Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

MMSI-Video-Bench: A Holistic Benchmark for Video-Based Spatial Intelligence

🌐 Homepage | 📑 Paper | 📖 Code

🔔 News

🔥[2025-12]: Our MMSI-Video-Bench has been integrated into VLMEvalKit. 🔥[2025-12]: We released our paper, benchmark, and evaluation codes.

📊 Data Details

All of our data is available on Hugging Face and includes the following components:

🎥 Video Data (videos.zip): Contains the video clip file (.mp4) corresponding to each sample. This file is generally not required for most models.

🎥 Frame Data (frames.zip): Contains the frames (.jpg) extracted from each sample's video at the base sampling rate. This rate ensures no key information loss during sampling. Each frame file is named using the format {timestamp}_frame_{base_interval}_{image_id} (e.g., 00:06.00_frame_1.50_4), where the timestamp, also shown on the top-left corner of the frame, indicates its capture time in the original recording.

🖼️ Reference Image Data (ref_images.zip): Contains the auxiliary images referenced in the questions for each sample.

📝 Text Annotation (mmsivideo.json):This file contains the annotation information for MMSI-Video-Bench. All time references in the questions correspond to the capture time in the original recording and align with the timestamp flag on each frame. Key fields include:

{
  "ref_images": [Paths to auxiliary images referenced in the question,...],
  "video_list": [
    {
      "path": Video clip file path,
      "start": Timestamp (in seconds) of the first frame of the video clip in the original recording,
      "end": Timestamp (in seconds) of the last frame of the video clip in the original recording,
      "base_fps": Base sampling rate
    },
    ...
  ],
  "frames_list": [[Paths to frames sampled at the base sampling rate,...],...],
  "system_prompt": "...",
  "task_prompt": Task-specific prompt,
  "user_prompt": Question text, with <video> as a placeholder for video and <image> for auxiliary images,
  "format_prompt": Output format requirements,
  "ground_truth": Correct answer
}

Unless otherwise specified, the model input generally consists of: system_prompt + task_prompt + user_prompt + format_prompt.

🚀 Evaluation

Please refer to the evaluation guidelines in our github repo.

🏆 Leaderboard

📦 Uniform-50 Setting
Model Avg.(%) Type
Human 96.40 Baseline
🥇Gemini 3 pro 37.97 Proprietary
🥈 O3 36.98 Proprietary
🥉GPT-5 36.80 Proprietary
Gemini 2.5 Flash 35.44 Proprietary
Gemini 2.5 Flash (Thinking) 35.17 Proprietary
Seed-1.6-vision 34.87 Proprietary
Claude-haiku-4.5 34.27 Proprietary
O4-mini 34.18 Proprietary
QwenVL2.5-72B 32.73 Open-Source
InternVL3-78B 32.55 Open-Source
Doubao-1.5-thinking 31.65 Proprietary
GPT-4o 31.56 Proprietary
InternVL2.5-78B 31.37 Open-Source
InternVL2.5-38B 31.01 Open-Source
QwenVL3-30B (Thinking) 30.83 Open-Source
LLaVA-Video-72B 30.38 Open-Source
InternVL3-8B 30.38 Open-Source
QwenVL2.5-VL-7B-Instruct 29.66 Open-Source
InternVL2.5-8B 29.11 Open-Source
InternVL3-38B 28.84 Open-Source
QwenVL3-30B 28.75 Open-Source
QwenVL2.5-32B 28.57 Open-Source
LLaVA-Video-7B 28.48 Open-Source
QwenVL3-8B 27.58 Open-Source
InternVideo2.5-8B 27.40 Open-Source
Random Guessing 24.10 Baseline
📦 Sufficient-Coverage Setting
Model Avg.(%) Type
Human 96.4 Baseline
🥇O3 37.34 Proprietary
🥈Gemini 2.5 Flash (Thinking) 36.71 Proprietary
🥉Gemini 2.5 Flash 36.62 Proprietary
O4-mini 35.08 Proprietary
QwenVL2.5-32B 32.37 Open-Source
QwenVL2.5-72B 31.83 Open-Source
InternVL3-8B 29.57 Open-Source
QwenVL3-30B 29.11 Open-Source
QwenVL3-8B 29.09 Open-Source
QwenVL2.5-7B 28.84 Open-Source
InternVL2.5-8B 28.66 Open-Source
GPT-4o 28.12 Proprietary
QwenVL3-30B (Thinking) 28.03 Open-Source
InternVideo2.5-8B 26.85 Open-Source
Random Guessing 24.10 Baseline
🤖 Robot Sub-bench
Model Avg.(%) Type
🥇Gemini 3 Pro 40.20 Proprietary
🥈Gemini 2.5 Flash (Thinking) 39.71 Proprietary
🥉Seed-1.6-vision 39.34 Proprietary
O3 39.22 Proprietary
QwenVL2.5-72B 37.75 Open-Source
InternVL3-8B 37.75 Open-Source
GPT-5 37.75 Proprietary
InternVL2.5-38B 36.27 Open-Source
Doubao-1.5-thinking 36.07 Proprietary
Gemini 2.5 Flash 35.78 Proprietary
O4-mini 35.29 Proprietary
QwenVL2.5-7B 34.8 Open-Source
InternVL2.5-78B 34.8 Open-Source
Claude-haiku-4.5 34.8 Proprietary
InternVL3-78B 34.31 Open-Source
LLaVA-Video-72B 34.31 Open-Source
QwenVL3-30B 32.84 Open-Source
QwenVL2.5-32B 32.84 Open-Source
QwenVL3-8B 32.12 Open-Source
InternVideo2.5-8B 29.90 Open-Source
GPT-4o 29.90 Proprietary
InternVL2.5-8B 28.43 Open-Source
InternVL3-38B 27.94 Open-Source
QwenVL3-30B (Thinking) 27.94 Open-Source
LLaVA-Video-7B 24.51 Open-Source
🏠 Indoor Scene Perception Sub-bench
Model Avg.(%) Type
🥇GPT-5 41.68 Proprietary
🥈O3 40.73 Proprietary
🥉Gemini 2.5 Flash 39.39 Proprietary
Gemini 3 Pro 39.39 Proprietary
Gemini 2.5 Flash (Thinking) 37.86 Proprietary
O4-mini 37.48 Proprietary
Seed-1.6-vision 34.2 Proprietary
Claude-haiku-4.5 33.46 Proprietary
Doubao-1.5-thinking 33.04 Proprietary
InternVL3-78B 32.5 Open-Source
QwenVL3-30B (Thinking) 32.31 Open-Source
GPT-4o 31.74 Proprietary
QwenVL2.5-72B 30.78 Open-Source
InternVL2.5-78B 30.4 Open-Source
QwenVL3-30B 30.02 Open-Source
QwenVL2.5-32B 29.64 Open-Source
InternVL2.5-8B 29.45 Open-Source
InternVL3-38B 29.06 Open-Source
QwenVL3-8B 28.68 Open-Source
InternVL2.5-38B 28.3 Open-Source
LLaVA-Video-72B 28.11 Open-Source
InternVL3-8B 27.72 Open-Source
LLaVA-Video-7B 27.53 Open-Source
QwenVL2.5-7B 27.15 Open-Source
InternVideo2.5-8B 26.77 Open-Source
📍 Grounding Sub-bench
Model Avg.(%) Type
🥇Gemini 2.5 Flash 38.81 Proprietary
🥈Gemini 2.5 Flash (Thinking) 38.21 Proprietary
🥉O3 37.61 Proprietary
Doubao-1.5-thinking 37.05 Proprietary
InternVL3-78B 35.52 Open-Source
GPT-5 35.22 Proprietary
Gemini 3 Pro 35.22 Proprietary
O4-mini 34.33 Proprietary
QwenVL2.5-72B 34.33 Open-Source
Seed-1.6-vision 33.04 Proprietary
Claude-haiku-4.5 32.84 Proprietary
InternVL2.5-38B 31.94 Open-Source
InternVL3-8B 31.94 Open-Source
GPT-4o 31.94 Proprietary
QwenVL3-30B (Thinking) 31.64 Open-Source
QwenVL2.5-32B 31.04 Open-Source
LLaVA-Video-72B 31.04 Open-Source
InternVL3-38B 30.45 Open-Source
InternVL2.5-8B 30.15 Open-Source
InternVL2.5-78B 29.85 Open-Source
QwenVL3-30B 29.25 Open-Source
QwenVL2.5-7B 28.66 Open-Source
QwenVL3-8B 28.66 Open-Source
InternVideo2.5-8B 27.76 Open-Source
LLaVA-Video-7B 27.16 Open-Source

Note: For the three sub-benchmarks, we take the higher score of each model across the two settings for easier presentation.

Downloads last month
661