is very difficult to forcibly substitute the inside space of a mechanism (barrel) for holding optical elements to be interchanged. Particularly, in a case where an ArF excimer laser having an emission wavelength about 193 nm is used, there is a problem, as described, that the light absorption occurs due to any oxygen remaining along the light path which causes a serious decrease of optical efficiency. Therefore, forcible substitution of the interior of the movable barrel, if desired, needs a complicated structure for the gas flow passageway, and it causes an increase of the system cost as well as prolongation of the time for completion of the substitution which results in a decrease of the system throughput.
It is accordingly an object of the present invention to accomplish reduction of a substitution time to an inert gas ambience along an exposure light path, still with a minimum cost, and thereby to increase the system throughput.
In accordance with an aspect of the present invention, there is provided an exposure apparatus, comprising: a light source; at least one (one or two or more) housing for accommodating therein an optical element disposed along an exposure light path extending from said light source to a substrate; first substitution means for substituting the interior of said housing with an inert gas ambience; and second substitution means for substituting the interior of a holding mechanism for holding the optical element accommodated in said housing, with an inert gas ambience.
The second substitution means may preferably include control means for controlling an inert gas supply quantity in accordance with the state of substitution of the inert gas ambience inside said holding mechanism and the state of substitution of the inert gas ambience inside said housing.
Each of the first and second substitution means may include control means for controlling an inert gas supply quantity, each control means being operable independently to set an inert gas supply quantity and a control operation timing.
The holding mechanism may comprise a barrel for movably holding said optical element in said housing.
The housing may accommodate therein the whole of or a portion of an illumination optical system for directing light from said light source to a reticle, and the holding mechanism may movably hold an optical element which may serve to variably or interchangeably set an illumination condition of said illumination optical system.
The housing may comprise a barrel for a projection optical system, and the holding mechanism may movably hold a lens inside said projection optical system, for variably or interchangeably setting an optical characteristic of said projection optical system.
The light source may comprise a light source of one of deep ultraviolet light and an excimer laser.
In accordance with another aspect of the present invention, there is provided a device manufacturing method including a process for producing a device by use of an exposure apparatus as recited above.
In accordance with a further aspect of the present invention, there is provided an exposure method, comprising the steps of: preparing at least one housing for accommodating therein an optical element disposed along an exposure light path extending from a light source to a substrate; substituting, by use of first substitution means, the interior of the housing with an inert gas ambience; and substituting, by use of second substitution means, the interior of a holding mechanism for holding the optical element accommodated in the housing, with an inert gas ambience, whereby the inside of the housing is substituted with an inert gas ambience.
In the exposure method described above, the second substitution means may be used to control an inert gas supply quantity in accordance with the state of substitution of the inert gas ambience inside the holding mechanism and the state of substitution of the inert gas ambience inside the housing.
Alternatively, each of the first and second substitution means may include control means for controlling an inert gas supply quantity, each control means being operable independently to set an inert gas supply quantity and a control operation timing.
Further, the holding mechanism may comprise a barrel for movably holding the optical element in the housing.
In the exposure method described above, the housing may accommodate therein the whole of or a portion of an illumination optical system for directing light from the light source to a reticle, and the holding mechanism may movably hold an optical element which may serve to variably or interchangeably set an illumination condition of the illumination optical system.
In the exposure method described above, the housing may comprise a barrel for a projection optical system, and wherein the holding mechanism movably holds a lens inside the projection optical system, for variably or interchangeably setting an optical characteristic of the projection optical system.
In the exposure method described above, the light source may comprise a light source of one of deep ultraviolet light and an excimer laser.
These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
The present invention relates to integrated circuits of the "smart power" type, which include one or more large vertical transistors ("power" devices, capable of handling large currents) together with smaller transistors which can be used to implement complex control circuits.
The device architectures and fabrication technologies used for high-density integrated circuits perform essentially all fabrication steps from a single surface of a monocrystalline silicon wafer. (Such a process may be referred to as a "planar" process.) The transistors fabricated are normally MOS or bipolar. MOS technology provides simpler fabrication and higher density, but bipolar technology provides potentially faster device speed, linearity, and fanout.
Discrete power devices commonly use vertical-current-flow transistors to control large currents with low on-state resistance, while withstanding fairly large voltages. A large variety of device technologies have been proposed for such transistors, including MOS, bipolar, and various hybrids thereof. However, such vertical transistors are inherently difficult to integrate with high density, and may be hard to isolate.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Image compression techniques can reduce the amount of data to be transmitted in video applications. This is often done by determining parts of the image that have stayed the same. The xe2x80x9cmotion estimationxe2x80x9d technique is used in various video coding methods.
Motion estimation is an attempt to find the best match between a source block belonging to some frame N and a search area. The search area can be in the same frame N, or can be in a search area in a temporally displaced frame N-k.
These techniques may be computationally intensive.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
(a) Field of the Invention
The present invention relates to an electrolyte for a rechargeable lithium battery and a rechargeable lithium battery including the same. More preferably, the present invention relates to an electrolyte for a rechargeable lithium battery that shows excellent output characteristics due to a resistance reduction at a low temperature and a rechargeable lithium battery including the same.
(b) Description of the Related Art
In recent times, due to reductions in size and weight of portable electronic equipment, there has been a need to develop batteries for use in the portable electronic equipment, where the batteries have both high performance and large capacity. Furthermore, it is required that such batteries be produced in a cost effective manner and have improved safety.
Batteries are generally classified as primary batteries, which can be used only once and are then disposed of, and rechargeable batteries, which can be recharged and used repeatedly. Primary batteries include manganese batteries, alkaline batteries, mercury batteries, and silver oxide batteries. Rechargeable batteries include lead-acid storage batteries, nickel-metal hydride (Ni-MH) batteries, sealed nickel-cadmium batteries, lithium metal batteries, lithium ion batteries, lithium polymer batteries, and lithium-sulfur batteries.
Such batteries generate electric power using an electrochemical reaction material (referred to hereinafter simply as the “active material”) for a positive electrode and a negative electrode. Important factors for determining battery performance, such as capacity, cycle-life, power, safety, and reliability, include the electrochemical characteristics and the thermal stability of the active material used. Thus, extensive research has been undertaken to improve these factors of positive and negative active materials.
Of the currently available active materials for the negative electrode of the battery, lithium metal has a high electrical capacity per unit mass and high electro-negativity. Thus, lithium metal can be well adapted for use in producing high capacity and high voltage battery cells. However, since it is difficult to assure the safety of a battery using the lithium metal, other materials that can reversibly deintercalate and intercalate lithium ions are being used extensively for the active material of the negative electrodes in rechargeable lithium batteries.
Lithium rechargeable batteries generate electrical energy from changes of chemical potential during the intercalation/deintercalation of lithium ions at the positive and negative electrodes. Lithium rechargeable batteries use materials that reversibly intercalate or deintercalate lithium ions during charge and discharge reactions for both positive and negative active materials, and contain an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
The electrolyte includes, for example, a cyclic carbonate having a high dielectric constant such as propylene carbonate, ethylene propylene carbonate, and so on, or a linear carbonate having low viscosity such as diethyl propylene carbonate, methylethyl propylene carbonate, dimethyl carbonate, and so on, and mixed solvents thereof.
Such an electrolyte may be decomposed on a surface of an electrically active electrode, and the internal resistance of a battery may be increased by the electrolyte decomposition. Accordingly, charge and discharge characteristics of a battery may be deteriorated and cycle-life is shortened. There has been a need for an electrolyte having excellent cell loading characteristics, low temperature characteristics, charge and discharge cycle characteristics, storage characteristics at high temperature, and so on.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
1. Field of the Invention
The present invention relates to a method and apparatus for transmitting/receiving data over multiple frequency bands in a communication system having backward compatibility with the existing systems.
2. Description of the Related Art
The communication systems are evolving by modifying standards of the existing systems to provide higher-speed data services, or by simplifying the existing systems while solving implementation issues. For example, the Code Division Multiple Access (CDMA) system has evolved from CDMA 1× into EVolution Data Only (EV-DO). In the process where the evolution between systems is made in this way, a situation may occur where it is necessary to support both the communication systems before and after the evolution. Further, in this situation, in order to maximize the capacity while making the evolution, it is necessary not only to modify the system standards but also to use additional frequency bands.
FIG. 1 illustrates distribution of frequency bands of a CDMA 1× system and an EV-DO system in a communication system according to the prior art.
Referring to FIG. 1, the communication system includes a CDMA 1× system 102 and an EV-DO system 104, both of which use different resources, and further includes a CDMA 1× system-only terminal 110 supporting only the band-1 106 which is an operation frequency band of the CDMA 1× system 102, an EV-DO system-only terminal 114 supporting only the band-2 108 which is an operation frequency band of the EV-DO system 104, and a switching terminal 112 supporting both the CDMA 1× system 102 and the EV-DO system 104. That is, the CDMA 1× system 102 and the EV-DO system 104 use different frequency bands 106 and 108 independently.
The phrase ‘the switching terminal 112 supporting both the CDMA 1× system 102 and the EV-DO system 104’ means that the switching terminal 112 can switch to any one of the CDMA 1× system 102 and the EV-DO system 104 rather than simultaneously accessing the two systems 102 and 104, to receive a service therefrom.
Like the CDMA system described above, the IEEE 802.16e system can also expect its system evolution. In this case, the evolved systems can be classified into the existing IEEE 802.16e system (“legacy system”) and a system (“BC system”) having Backward Compatibility (BC) with the legacy system.
One service provider, while providing the IEEE 802.16e service using an arbitrary frequency band, can upgrade the legacy system to the BC system for the purpose of performance improvement to meet the need for capacity increase, and can also build another BC system in another arbitrary frequency band, as shown in FIGS. 2 and 3.
FIG. 2 illustrates an example of frequency bands for multiple systems having backward compatibility according to the prior art.
Referring to FIG. 2, a band-1 200 is a service frequency band of a legacy system, and a band-2 202 is a service frequency band of a BC system. In this case, while a legacy terminal 204 can make communication only over the band-1 200, a BC terminal 206 can make communication over both the band-1 200 and the band-2 202.
FIG. 3 illustrates another example of frequency bands for multiple systems having backward compatibility according to the prior art.
Referring to FIG. 3, a band-1 300 is a service frequency band of a BC1 system, and a band-2 302 is a service frequency band of a BC2 system. Similarly, while a legacy terminal 304 can perform communication only over the band-1 300, a BC terminal 306 can perform communication over both the band-1 300 and the band-2 302.
FIG. 4 illustrates an operation in which multiple Packet Data Units (PDUs) fragmented from a Service Data Unit (SDU) packet are transmitted over the same band according to the prior art. It is assumed herein that a base station 410 uses a band-1 and a band-2 as its operation frequency bands (or service frequency bands), a terminal 420 can perform transmission/reception over both the band-1 and the band-2, and the band-1 and the band-2 each can support both the legacy and BC systems.
Referring to FIG. 4, the communication system fragments one SDU 400 into a plurality of PDUs, i.e., PDU-A 402, PDU-B 404, and PDU-C 406. The PDU-A 402, PDU-B 404 and PDU-C 406 are transmitted to the terminal 420 only over the same band, i.e., over any one of the band-1 and the band-2, regardless of the supportable service. That is, the terminal 420 and the base station 410 can communicate with each other over both the band-1 and the band-2.
However, the prior art base station 410 transmits the PDU-A 402, PDU-B 404 and PDU-C 406 only over one band regardless of the supportable service, causing a waste of wireless resources.
FIG. 5 illustrates a method in which PDUs fragmented from one SDU are transmitted over different bands in multiple communication systems according to the prior art. It is assumed herein that the communication systems are IEEE 802.16e systems.
Referring to FIG. 5, a base station 502 allocates Down Link (DL) resources and Up Link (UL) resources in a DL frame and/or a UL frame using a MAP Information Element (MAP-IE). The base station 502 has a band-1 and a band-2 as its operation frequency bands, and the PDU(s) transmitted in the band-1 and the PDU(s) transmitted in the band-2 are independent of each other. A terminal 512 can transmit/receive data over both the band-1 and the band-2.
The base station 502 fragments the data (SDU) 500 to be transmitted to the terminal 512 into a PDU-A-1 506 and a PDU-A-2 510. To transmit the PDU-A-1 506 and the PDU-A-2 510 to the terminal 512, the base station 502 allocates DownLink MAPs (DL_MAPs) 504 and 508 to the band-1 and the band-2, respectively. Thereafter, the base station 502 transmits the PDU-A-1 506 over the band-1, and transmits the PDU-A-2 510 over the band-2, thereby transmitting the SDU 500 to the terminal 512.
As described above, upon receipt of a PDU(s), the prior art base station allocates resources over a band-1 and/or a band-2, and transmits the PDU over the allocated DL resource regions. In this case, the PDU transmitted in the band-1 and the PDU transmitted in the band-2 are independent of each other. Therefore, the terminal 512 cannot perceive that PDUs of a same SDU, received from the base station over different bands, belong to the same SDU, so it cannot reassemble the received PDUs.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Field of the Invention
The present invention relates to an aqueous low friction coating for telecommunication cables. In particular, the present coating includes one or more fluoropolymer latexes, a non-fluoropolymer latex, and a polyaziridine that can be applied onto polymer substrate.
Background
Proliferation of Fiber to the home (FTTH), fiber to the premise (FTTP) or, more generally, fiber to the X (FTTx) networks requires the installation of new optical cable links in existing premises or buildings. Frequently, these new fiber optic cables need to be fished through walls, run through existing cable ducts or through other confined spaces. Preferred optical fiber cables used in this last link in the FTTx network are generally small and flexible and can be difficult to push through already crowded existing cable ducts or other confined spaces as a result of friction between the cable sheath of the optical fiber cable being installed with existing cables as well as with the cable duct itself. Thus, having an optical fiber cable having a low friction surface is highly desirable in order to facilitate the installation of new cables into existing building structures.
For example, inorganic particulates (e.g. talc), silicone materials or fatty acid amides have been incorporated into the material outer cable jacket in some telecommunication and electrical cables in the extruder in order to reduce the coefficient of friction of the resulting cable. Extrusion of a low friction jacket material in this manner requires that the lubricative material be dispersed throughout the bulk phase of the cable jacket rather than being disposed at the outer surface of the telecommunication cable where it is needed to provide beneficial low friction characteristics. If these materials are not adequately tied into the jacket resin matrix, low molecular weight components can bleed out of the cable jacket matrix, reducing the low friction performance of these materials over time.
Fluoroplastics have excellent mechanical and electrical properties including low friction coefficients and good self-lubricating performance. Currently, fluoroplastics are widely used in chemical industry, electronics, electrical engineering, aviation, aerospace, textiles, construction, automobiles and other industrial fields. However, the intrinsic characteristics of fluoroplastics can make processing very difficult. While dispersing of fluoroplastics including Polytetrafluoroethylene (PTFE) in polymer binders for lubricating coating applications is known, these coatings generally lack the desired level of durability due to the non-compatibility between PTFE and the non-fluoroplastic polymers or poor adhesion of the coating to polymer substrates such as the materials commonly used as telecommunication cable jacket materials.
Thus, what is needed is a robust and durable low friction coating that can stand up to repeated abrasion without decreasing the low friction behavior of the coating.
|
{
"pile_set_name": "USPTO Backgrounds"
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.