File size: 22,255 Bytes
33b03a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# Modified from:
#   fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
import numpy as np
import argparse
import os
import sys
current_directory = os.getcwd()
sys.path.append(current_directory)
from utils.distributed import init_distributed_mode
from dataset.augmentation import center_crop_arr
from dataset.build import build_dataset
from tokenizer.tokenizer_image.vq_model import VQ_models
from condition.hed import HEDdetector, ControlNetHED_Apache2
import cv2
from torch.nn.parallel import DataParallel
from einops import rearrange
from datasets import load_dataset
from torchvision import transforms
from PIL import Image
from language.t5 import T5Embedder
#################################################################################
#                                  Training Loop                                #
#################################################################################
resolution = (512, 512)
image_transforms = transforms.Compose(
    [
        transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5]),
    ]
)
conditioning_image_transforms = transforms.Compose(
        [
            transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
            transforms.ToTensor(),
        ]
    )
label_image_transforms = transforms.Compose(
        [
            transforms.Resize(resolution, interpolation=transforms.InterpolationMode.NEAREST, antialias=True),
        ]
    )

def collate_fn(examples):
    
    pil_images = [example['image'].convert("RGB") for example in examples]
    images = [image_transforms(image) for image in pil_images]
    images = torch.stack(images)
    
    conditioning_images = [example['control_seg'].convert("RGB") for example in examples]
    conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
    conditioning_images = torch.stack(conditioning_images)
    
    captions = [example['prompt'] for example in examples]
    
    dtype = torch.long
    # labels = [torch.from_numpy(np.array(example['panoptic_seg_map'])).unsqueeze(0) for example in examples]  # seg_map  panoptic_seg_map
    # labels = [label_image_transforms(label) for label in labels]
    # labels = torch.stack(labels)
    labels = [example['seg_map'] for example in examples]
    

    return {
        "images": images,  # -1~1
        "conditioning_images": conditioning_images,  # 0~1
        "captions": captions,
        "labels": labels
    }

def main(args):
    
    assert torch.cuda.is_available(), "Training currently requires at least one GPU."
    # Setup DDP:
    if not args.debug:
        init_distributed_mode(args)
        rank = dist.get_rank()
        device = rank % torch.cuda.device_count()
        seed = args.global_seed * dist.get_world_size() + rank
        torch.manual_seed(seed)
        torch.cuda.set_device(device)
        print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
    else:
        device = 'cuda'
        rank = 0
    
    # Setup a feature folder:
    if args.debug or rank == 0:
        os.makedirs(args.code_path, exist_ok=True)
        os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
        os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
        os.makedirs(os.path.join(args.code_path, f'control'), exist_ok=True)
        os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)
        if args.split == 'validation':
            os.makedirs(os.path.join(args.code_path, f'label'), exist_ok=True)
    # create and load model
    vq_model = VQ_models[args.vq_model](
        codebook_size=args.codebook_size,
        codebook_embed_dim=args.codebook_embed_dim)
    vq_model.to(device)
    vq_model.eval()
    checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
    vq_model.load_state_dict(checkpoint["model"])
    del checkpoint
    
    t5_model = T5Embedder(
        device=device, 
        local_cache=True, 
        cache_dir=args.t5_path, 
        dir_or_name=args.t5_model_type,
        model_max_length=args.t5_feature_max_len,
    )

    # Setup data:
    if args.ten_crop:
        crop_size = int(args.image_size * args.crop_range)
        transform = transforms.Compose([
            transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
            transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
            transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
        ])
    else:
        crop_size = args.image_size 
        transform = transforms.Compose([
            transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
        ])
    # dataset = build_dataset(args, transform=transform)
    # dataset = load_dataset(
    #                 args.data_path,
    #                 cache_dir=None,
    #             )
    dataset = load_dataset(args.data_path, split=args.split,   # "train" or "validation"
    cache_dir=None,)
    print(dataset)

    if not args.debug:
        sampler = DistributedSampler(
            # dataset[args.split],
            dataset,
            num_replicas=dist.get_world_size(),
            rank=rank,
            shuffle=False,
            seed=args.global_seed
        )
    else:
        sampler = None
    loader = DataLoader(
        # dataset[args.split],
        dataset,
        batch_size=1, # important!
        shuffle=False,
        sampler=sampler,
        num_workers=args.num_workers,
        collate_fn=collate_fn,
        pin_memory=True,
        drop_last=False
    )

    from tqdm import tqdm
    total = 0
    code_len = 1024
    t5_feature_max_len = 120
    t5_feature_dim = 2048
    max_seq_length = t5_feature_max_len + code_len
    for batch in tqdm(loader):
        
        captions = batch['captions']
        
        train_steps = rank + total
        img_save_path = f'{args.code_path}/image/{train_steps}.png'
        cond_save_path = f'{args.code_path}/control/{train_steps}.png'
        label_save_path = f'{args.code_path}/label/{train_steps}.png'
        Image.fromarray((255*(batch['images'][0].numpy().transpose(1,2,0)*0.5+0.5)).astype('uint8'), mode='RGB').save(img_save_path)
        Image.fromarray((255*batch['conditioning_images'][0].numpy().transpose(1,2,0)).astype('uint8'), mode='RGB').save(cond_save_path)
        
        label = Image.fromarray(np.array(batch['labels'][0]).astype('uint8'))
        label.resize((512,512), Image.Resampling.NEAREST).save(label_save_path)
        with torch.no_grad():
            _, _, [_, _, indices] = vq_model.encode(batch['images'].to(device))
            
            caption_emb, emb_mask = t5_model.get_text_embeddings(captions)
            valid_num = int(emb_mask.sum().item())
            caption_emb = caption_emb[:, :valid_num]
        
        codes = indices.reshape(1, 1, -1)
        x = codes.detach().cpu().numpy()    # (1, num_aug, args.image_size//16 * args.image_size//16)
        np.save(f'{args.code_path}/code/{train_steps}.npy', x)

        caption_emb = caption_emb.to(torch.float32).detach().cpu().numpy()
        caption_dict = {}
        caption_dict['prompt'] = captions
        caption_dict['caption_emb'] = caption_emb
        np.savez(f'{args.code_path}/caption_emb/{train_steps}.npz', **caption_dict)
        
        # 👇 新增:保存 prompt 为 .txt 文件,方便外部评估
        with open(f'{args.code_path}/prompt/{train_steps}.txt', 'w', encoding='utf-8') as f:
            f.write(captions[0])  # 假设 batch_size = 1
        
        if not args.debug:
            total += dist.get_world_size()
        else:
            total += 1

    dist.destroy_process_group()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--code-path", type=str, required=True)
    parser.add_argument("--data-path", type=str, required=True)
    parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
    parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
    parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
    parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
    parser.add_argument("--dataset", type=str, default='imagenet')
    parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
    parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
    parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--num-workers", type=int, default=24)
    parser.add_argument("--debug", action='store_true')
    parser.add_argument("--min-threshold", type=int, default=200)
    parser.add_argument("--max-threshold", type=int, default=400)
    parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
    parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
    parser.add_argument("--t5-feature-max-len", type=int, default=120)
    parser.add_argument("--split", type=str, default='train',help="train or validation")
    args = parser.parse_args()
    main(args)



# # Modified from:
# #   fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
# import os
# # os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
# import torch
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cudnn.allow_tf32 = True
# import torch.distributed as dist
# from torch.utils.data import DataLoader
# from torch.utils.data.distributed import DistributedSampler
# from torchvision import transforms
# import numpy as np
# import argparse
# import os
# import sys
# current_directory = os.getcwd()
# sys.path.append(current_directory)
# from utils.distributed import init_distributed_mode
# from dataset.augmentation import center_crop_arr
# from dataset.build import build_dataset
# from tokenizer.tokenizer_image.vq_model import VQ_models
# # from condition.hed import HEDdetector, ControlNetHED_Apache2
# import cv2
# from torch.nn.parallel import DataParallel
# from einops import rearrange
# from datasets import load_dataset
# from torchvision import transforms
# from PIL import Image
# from language.t5 import T5Embedder
# #################################################################################
# #                                  Training Loop                                #
# #################################################################################
# resolution = (512, 512)
# image_transforms = transforms.Compose(
#     [
#         transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
#         transforms.ToTensor(),
#         transforms.Normalize([0.5], [0.5]),
#     ]
# )
# conditioning_image_transforms = transforms.Compose(
#         [
#             transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
#             transforms.ToTensor(),
#         ]
#     )
# label_image_transforms = transforms.Compose(
#         [
#             transforms.Resize(resolution, interpolation=transforms.InterpolationMode.NEAREST, antialias=True),
#         ]
#     )
# def collate_fn(examples):
#     print("Examples:", examples)  # 打印原始数据结构
#     print("Available keys:", examples[0].keys())  # 打印数据集中包含的键
#     exit()  # 直接终止,查看输出

# def collate_fn(examples):
    
#     pil_images = [example['image'].convert("RGB") for example in examples]
#     images = [image_transforms(image) for image in pil_images]
#     images = torch.stack(images)
    
#     conditioning_images = [example['control_seg'].convert("RGB") for example in examples]
#     conditioning_images = [example["control_seg"][0].convert("RGB") for example in examples]
#     conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
#     conditioning_images = torch.stack(conditioning_images)
    
#     # captions = [example['prompt'] for example in examples]
    
#     # dtype = torch.long
#     # # labels = [torch.from_numpy(np.array(example['panoptic_seg_map'])).unsqueeze(0) for example in examples]  # seg_map  panoptic_seg_map
#     # # labels = [label_image_transforms(label) for label in labels]
#     # # labels = torch.stack(labels)
#     # labels = [example['seg_map'] for example in examples]
#         # **修改 captions 逻辑**
#     captions = [" ".join(example["scene"]) if "scene" in example else "unknown" for example in examples]

#     labels = [example["control_seg"][0] for example in examples]

#     return {
#         "images": images,  # -1~1
#         "conditioning_images": conditioning_images,  # 0~1
#         "captions": captions,
#         "labels": labels
#     }

# def main(args):
    
#     assert torch.cuda.is_available(), "Training currently requires at least one GPU."
#     # Setup DDP:
#     # if not args.debug:
#     #     init_distributed_mode(args)
#     #     rank = dist.get_rank()
#     #     device = rank % torch.cuda.device_count()
#     #     seed = args.global_seed * dist.get_world_size() + rank
#     #     torch.manual_seed(seed)
#     #     torch.cuda.set_device(device)
#     #     print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
#     # else:
#     #     device = 'cuda'
#     #     rank = 0
#     device = torch.device("cuda")
#     # Setup a feature folder:
#     # if args.debug or rank == 0:
#     #     os.makedirs(args.code_path, exist_ok=True)
#     #     os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
#     #     os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
#     #     os.makedirs(os.path.join(args.code_path, f'control'), exist_ok=True)
#     #     os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)
#     #     if args.split == 'validation':
#     #         os.makedirs(os.path.join(args.code_path, f'label'), exist_ok=True)
#     os.makedirs(args.code_path, exist_ok=True)
#     os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
#     os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
#     os.makedirs(os.path.join(args.code_path, f'control'), exist_ok=True)
#     os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)
#     if args.split == 'validation':
#         os.makedirs(os.path.join(args.code_path, f'label'), exist_ok=True)

#     # create and load model加载 VQ 模型
#     vq_model = VQ_models[args.vq_model](
#         codebook_size=args.codebook_size,
#         codebook_embed_dim=args.codebook_embed_dim)
#     vq_model.to(device)
#     vq_model.eval()
#     # 加载模型权重
#     checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
#     vq_model.load_state_dict(checkpoint["model"])
#     del checkpoint
#     # 加载 T5 文本嵌入模型
#     t5_model = T5Embedder(
#         device=device, 
#         local_cache=True, 
#         cache_dir=args.t5_path, 
#         dir_or_name=args.t5_model_type,
#         model_max_length=args.t5_feature_max_len,
#     )
# # 以下注释
#     # Setup data:
#     if args.ten_crop:
#         crop_size = int(args.image_size * args.crop_range)
#         transform = transforms.Compose([
#             transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
#             transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
#             transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
#             transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
#         ])
#     else:
#         crop_size = args.image_size 
#         transform = transforms.Compose([
#             transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
#             transforms.ToTensor(),
#             transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
#         ])
#     # dataset = build_dataset(args, transform=transform)
#     dataset = load_dataset(
#                     args.data_path,
#                     cache_dir=None,
#                 ) # 读取数据集 
#     if not args.debug:
#         sampler = DistributedSampler(
#             dataset[args.split],
#             num_replicas=dist.get_world_size(),
#             rank=rank,
#             shuffle=False,
#             seed=args.global_seed
#         )
#     else:
#         sampler = None
#     loader = DataLoader(
#         dataset[args.split],
#         batch_size=1, # important!
#         shuffle=False,
#         sampler=sampler,
#         num_workers=args.num_workers,
#         collate_fn=collate_fn,
#         pin_memory=True,
#         drop_last=False
#     )
# # 以上注释并添加下边的数据预处理
#     #    # 设置数据预处理
#     # crop_size = int(args.image_size * args.crop_range) if args.ten_crop else args.image_size
#     # transform = transforms.Compose([
#     #     transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
#     #     transforms.ToTensor(),
#     #     transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
#     # ])

#     # # 加载数据集
#     # dataset = load_dataset(args.data_path, cache_dir=None)
    
#     # # **修改 DataLoader**
#     # loader = DataLoader(
#     #     dataset[args.split],
#     #     batch_size=1,  # 重要!
#     #     shuffle=True,  # **单 GPU 训练时使用 shuffle**
#     #     num_workers=args.num_workers,
#     #     collate_fn=collate_fn,
#     #     pin_memory=True,
#     #     drop_last=False
#     # )

#     from tqdm import tqdm
#     total = 0
#     code_len = 1024
#     t5_feature_max_len = 120
#     t5_feature_dim = 2048
#     max_seq_length = t5_feature_max_len + code_len
#     for batch in tqdm(loader):
        
#         captions = batch['captions']
        
#         # train_steps = rank + total
#         img_save_path = f'{args.code_path}/image/{total}.png'
#         cond_save_path = f'{args.code_path}/control/{total}.png'
#         label_save_path = f'{args.code_path}/label/{total}.png'
#         Image.fromarray((255*(batch['images'][0].numpy().transpose(1,2,0)*0.5+0.5)).astype('uint8'), mode='RGB').save(img_save_path)
#         Image.fromarray((255*batch['conditioning_images'][0].numpy().transpose(1,2,0)).astype('uint8'), mode='RGB').save(cond_save_path)
        
#         label = Image.fromarray(np.array(batch['labels'][0]).astype('uint8'))
#         label.resize((512,512), Image.Resampling.NEAREST).save(label_save_path)
#         with torch.no_grad():
#             _, _, [_, _, indices] = vq_model.encode(batch['images'].to(device))
            
#             caption_emb, emb_mask = t5_model.get_text_embeddings(captions)
#             valid_num = int(emb_mask.sum().item())
#             caption_emb = caption_emb[:, :valid_num]
        
#         codes = indices.reshape(1, 1, -1)
#         x = codes.detach().cpu().numpy()    # (1, num_aug, args.image_size//16 * args.image_size//16)
#         np.save(f'{args.code_path}/code/{total}.npy', x) # 保存将图像编码成的离散Token

#         caption_emb = caption_emb.to(torch.float32).detach().cpu().numpy()
#         caption_dict = {}
#         caption_dict['prompt'] = captions
#         caption_dict['caption_emb'] = caption_emb
#         np.savez(f'{args.code_path}/caption_emb/{total}.npz', **caption_dict) # 保存文本的 T5 Embeddings
#         # if not args.debug:
#         #     total += dist.get_world_size()
#         # else:
#         #     total += 1
#         total += 1
#     dist.destroy_process_group()


# if __name__ == "__main__":
#     parser = argparse.ArgumentParser()
#     parser.add_argument("--code-path", type=str, required=True)
#     parser.add_argument("--data-path", type=str, required=True)
#     parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
#     parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
#     parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
#     parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
#     parser.add_argument("--dataset", type=str, default='imagenet')
#     parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
#     parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
#     parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
#     parser.add_argument("--global-seed", type=int, default=0)
#     parser.add_argument("--num-workers", type=int, default=24)
#     parser.add_argument("--debug", action='store_true')
#     parser.add_argument("--min-threshold", type=int, default=200)
#     parser.add_argument("--max-threshold", type=int, default=400)
#     parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
#     parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
#     parser.add_argument("--t5-feature-max-len", type=int, default=120)
#     parser.add_argument("--split", type=str, default='train')
#     args = parser.parse_args()
#     main(args)