Add files using upload-large-folder tool
Browse files- autoregressive/sample/sample_c2i.py +151 -0
- autoregressive/sample/sample_t2i.py +225 -0
- autoregressive/sample/sample_t2i_MR.py +238 -0
- autoregressive/serve/README.md +58 -0
- autoregressive/serve/fake_json/GPT-3B.json +28 -0
- autoregressive/serve/fake_json/GPT-B.json +28 -0
- autoregressive/serve/fake_json/GPT-L.json +28 -0
- autoregressive/serve/fake_json/GPT-XL.json +28 -0
- autoregressive/serve/fake_json/GPT-XXL.json +28 -0
- autoregressive/serve/gpt_model.py +419 -0
- autoregressive/serve/gpu_executor.py +201 -0
- autoregressive/serve/llm_engine.py +671 -0
- autoregressive/serve/model_runner.py +1232 -0
- autoregressive/serve/sample_c2i.py +98 -0
- autoregressive/serve/sampler.py +868 -0
- autoregressive/serve/worker.py +349 -0
- autoregressive/test/metric.py +97 -0
- autoregressive/test/test_c2i.py +267 -0
- autoregressive/test/test_ssim.py +21 -0
- autoregressive/test/test_t2i.py +285 -0
- autoregressive/train/extract_codes_c2i.py +139 -0
- autoregressive/train/extract_codes_t2i.py +144 -0
- autoregressive/train/extract_file_ade.py +511 -0
- autoregressive/train/extract_file_cocostuff.py +228 -0
- autoregressive/train/extract_file_imagenet.py +168 -0
- autoregressive/train/extract_file_multigen.py +228 -0
- autoregressive/train/train_c2i.py +294 -0
- autoregressive/train/train_c2i_canny.py +306 -0
- autoregressive/train/train_c2i_depth.py +314 -0
- autoregressive/train/train_c2i_fsdp.py +390 -0
- tokenizer/tokenizer_image/__pycache__/vq_model.cpython-310.pyc +0 -0
- tokenizer/tokenizer_image/cache/vgg.pth +3 -0
- tokenizer/tokenizer_image/vq_model_hf.py +17 -0
- tokenizer/tokenizer_image/vq_train.py +323 -0
- tokenizer/vqgan/README.md +21 -0
- tokenizer/vqgan/configs/vqgan_imagenet_f16_1024.yaml +32 -0
- tokenizer/vqgan/configs/vqgan_imagenet_f16_16384.yaml +34 -0
- tokenizer/vqgan/configs/vqgan_openimage_f8_16384.yaml +20 -0
- tokenizer/vqgan/configs/vqgan_openimage_f8_256.yaml +20 -0
- tokenizer/vqgan/layer.py +372 -0
- tokenizer/vqgan/model.py +88 -0
- tokenizer/vqgan/quantize.py +229 -0
- tokenizer/vqgan/reconstruction_vqgan_ddp.py +215 -0
- tokenizer/vqgan/taming_vqgan_demo.py +68 -0
- tools/check_image_codes.py +55 -0
- tools/convert_pytorch_lightning_to_torch.py +25 -0
- tools/draw_figure.py +141 -0
- tools/imagenet_en_cn.py +1002 -0
- tools/push_gpt_to_hf.py +71 -0
- utils/data.py +22 -0
autoregressive/sample/sample_c2i.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/sample.py
|
| 3 |
+
import torch
|
| 4 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 5 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 6 |
+
torch.set_float32_matmul_precision('high')
|
| 7 |
+
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None)
|
| 8 |
+
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None)
|
| 9 |
+
from torchvision.utils import save_image
|
| 10 |
+
import os
|
| 11 |
+
import sys
|
| 12 |
+
current_directory = os.getcwd()
|
| 13 |
+
sys.path.append(current_directory)
|
| 14 |
+
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import time
|
| 17 |
+
import argparse
|
| 18 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 19 |
+
from autoregressive.models.gpt import GPT_models
|
| 20 |
+
from autoregressive.models.generate import generate
|
| 21 |
+
from functools import partial
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
import numpy as np
|
| 24 |
+
import cv2
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def main(args):
|
| 28 |
+
# Setup PyTorch:
|
| 29 |
+
torch.manual_seed(args.seed)
|
| 30 |
+
torch.backends.cudnn.deterministic = True
|
| 31 |
+
torch.backends.cudnn.benchmark = False
|
| 32 |
+
torch.set_grad_enabled(False)
|
| 33 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 34 |
+
|
| 35 |
+
# create and load model
|
| 36 |
+
vq_model = VQ_models[args.vq_model](
|
| 37 |
+
codebook_size=args.codebook_size,
|
| 38 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 39 |
+
vq_model.to(device)
|
| 40 |
+
vq_model.eval()
|
| 41 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 42 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 43 |
+
del checkpoint
|
| 44 |
+
print(f"image tokenizer is loaded")
|
| 45 |
+
|
| 46 |
+
# create and load gpt model
|
| 47 |
+
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
|
| 48 |
+
latent_size = args.image_size // args.downsample_size
|
| 49 |
+
gpt_model = GPT_models[args.gpt_model](
|
| 50 |
+
vocab_size=args.codebook_size,
|
| 51 |
+
block_size=latent_size ** 2,
|
| 52 |
+
num_classes=args.num_classes,
|
| 53 |
+
cls_token_num=args.cls_token_num,
|
| 54 |
+
model_type=args.gpt_type,
|
| 55 |
+
condition_token_num=args.condition_token_nums,
|
| 56 |
+
image_size=args.image_size
|
| 57 |
+
).to(device=device, dtype=precision)
|
| 58 |
+
|
| 59 |
+
_, file_extension = os.path.splitext(args.gpt_ckpt)
|
| 60 |
+
if file_extension.lower() == '.safetensors':
|
| 61 |
+
from safetensors.torch import load_file
|
| 62 |
+
model_weight = load_file(args.gpt_ckpt)
|
| 63 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 64 |
+
gpt_model.eval()
|
| 65 |
+
else:
|
| 66 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 67 |
+
if "model" in checkpoint: # ddp
|
| 68 |
+
model_weight = checkpoint["model"]
|
| 69 |
+
elif "module" in checkpoint: # deepspeed
|
| 70 |
+
model_weight = checkpoint["module"]
|
| 71 |
+
elif "state_dict" in checkpoint:
|
| 72 |
+
model_weight = checkpoint["state_dict"]
|
| 73 |
+
else:
|
| 74 |
+
raise Exception("please check model weight")
|
| 75 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 76 |
+
gpt_model.eval()
|
| 77 |
+
del checkpoint
|
| 78 |
+
print(f"gpt model is loaded")
|
| 79 |
+
|
| 80 |
+
if args.compile:
|
| 81 |
+
print(f"compiling the model...")
|
| 82 |
+
gpt_model = torch.compile(
|
| 83 |
+
gpt_model,
|
| 84 |
+
mode="reduce-overhead",
|
| 85 |
+
fullgraph=True
|
| 86 |
+
) # requires PyTorch 2.0 (optional)
|
| 87 |
+
else:
|
| 88 |
+
print(f"no need to compile model in demo")
|
| 89 |
+
|
| 90 |
+
condition_null = None
|
| 91 |
+
if args.condition_type == 'canny':
|
| 92 |
+
sample_list = [650, 2312, 15000, 48850] # canny
|
| 93 |
+
elif args.condition_type == 'depth':
|
| 94 |
+
sample_list = [101, 4351, 10601, 48901]
|
| 95 |
+
|
| 96 |
+
class_labels = [np.load(f"condition/example/c2i/{args.condition_type}/{i}.npy")[0] for i in sample_list]
|
| 97 |
+
condition_imgs = [np.array(Image.open((f"condition/example/c2i/{args.condition_type}/{i}.png")))[None,None,...] for i in sample_list]
|
| 98 |
+
condition_imgs = torch.from_numpy(np.concatenate(condition_imgs, axis=0)).to(device).to(torch.float32)/255
|
| 99 |
+
condition_imgs = 2*(condition_imgs-0.5)
|
| 100 |
+
print(condition_imgs.shape)
|
| 101 |
+
c_indices = torch.tensor(class_labels, device=device)
|
| 102 |
+
qzshape = [len(class_labels), args.codebook_embed_dim, latent_size, latent_size]
|
| 103 |
+
t1 = time.time()
|
| 104 |
+
|
| 105 |
+
index_sample = generate(
|
| 106 |
+
gpt_model, c_indices, latent_size ** 2, condition=condition_imgs.repeat(1,3,1,1).to(precision), condition_null=condition_null, condition_token_nums=args.condition_token_nums,
|
| 107 |
+
cfg_scale=args.cfg_scale, cfg_interval=args.cfg_interval,
|
| 108 |
+
temperature=args.temperature, top_k=args.top_k,
|
| 109 |
+
top_p=args.top_p, sample_logits=True,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
sampling_time = time.time() - t1
|
| 113 |
+
print(f"gpt sampling takes about {sampling_time:.2f} seconds.")
|
| 114 |
+
|
| 115 |
+
t2 = time.time()
|
| 116 |
+
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
|
| 117 |
+
decoder_time = time.time() - t2
|
| 118 |
+
print(f"decoder takes about {decoder_time:.2f} seconds.")
|
| 119 |
+
# Save and display images:
|
| 120 |
+
condition_imgs = condition_imgs.repeat(1,3,1,1)
|
| 121 |
+
samples = torch.cat((condition_imgs[:4], samples[:4]),dim=0)
|
| 122 |
+
save_image(samples, f"sample/example/sample_{args.gpt_type}_{args.condition_type}.png", nrow=4, normalize=True, value_range=(-1, 1))
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
if __name__ == "__main__":
|
| 127 |
+
parser = argparse.ArgumentParser()
|
| 128 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 129 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None)
|
| 130 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
|
| 131 |
+
parser.add_argument("--from-fsdp", action='store_true')
|
| 132 |
+
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
|
| 133 |
+
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 134 |
+
parser.add_argument("--compile", action='store_true', default=False)
|
| 135 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 136 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 137 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 138 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 139 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=256)
|
| 140 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 141 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 142 |
+
parser.add_argument("--cfg-scale", type=float, default=4.0)
|
| 143 |
+
parser.add_argument("--cfg-interval", type=float, default=-1)
|
| 144 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 145 |
+
parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with")
|
| 146 |
+
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
|
| 147 |
+
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
|
| 148 |
+
parser.add_argument("--condition-token-nums", type=int, default=0)
|
| 149 |
+
parser.add_argument("--condition-type", type=str, default='canny', choices=['canny', 'depth'])
|
| 150 |
+
args = parser.parse_args()
|
| 151 |
+
main(args)
|
autoregressive/sample/sample_t2i.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 4 |
+
torch.set_float32_matmul_precision('high')
|
| 5 |
+
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
|
| 6 |
+
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
|
| 7 |
+
from torchvision.utils import save_image
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import sys
|
| 11 |
+
current_directory = os.getcwd()
|
| 12 |
+
sys.path.append(current_directory)
|
| 13 |
+
import time
|
| 14 |
+
import argparse
|
| 15 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 16 |
+
from language.t5 import T5Embedder
|
| 17 |
+
from autoregressive.models.gpt import GPT_models
|
| 18 |
+
from autoregressive.models.gpt_t2i import GPT_models
|
| 19 |
+
from autoregressive.models.generate import generate
|
| 20 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 21 |
+
from dataset.t2i_control import build_t2i_control_code
|
| 22 |
+
from accelerate import Accelerator
|
| 23 |
+
from dataset.build import build_dataset
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
| 26 |
+
import torch.nn.functional as F
|
| 27 |
+
from condition.canny import CannyDetector
|
| 28 |
+
from condition.hed import HEDdetector
|
| 29 |
+
import numpy as np
|
| 30 |
+
from PIL import Image
|
| 31 |
+
from condition.lineart import LineArt
|
| 32 |
+
import cv2
|
| 33 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
| 34 |
+
def main(args):
|
| 35 |
+
# Setup PyTorch:
|
| 36 |
+
torch.manual_seed(args.seed)
|
| 37 |
+
torch.backends.cudnn.deterministic = True
|
| 38 |
+
torch.backends.cudnn.benchmark = False
|
| 39 |
+
torch.set_grad_enabled(False)
|
| 40 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 41 |
+
|
| 42 |
+
# create and load model
|
| 43 |
+
vq_model = VQ_models[args.vq_model](
|
| 44 |
+
codebook_size=args.codebook_size,
|
| 45 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 46 |
+
vq_model.to(device)
|
| 47 |
+
vq_model.eval()
|
| 48 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 49 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 50 |
+
del checkpoint
|
| 51 |
+
print(f"image tokenizer is loaded")
|
| 52 |
+
|
| 53 |
+
# create and load gpt model
|
| 54 |
+
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
|
| 55 |
+
latent_size = args.image_size // args.downsample_size
|
| 56 |
+
gpt_model = GPT_models[args.gpt_model](
|
| 57 |
+
block_size=latent_size ** 2,
|
| 58 |
+
cls_token_num=args.cls_token_num,
|
| 59 |
+
model_type=args.gpt_type,
|
| 60 |
+
condition_type=args.condition_type,
|
| 61 |
+
adapter_size=args.adapter_size,
|
| 62 |
+
).to(device=device, dtype=precision)
|
| 63 |
+
|
| 64 |
+
_, file_extension = os.path.splitext(args.gpt_ckpt)
|
| 65 |
+
if file_extension.lower() == '.safetensors':
|
| 66 |
+
from safetensors.torch import load_file
|
| 67 |
+
model_weight = load_file(args.gpt_ckpt)
|
| 68 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 69 |
+
gpt_model.eval()
|
| 70 |
+
else:
|
| 71 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 72 |
+
if "model" in checkpoint: # ddp
|
| 73 |
+
model_weight = checkpoint["model"]
|
| 74 |
+
elif "module" in checkpoint: # deepspeed
|
| 75 |
+
model_weight = checkpoint["module"]
|
| 76 |
+
elif "state_dict" in checkpoint:
|
| 77 |
+
model_weight = checkpoint["state_dict"]
|
| 78 |
+
else:
|
| 79 |
+
raise Exception("please check model weight")
|
| 80 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 81 |
+
gpt_model.eval()
|
| 82 |
+
del checkpoint
|
| 83 |
+
print(f"gpt model is loaded")
|
| 84 |
+
|
| 85 |
+
if args.compile:
|
| 86 |
+
print(f"compiling the model...")
|
| 87 |
+
gpt_model = torch.compile(
|
| 88 |
+
gpt_model,
|
| 89 |
+
mode="reduce-overhead",
|
| 90 |
+
fullgraph=True
|
| 91 |
+
) # requires PyTorch 2.0 (optional)
|
| 92 |
+
else:
|
| 93 |
+
print(f"no need to compile model in demo")
|
| 94 |
+
|
| 95 |
+
assert os.path.exists(args.t5_path)
|
| 96 |
+
t5_model = T5Embedder(
|
| 97 |
+
device=device,
|
| 98 |
+
local_cache=True,
|
| 99 |
+
cache_dir=args.t5_path,
|
| 100 |
+
dir_or_name=args.t5_model_type,
|
| 101 |
+
torch_dtype=precision,
|
| 102 |
+
model_max_length=args.t5_feature_max_len,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
if args.condition_type == 'canny':
|
| 107 |
+
get_control = CannyDetector()
|
| 108 |
+
elif args.condition_type == 'hed':
|
| 109 |
+
get_control = HEDdetector().to(device).eval()
|
| 110 |
+
elif args.condition_type == 'lineart':
|
| 111 |
+
get_control = LineArt()
|
| 112 |
+
get_control.load_state_dict(torch.load('condition/ckpts/model.pth', map_location=torch.device('cpu')))
|
| 113 |
+
get_control.to(device)
|
| 114 |
+
elif args.condition_type == 'depth':
|
| 115 |
+
processor = DPTImageProcessor.from_pretrained("condition/ckpts/dpt_large")
|
| 116 |
+
model = DPTForDepthEstimation.from_pretrained("condition/ckpts/dpt_large").to(device)
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
|
| 119 |
+
condition_path = args.condition_path
|
| 120 |
+
if args.condition_type == 'seg':
|
| 121 |
+
condition_img = torch.from_numpy(np.array(Image.open(condition_path)))
|
| 122 |
+
condition_img = condition_img.permute(2,0,1).unsqueeze(0).repeat(2,1,1,1)
|
| 123 |
+
elif args.condition_type == 'canny':
|
| 124 |
+
condition_img = get_control(np.array(Image.open(condition_path)))
|
| 125 |
+
condition_img = torch.from_numpy(condition_img[None,None,...]).repeat(2,3,1,1)
|
| 126 |
+
elif args.condition_type == 'hed':
|
| 127 |
+
condition_img = get_control(torch.from_numpy(np.array(Image.open(condition_path))).permute(2,0,1).unsqueeze(0).to(device))
|
| 128 |
+
condition_img = condition_img.unsqueeze(1).repeat(2,3,1,1)
|
| 129 |
+
elif args.condition_type == 'lineart':
|
| 130 |
+
condition_img = get_control(torch.from_numpy(np.array(Image.open(condition_path))).permute(2,0,1).unsqueeze(0).to(device).float())
|
| 131 |
+
condition_img = 1 - condition_img
|
| 132 |
+
condition_img = condition_img.repeat(2,3,1,1) * 255
|
| 133 |
+
elif args.condition_type == 'depth':
|
| 134 |
+
images = Image.open(condition_path)
|
| 135 |
+
inputs = processor(images=images, return_tensors="pt", size=(512,512)).to(device)
|
| 136 |
+
outputs = model(**inputs)
|
| 137 |
+
condition_img = outputs.predicted_depth
|
| 138 |
+
condition_img = condition_img.unsqueeze(0).repeat(2,3,1,1)
|
| 139 |
+
condition_img = (condition_img * 255 / condition_img.max())
|
| 140 |
+
# 所有加载的条件图像都会进行归一化处理,
|
| 141 |
+
condition_img = condition_img.to(device)
|
| 142 |
+
condition_img = 2*(condition_img/255 - 0.5)#使得图像值在 [-1, 1] 范围内,以便与生成模型的输入匹配。
|
| 143 |
+
prompts = [args.prompt if args.prompt is not None else "a high-quality image"]
|
| 144 |
+
prompts = prompts * 2
|
| 145 |
+
# 通过 T5Embedder 模型来获取文本提示(prompt)的嵌入向量 caption_embs
|
| 146 |
+
caption_embs, emb_masks = t5_model.get_text_embeddings(prompts)
|
| 147 |
+
|
| 148 |
+
if not args.no_left_padding:
|
| 149 |
+
print(f"processing left-padding...")
|
| 150 |
+
# a naive way to implement left-padding
|
| 151 |
+
new_emb_masks = torch.flip(emb_masks, dims=[-1])
|
| 152 |
+
new_caption_embs = []
|
| 153 |
+
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)):
|
| 154 |
+
valid_num = int(emb_mask.sum().item())
|
| 155 |
+
print(f' prompt {idx} token len: {valid_num}')
|
| 156 |
+
new_caption_emb = torch.cat([caption_emb[valid_num:],caption_emb[:valid_num]])
|
| 157 |
+
new_caption_embs.append(new_caption_emb)
|
| 158 |
+
new_caption_embs = torch.stack(new_caption_embs)
|
| 159 |
+
else:
|
| 160 |
+
new_caption_embs, new_emb_masks = caption_embs, emb_masks
|
| 161 |
+
c_indices = new_caption_embs * new_emb_masks[:,:, None]
|
| 162 |
+
c_emb_masks = new_emb_masks
|
| 163 |
+
qzshape = [len(c_indices), args.codebook_embed_dim, args.image_H//args.downsample_size, args.image_W//args.downsample_size]
|
| 164 |
+
t1 = time.time()
|
| 165 |
+
# generate() 函数使用这些输入(文本token:c_indices和图像条件)来生成对应的 图像 token
|
| 166 |
+
index_sample = generate(
|
| 167 |
+
gpt_model, c_indices, (args.image_H//args.downsample_size)*(args.image_W//args.downsample_size),#latent_size ** 2,
|
| 168 |
+
c_emb_masks, condition=condition_img.to(precision),
|
| 169 |
+
cfg_scale=args.cfg_scale,
|
| 170 |
+
temperature=args.temperature, top_k=args.top_k,
|
| 171 |
+
top_p=args.top_p, sample_logits=True,
|
| 172 |
+
control_strength=args.control_strength,
|
| 173 |
+
)
|
| 174 |
+
sampling_time = time.time() - t1
|
| 175 |
+
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
|
| 176 |
+
|
| 177 |
+
t2 = time.time()
|
| 178 |
+
print(index_sample.shape)
|
| 179 |
+
# 生成的图像 token(index_sample)会通过 vq_model.decode_code() 解码成实际的图像样本
|
| 180 |
+
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
|
| 181 |
+
decoder_time = time.time() - t2
|
| 182 |
+
print(f"decoder takes about {decoder_time:.2f} seconds.")
|
| 183 |
+
|
| 184 |
+
samples = torch.cat((condition_img[0:1], samples), dim=0)
|
| 185 |
+
save_image(samples, f"sample/example/sample_t2i_{args.condition_type}.png", nrow=4, normalize=True, value_range=(-1, 1))
|
| 186 |
+
print(f"image is saved to sample/example/sample_t2i_{args.condition_type}.png")
|
| 187 |
+
print(prompts)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
if __name__ == "__main__":
|
| 191 |
+
parser = argparse.ArgumentParser()
|
| 192 |
+
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
|
| 193 |
+
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
|
| 194 |
+
parser.add_argument("--t5-feature-max-len", type=int, default=120)
|
| 195 |
+
parser.add_argument("--t5-feature-dim", type=int, default=2048)
|
| 196 |
+
parser.add_argument("--no-left-padding", action='store_true', default=False)
|
| 197 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
|
| 198 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None)
|
| 199 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class->image or text->image")
|
| 200 |
+
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
|
| 201 |
+
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 202 |
+
parser.add_argument("--compile", action='store_true', default=False)
|
| 203 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 204 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 205 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 206 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 207 |
+
parser.add_argument("--image-size", type=int, choices=[256, 320, 384, 400, 448, 512, 576, 640, 704, 768], default=768)
|
| 208 |
+
parser.add_argument("--image-H", type=int, default=512)
|
| 209 |
+
parser.add_argument("--image-W", type=int, default=512)
|
| 210 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 211 |
+
parser.add_argument("--cfg-scale", type=float, default=4)
|
| 212 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 213 |
+
parser.add_argument("--top-k", type=int, default=2000, help="top-k value to sample with")
|
| 214 |
+
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
|
| 215 |
+
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
|
| 216 |
+
|
| 217 |
+
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 218 |
+
parser.add_argument("--condition-type", type=str, choices=['seg', 'canny', 'hed', 'lineart', 'depth', 'canny_base'], default="canny")
|
| 219 |
+
parser.add_argument("--prompt", type=str, default='a high-quality image')
|
| 220 |
+
parser.add_argument("--condition-path", type=str, default='condition/example/t2i/multigen/landscape.png')
|
| 221 |
+
parser.add_argument("--adapter-size", type=str, default='small')
|
| 222 |
+
|
| 223 |
+
parser.add_argument("--control-strength", type=float, default=1.0)
|
| 224 |
+
args = parser.parse_args()
|
| 225 |
+
main(args)
|
autoregressive/sample/sample_t2i_MR.py
ADDED
|
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 4 |
+
torch.set_float32_matmul_precision('high')
|
| 5 |
+
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
|
| 6 |
+
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
|
| 7 |
+
from torchvision.utils import save_image
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import sys
|
| 11 |
+
current_directory = os.getcwd()
|
| 12 |
+
sys.path.append(current_directory)
|
| 13 |
+
import time
|
| 14 |
+
import argparse
|
| 15 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 16 |
+
from language.t5 import T5Embedder
|
| 17 |
+
from autoregressive.models.gpt import GPT_models
|
| 18 |
+
from autoregressive.models.gpt_t2i import GPT_models
|
| 19 |
+
from autoregressive.models.generate import generate
|
| 20 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 21 |
+
from dataset.t2i_control import build_t2i_control_code
|
| 22 |
+
from accelerate import Accelerator
|
| 23 |
+
from dataset.build import build_dataset
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
| 26 |
+
import torch.nn.functional as F
|
| 27 |
+
from condition.canny import CannyDetector
|
| 28 |
+
from condition.hed import HEDdetector
|
| 29 |
+
import numpy as np
|
| 30 |
+
from PIL import Image
|
| 31 |
+
from condition.lineart import LineArt
|
| 32 |
+
import cv2
|
| 33 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
| 34 |
+
from condition.midas.depth import MidasDetector
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def resize_image_to_16_multiple(image_path, condition_type='seg'):
|
| 38 |
+
image = Image.open(image_path)
|
| 39 |
+
width, height = image.size
|
| 40 |
+
|
| 41 |
+
if condition_type == 'depth': # The depth model requires a side length that is a multiple of 32
|
| 42 |
+
new_width = (width + 31) // 32 * 32
|
| 43 |
+
new_height = (height + 31) // 32 * 32
|
| 44 |
+
else:
|
| 45 |
+
new_width = (width + 15) // 16 * 16
|
| 46 |
+
new_height = (height + 15) // 16 * 16
|
| 47 |
+
|
| 48 |
+
resized_image = image.resize((new_width, new_height))
|
| 49 |
+
return resized_image
|
| 50 |
+
|
| 51 |
+
def main(args):
|
| 52 |
+
# Setup PyTorch:
|
| 53 |
+
torch.manual_seed(args.seed)
|
| 54 |
+
torch.backends.cudnn.deterministic = True
|
| 55 |
+
torch.backends.cudnn.benchmark = False
|
| 56 |
+
torch.set_grad_enabled(False)
|
| 57 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 58 |
+
|
| 59 |
+
# create and load model
|
| 60 |
+
vq_model = VQ_models[args.vq_model](
|
| 61 |
+
codebook_size=args.codebook_size,
|
| 62 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 63 |
+
vq_model.to(device)
|
| 64 |
+
vq_model.eval()
|
| 65 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 66 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 67 |
+
del checkpoint
|
| 68 |
+
print(f"image tokenizer is loaded")
|
| 69 |
+
|
| 70 |
+
# create and load gpt model
|
| 71 |
+
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
|
| 72 |
+
latent_size = args.image_size // args.downsample_size
|
| 73 |
+
gpt_model = GPT_models[args.gpt_model](
|
| 74 |
+
block_size=latent_size ** 2,
|
| 75 |
+
cls_token_num=args.cls_token_num,
|
| 76 |
+
model_type=args.gpt_type,
|
| 77 |
+
condition_type=args.condition_type,
|
| 78 |
+
).to(device=device, dtype=precision)
|
| 79 |
+
|
| 80 |
+
_, file_extension = os.path.splitext(args.gpt_ckpt)
|
| 81 |
+
if file_extension.lower() == '.safetensors':
|
| 82 |
+
from safetensors.torch import load_file
|
| 83 |
+
model_weight = load_file(args.gpt_ckpt)
|
| 84 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 85 |
+
gpt_model.eval()
|
| 86 |
+
else:
|
| 87 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 88 |
+
if "model" in checkpoint: # ddp
|
| 89 |
+
model_weight = checkpoint["model"]
|
| 90 |
+
elif "module" in checkpoint: # deepspeed
|
| 91 |
+
model_weight = checkpoint["module"]
|
| 92 |
+
elif "state_dict" in checkpoint:
|
| 93 |
+
model_weight = checkpoint["state_dict"]
|
| 94 |
+
else:
|
| 95 |
+
raise Exception("please check model weight")
|
| 96 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 97 |
+
gpt_model.eval()
|
| 98 |
+
del checkpoint
|
| 99 |
+
print(f"gpt model is loaded")
|
| 100 |
+
|
| 101 |
+
if args.compile:
|
| 102 |
+
print(f"compiling the model...")
|
| 103 |
+
gpt_model = torch.compile(
|
| 104 |
+
gpt_model,
|
| 105 |
+
mode="reduce-overhead",
|
| 106 |
+
fullgraph=True
|
| 107 |
+
) # requires PyTorch 2.0 (optional)
|
| 108 |
+
else:
|
| 109 |
+
print(f"no need to compile model in demo")
|
| 110 |
+
|
| 111 |
+
assert os.path.exists(args.t5_path)
|
| 112 |
+
t5_model = T5Embedder(
|
| 113 |
+
device=device,
|
| 114 |
+
local_cache=True,
|
| 115 |
+
cache_dir=args.t5_path,
|
| 116 |
+
dir_or_name=args.t5_model_type,
|
| 117 |
+
torch_dtype=precision,
|
| 118 |
+
model_max_length=args.t5_feature_max_len,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
if args.condition_type == 'canny':
|
| 123 |
+
get_control = CannyDetector()
|
| 124 |
+
elif args.condition_type == 'hed':
|
| 125 |
+
get_control = HEDdetector().to(device).eval()
|
| 126 |
+
elif args.condition_type == 'lineart':
|
| 127 |
+
get_control = LineArt()
|
| 128 |
+
get_control.load_state_dict(torch.load('condition/ckpts/model.pth', map_location=torch.device('cpu')))
|
| 129 |
+
get_control.to(device)
|
| 130 |
+
elif args.condition_type == 'depth':
|
| 131 |
+
processor = DPTImageProcessor.from_pretrained("condition/ckpts/dpt_large")
|
| 132 |
+
model_large = DPTForDepthEstimation.from_pretrained("condition/ckpts/dpt_large").to(device)
|
| 133 |
+
model = MidasDetector(device=device)
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
|
| 136 |
+
condition_img = resize_image_to_16_multiple(args.condition_path, args.condition_type)
|
| 137 |
+
W, H = condition_img.size
|
| 138 |
+
print(H,W)
|
| 139 |
+
if args.condition_type == 'seg':
|
| 140 |
+
condition_img = torch.from_numpy(np.array(condition_img))
|
| 141 |
+
condition_img = condition_img.permute(2,0,1).unsqueeze(0).repeat(2,1,1,1)
|
| 142 |
+
elif args.condition_type == 'canny':
|
| 143 |
+
condition_img = get_control(np.array(condition_img))
|
| 144 |
+
condition_img = torch.from_numpy(condition_img[None,None,...]).repeat(2,3,1,1)
|
| 145 |
+
elif args.condition_type == 'hed':
|
| 146 |
+
condition_img = get_control(torch.from_numpy(np.array(condition_img)).permute(2,0,1).unsqueeze(0).to(device))
|
| 147 |
+
condition_img = condition_img.unsqueeze(1).repeat(2,3,1,1)
|
| 148 |
+
elif args.condition_type == 'lineart':
|
| 149 |
+
condition_img = get_control(torch.from_numpy(np.array(condition_img)).permute(2,0,1).unsqueeze(0).to(device).float())
|
| 150 |
+
condition_img = condition_img.repeat(2,3,1,1) * 255
|
| 151 |
+
elif args.condition_type == 'depth':
|
| 152 |
+
images = condition_img
|
| 153 |
+
if H == W:
|
| 154 |
+
inputs = processor(images=images, return_tensors="pt", size=(H,W)).to(device)
|
| 155 |
+
outputs = model_large(**inputs)
|
| 156 |
+
condition_img = outputs.predicted_depth
|
| 157 |
+
condition_img = (condition_img * 255 / condition_img.max())
|
| 158 |
+
else:
|
| 159 |
+
condition_img = torch.from_numpy(model(torch.from_numpy(np.array(condition_img)).to(device))).unsqueeze(0)
|
| 160 |
+
condition_img = condition_img.unsqueeze(0).repeat(2,3,1,1)
|
| 161 |
+
condition_img = condition_img.to(device)
|
| 162 |
+
condition_img = 2*(condition_img/255 - 0.5)
|
| 163 |
+
prompts = [args.prompt if args.prompt is not None else "a high-quality image"]
|
| 164 |
+
prompts = prompts * 2
|
| 165 |
+
caption_embs, emb_masks = t5_model.get_text_embeddings(prompts)
|
| 166 |
+
|
| 167 |
+
if not args.no_left_padding:
|
| 168 |
+
print(f"processing left-padding...")
|
| 169 |
+
# a naive way to implement left-padding
|
| 170 |
+
new_emb_masks = torch.flip(emb_masks, dims=[-1])
|
| 171 |
+
new_caption_embs = []
|
| 172 |
+
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)):
|
| 173 |
+
valid_num = int(emb_mask.sum().item())
|
| 174 |
+
print(f' prompt {idx} token len: {valid_num}')
|
| 175 |
+
new_caption_emb = torch.cat([caption_emb[valid_num:],caption_emb[:valid_num]])
|
| 176 |
+
new_caption_embs.append(new_caption_emb)
|
| 177 |
+
new_caption_embs = torch.stack(new_caption_embs)
|
| 178 |
+
else:
|
| 179 |
+
new_caption_embs, new_emb_masks = caption_embs, emb_masks
|
| 180 |
+
c_indices = new_caption_embs * new_emb_masks[:,:, None]
|
| 181 |
+
c_emb_masks = new_emb_masks
|
| 182 |
+
qzshape = [len(c_indices), args.codebook_embed_dim, H//args.downsample_size, W//args.downsample_size]
|
| 183 |
+
t1 = time.time()
|
| 184 |
+
index_sample = generate(
|
| 185 |
+
gpt_model, c_indices, (H//args.downsample_size)*(W//args.downsample_size),#latent_size ** 2,
|
| 186 |
+
c_emb_masks, condition=condition_img.to(precision),
|
| 187 |
+
cfg_scale=args.cfg_scale,
|
| 188 |
+
temperature=args.temperature, top_k=args.top_k,
|
| 189 |
+
top_p=args.top_p, sample_logits=True,
|
| 190 |
+
)
|
| 191 |
+
sampling_time = time.time() - t1
|
| 192 |
+
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
|
| 193 |
+
|
| 194 |
+
t2 = time.time()
|
| 195 |
+
print(index_sample.shape)
|
| 196 |
+
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
|
| 197 |
+
decoder_time = time.time() - t2
|
| 198 |
+
print(f"decoder takes about {decoder_time:.2f} seconds.")
|
| 199 |
+
|
| 200 |
+
samples = torch.cat((condition_img[0:1], samples), dim=0)
|
| 201 |
+
save_image(samples, f"sample/example/sample_t2i_MR_{args.condition_type}.png", nrow=4, normalize=True, value_range=(-1, 1))
|
| 202 |
+
print(f"image is saved to sample/example/sample_t2i_MR_{args.condition_type}.png")
|
| 203 |
+
print(prompts)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
if __name__ == "__main__":
|
| 207 |
+
parser = argparse.ArgumentParser()
|
| 208 |
+
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
|
| 209 |
+
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
|
| 210 |
+
parser.add_argument("--t5-feature-max-len", type=int, default=120)
|
| 211 |
+
parser.add_argument("--t5-feature-dim", type=int, default=2048)
|
| 212 |
+
parser.add_argument("--no-left-padding", action='store_true', default=False)
|
| 213 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
|
| 214 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None)
|
| 215 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class->image or text->image")
|
| 216 |
+
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
|
| 217 |
+
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 218 |
+
parser.add_argument("--compile", action='store_true', default=False)
|
| 219 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 220 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 221 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 222 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 223 |
+
parser.add_argument("--image-size", type=int, choices=[256, 320, 384, 400, 448, 512, 576, 640, 704, 768], default=768)
|
| 224 |
+
parser.add_argument("--image-H", type=int, default=512)
|
| 225 |
+
parser.add_argument("--image-W", type=int, default=512)
|
| 226 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 227 |
+
parser.add_argument("--cfg-scale", type=float, default=4)
|
| 228 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 229 |
+
parser.add_argument("--top-k", type=int, default=2000, help="top-k value to sample with")
|
| 230 |
+
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
|
| 231 |
+
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
|
| 232 |
+
|
| 233 |
+
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 234 |
+
parser.add_argument("--condition-type", type=str, choices=['seg', 'canny', 'hed', 'lineart', 'depth'], default="canny")
|
| 235 |
+
parser.add_argument("--prompt", type=str, default='a high-quality image')
|
| 236 |
+
parser.add_argument("--condition-path", type=str, default='condition/example/t2i/multigen/landscape.png')
|
| 237 |
+
args = parser.parse_args()
|
| 238 |
+
main(args)
|
autoregressive/serve/README.md
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## serving by vLLM
|
| 2 |
+
|
| 3 |
+
### Install
|
| 4 |
+
```
|
| 5 |
+
pip install vllm==0.4.1
|
| 6 |
+
```
|
| 7 |
+
|
| 8 |
+
### Comparison (A100)
|
| 9 |
+
|
| 10 |
+
Method | params | baseline(s) | vllm(s) | speed-up ratio
|
| 11 |
+
--- |:---:|:---:|:---:|:---:
|
| 12 |
+
[GPT-B](./fake_json/GPT-B.json) | 111M | 7.80 | 2.39 | 326 %
|
| 13 |
+
[GPT-L](./fake_json/GPT-L.json) | 343M | 13.72 | 3.48 | 380 %
|
| 14 |
+
[GPT-XL](./fake_json/GPT-XL.json) | 775M | 19.76 | 4.84 | 408 %
|
| 15 |
+
[GPT-XXL](./fake_json/GPT-XXL.json)| 1.4B | 26.38 | 6.36 | 414 %
|
| 16 |
+
[GPT-3B](./fake_json/GPT-3B.json) | 3.1B | 14.73 | 6.26 | 235 %
|
| 17 |
+
|
| 18 |
+
```
|
| 19 |
+
### GPT-B
|
| 20 |
+
# 7.80 seconds
|
| 21 |
+
python3 autoregressive/sample/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_B_384.pt --image-size 384
|
| 22 |
+
|
| 23 |
+
# 2.39 seconds
|
| 24 |
+
python3 autoregressive/serve/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_B_384.pt --image-size 384
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
### GPT-L
|
| 28 |
+
# 13.72 seconds
|
| 29 |
+
python3 autoregressive/sample/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_L_384.pt --gpt-model GPT-L --image-size 384
|
| 30 |
+
|
| 31 |
+
# 3.48 seconds
|
| 32 |
+
python3 autoregressive/serve/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_L_384.pt --gpt-model GPT-L --image-size 384
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
### GPT-XL
|
| 36 |
+
# 19.76 seconds
|
| 37 |
+
python3 autoregressive/sample/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_XL_384.pt --gpt-model GPT-XL --image-size 384
|
| 38 |
+
|
| 39 |
+
# 4.84 seconds
|
| 40 |
+
python3 autoregressive/serve/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_XL_384.pt --gpt-model GPT-XL --image-size 384
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
### GPT-XXL
|
| 44 |
+
# 26.38 seconds
|
| 45 |
+
python3 autoregressive/sample/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_XXL_384.pt --from-fsdp --gpt-model GPT-XXL --image-size 384
|
| 46 |
+
|
| 47 |
+
# 6.36 seconds
|
| 48 |
+
python3 autoregressive/serve/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_XXL_384.pt --from-fsdp --gpt-model GPT-XXL --image-size 384
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
### GPT-3B
|
| 52 |
+
# 14.73 seconds
|
| 53 |
+
python3 autoregressive/sample/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_3B_384.pt --from-fsdp --gpt-model GPT-3B --image-size 384
|
| 54 |
+
|
| 55 |
+
# 6.26 seconds
|
| 56 |
+
python3 autoregressive/serve/sample_c2i.py --vq-ckpt ./pretrained_models/vq_ds16_c2i.pt --gpt-ckpt ./pretrained_models/c2i_3B_384.pt --from-fsdp --gpt-model GPT-3B --image-size 384
|
| 57 |
+
|
| 58 |
+
```
|
autoregressive/serve/fake_json/GPT-3B.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/opt-125m",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"activation_function": "relu",
|
| 5 |
+
"architectures": [
|
| 6 |
+
"OPTForCausalLM"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"bos_token_id": 2,
|
| 10 |
+
"do_layer_norm_before": true,
|
| 11 |
+
"dropout": 0.1,
|
| 12 |
+
"eos_token_id": 2,
|
| 13 |
+
"ffn_dim": 3072,
|
| 14 |
+
"hidden_size": 3584,
|
| 15 |
+
"init_std": 0.02,
|
| 16 |
+
"layerdrop": 0.0,
|
| 17 |
+
"max_position_embeddings": 2048,
|
| 18 |
+
"model_type": "opt",
|
| 19 |
+
"num_attention_heads": 32,
|
| 20 |
+
"num_hidden_layers": 24,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"prefix": "</s>",
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.21.0.dev0",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 16384,
|
| 27 |
+
"word_embed_proj_dim": 768
|
| 28 |
+
}
|
autoregressive/serve/fake_json/GPT-B.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/opt-125m",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"activation_function": "relu",
|
| 5 |
+
"architectures": [
|
| 6 |
+
"OPTForCausalLM"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"bos_token_id": 2,
|
| 10 |
+
"do_layer_norm_before": true,
|
| 11 |
+
"dropout": 0.1,
|
| 12 |
+
"eos_token_id": 2,
|
| 13 |
+
"ffn_dim": 3072,
|
| 14 |
+
"hidden_size": 768,
|
| 15 |
+
"init_std": 0.02,
|
| 16 |
+
"layerdrop": 0.0,
|
| 17 |
+
"max_position_embeddings": 2048,
|
| 18 |
+
"model_type": "opt",
|
| 19 |
+
"num_attention_heads": 12,
|
| 20 |
+
"num_hidden_layers": 12,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"prefix": "</s>",
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.21.0.dev0",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 16384,
|
| 27 |
+
"word_embed_proj_dim": 768
|
| 28 |
+
}
|
autoregressive/serve/fake_json/GPT-L.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/opt-125m",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"activation_function": "relu",
|
| 5 |
+
"architectures": [
|
| 6 |
+
"OPTForCausalLM"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"bos_token_id": 2,
|
| 10 |
+
"do_layer_norm_before": true,
|
| 11 |
+
"dropout": 0.1,
|
| 12 |
+
"eos_token_id": 2,
|
| 13 |
+
"ffn_dim": 3072,
|
| 14 |
+
"hidden_size": 1024,
|
| 15 |
+
"init_std": 0.02,
|
| 16 |
+
"layerdrop": 0.0,
|
| 17 |
+
"max_position_embeddings": 2048,
|
| 18 |
+
"model_type": "opt",
|
| 19 |
+
"num_attention_heads": 16,
|
| 20 |
+
"num_hidden_layers": 24,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"prefix": "</s>",
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.21.0.dev0",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 16384,
|
| 27 |
+
"word_embed_proj_dim": 768
|
| 28 |
+
}
|
autoregressive/serve/fake_json/GPT-XL.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/opt-125m",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"activation_function": "relu",
|
| 5 |
+
"architectures": [
|
| 6 |
+
"OPTForCausalLM"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"bos_token_id": 2,
|
| 10 |
+
"do_layer_norm_before": true,
|
| 11 |
+
"dropout": 0.1,
|
| 12 |
+
"eos_token_id": 2,
|
| 13 |
+
"ffn_dim": 3072,
|
| 14 |
+
"hidden_size": 1280,
|
| 15 |
+
"init_std": 0.02,
|
| 16 |
+
"layerdrop": 0.0,
|
| 17 |
+
"max_position_embeddings": 2048,
|
| 18 |
+
"model_type": "opt",
|
| 19 |
+
"num_attention_heads": 20,
|
| 20 |
+
"num_hidden_layers": 36,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"prefix": "</s>",
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.21.0.dev0",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 16384,
|
| 27 |
+
"word_embed_proj_dim": 768
|
| 28 |
+
}
|
autoregressive/serve/fake_json/GPT-XXL.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/opt-125m",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"activation_function": "relu",
|
| 5 |
+
"architectures": [
|
| 6 |
+
"OPTForCausalLM"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"bos_token_id": 2,
|
| 10 |
+
"do_layer_norm_before": true,
|
| 11 |
+
"dropout": 0.1,
|
| 12 |
+
"eos_token_id": 2,
|
| 13 |
+
"ffn_dim": 3072,
|
| 14 |
+
"hidden_size": 1536,
|
| 15 |
+
"init_std": 0.02,
|
| 16 |
+
"layerdrop": 0.0,
|
| 17 |
+
"max_position_embeddings": 2048,
|
| 18 |
+
"model_type": "opt",
|
| 19 |
+
"num_attention_heads": 24,
|
| 20 |
+
"num_hidden_layers": 48,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"prefix": "</s>",
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.21.0.dev0",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 16384,
|
| 27 |
+
"word_embed_proj_dim": 768
|
| 28 |
+
}
|
autoregressive/serve/gpt_model.py
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional, List
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
from vllm.model_executor.layers.layernorm import RMSNorm
|
| 8 |
+
from vllm.model_executor.layers.activation import SiluAndMul
|
| 9 |
+
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
| 10 |
+
from vllm.sequence import SamplerOutput
|
| 11 |
+
|
| 12 |
+
from vllm.attention import AttentionMetadata
|
| 13 |
+
from vllm.attention import Attention as pagedAttention
|
| 14 |
+
|
| 15 |
+
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
| 16 |
+
from autoregressive.serve.sampler import Sampler
|
| 17 |
+
|
| 18 |
+
def find_multiple(n: int, k: int):
|
| 19 |
+
if n % k == 0:
|
| 20 |
+
return n
|
| 21 |
+
return n + k - (n % k)
|
| 22 |
+
|
| 23 |
+
@dataclass
|
| 24 |
+
class ModelArgs:
|
| 25 |
+
dim: int = 4096
|
| 26 |
+
n_layer: int = 32
|
| 27 |
+
n_head: int = 32
|
| 28 |
+
n_kv_head: Optional[int] = None
|
| 29 |
+
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
| 30 |
+
ffn_dim_multiplier: Optional[float] = None
|
| 31 |
+
rope_base: float = 10000
|
| 32 |
+
norm_eps: float = 1e-5
|
| 33 |
+
initializer_range: float = 0.02
|
| 34 |
+
|
| 35 |
+
num_classes: int = 1000
|
| 36 |
+
class_dropout_prob: float = 0.1
|
| 37 |
+
model_type: str = 'c2i'
|
| 38 |
+
cfg_scale: float = 4.0
|
| 39 |
+
|
| 40 |
+
vocab_size: int = 16384
|
| 41 |
+
cls_token_num: int = 1
|
| 42 |
+
block_size: int = 256
|
| 43 |
+
max_batch_size: int = 32
|
| 44 |
+
max_seq_len: int = 2048
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
#################################################################################
|
| 48 |
+
# Embedding Layers for Class Labels #
|
| 49 |
+
#################################################################################
|
| 50 |
+
class LabelEmbedder(nn.Module):
|
| 51 |
+
"""
|
| 52 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
| 53 |
+
"""
|
| 54 |
+
def __init__(self, num_classes, hidden_size, dropout_prob):
|
| 55 |
+
super().__init__()
|
| 56 |
+
use_cfg_embedding = dropout_prob > 0
|
| 57 |
+
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
| 58 |
+
self.num_classes = num_classes
|
| 59 |
+
self.dropout_prob = dropout_prob
|
| 60 |
+
|
| 61 |
+
# def token_drop(self, labels, force_drop_ids=None):
|
| 62 |
+
# """
|
| 63 |
+
# Drops labels to enable classifier-free guidance.
|
| 64 |
+
# """
|
| 65 |
+
# if force_drop_ids is None:
|
| 66 |
+
# drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
| 67 |
+
# else:
|
| 68 |
+
# drop_ids = force_drop_ids == 1
|
| 69 |
+
# labels = torch.where(drop_ids, self.num_classes, labels)
|
| 70 |
+
# return labels
|
| 71 |
+
|
| 72 |
+
# def forward(self, labels, train, force_drop_ids=None):
|
| 73 |
+
def forward(self, labels):
|
| 74 |
+
# use_dropout = self.dropout_prob > 0
|
| 75 |
+
# if (train and use_dropout) or (force_drop_ids is not None):
|
| 76 |
+
# labels = self.token_drop(labels, force_drop_ids)
|
| 77 |
+
embeddings = self.embedding_table(labels)
|
| 78 |
+
return embeddings
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
#################################################################################
|
| 82 |
+
# GPT Model #
|
| 83 |
+
#################################################################################
|
| 84 |
+
# class RMSNorm(torch.nn.Module):
|
| 85 |
+
# def __init__(self, dim: int, eps: float = 1e-5):
|
| 86 |
+
# super().__init__()
|
| 87 |
+
# self.eps = eps
|
| 88 |
+
# self.weight = nn.Parameter(torch.ones(dim))
|
| 89 |
+
|
| 90 |
+
# def _norm(self, x):
|
| 91 |
+
# return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
| 92 |
+
|
| 93 |
+
# def forward(self, x):
|
| 94 |
+
# output = self._norm(x.float()).type_as(x)
|
| 95 |
+
# return output * self.weight
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class FeedForward(nn.Module):
|
| 99 |
+
def __init__(self, config: ModelArgs):
|
| 100 |
+
super().__init__()
|
| 101 |
+
hidden_dim = 4 * config.dim
|
| 102 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 103 |
+
# custom dim factor multiplier
|
| 104 |
+
if config.ffn_dim_multiplier is not None:
|
| 105 |
+
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
|
| 106 |
+
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
|
| 107 |
+
|
| 108 |
+
# self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 109 |
+
# self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
|
| 110 |
+
self.w_merged = nn.Linear(config.dim, hidden_dim * 2, bias=False)
|
| 111 |
+
self.act_fn = SiluAndMul()
|
| 112 |
+
|
| 113 |
+
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
|
| 114 |
+
# self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
|
| 115 |
+
|
| 116 |
+
# def forward(self, x):
|
| 117 |
+
# return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
| 118 |
+
|
| 119 |
+
def forward(self, x):
|
| 120 |
+
x = self.w_merged(x)
|
| 121 |
+
x = self.act_fn(x)
|
| 122 |
+
x = self.w2(x)
|
| 123 |
+
# return self.ffn_dropout(x)
|
| 124 |
+
return x
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class Attention(nn.Module):
|
| 128 |
+
def __init__(self, config: ModelArgs):
|
| 129 |
+
super().__init__()
|
| 130 |
+
assert config.dim % config.n_head == 0
|
| 131 |
+
self.dim = config.dim
|
| 132 |
+
self.head_dim = config.dim // config.n_head
|
| 133 |
+
self.n_head = config.n_head
|
| 134 |
+
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
|
| 135 |
+
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim
|
| 136 |
+
|
| 137 |
+
# key, query, value projections for all heads, but in a batch
|
| 138 |
+
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
|
| 139 |
+
self.wo = nn.Linear(config.dim, config.dim, bias=False)
|
| 140 |
+
|
| 141 |
+
# pagedAttention
|
| 142 |
+
if config.dim // config.n_head == 100:
|
| 143 |
+
self.attn = None # for this case, we need to overwrite the attn in AttentionMonkeyPatch
|
| 144 |
+
else:
|
| 145 |
+
self.attn = pagedAttention(self.n_head, self.head_dim, self.head_dim**-0.5, num_kv_heads=self.n_kv_head)
|
| 146 |
+
|
| 147 |
+
# 2d rotary pos embedding
|
| 148 |
+
grid_size = int(config.block_size ** 0.5)
|
| 149 |
+
assert grid_size * grid_size == config.block_size
|
| 150 |
+
freqs_cis = precompute_freqs_cis_2d(grid_size, config.dim // config.n_head, config.rope_base, config.cls_token_num)
|
| 151 |
+
self.register_buffer('freqs_cis', freqs_cis)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def forward(
|
| 155 |
+
self,
|
| 156 |
+
x: torch.Tensor,
|
| 157 |
+
positions: torch.Tensor,
|
| 158 |
+
kv_cache: torch.Tensor,
|
| 159 |
+
attn_metadata: AttentionMetadata,
|
| 160 |
+
):
|
| 161 |
+
kv_size = self.n_kv_head * self.head_dim
|
| 162 |
+
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
|
| 163 |
+
|
| 164 |
+
xq = xq.view(*xq.shape[:-1], 1, self.n_head, self.head_dim)
|
| 165 |
+
xk = xk.view(*xk.shape[:-1], 1, self.n_kv_head, self.head_dim)
|
| 166 |
+
freqs_cis = self.freqs_cis[positions].unsqueeze(1)
|
| 167 |
+
xq = apply_rotary_emb_bs(xq, freqs_cis)
|
| 168 |
+
xk = apply_rotary_emb_bs(xk, freqs_cis)
|
| 169 |
+
xq = xq.flatten(1)
|
| 170 |
+
xk = xk.flatten(1)
|
| 171 |
+
|
| 172 |
+
output = self.attn(xq, xk, xv, kv_cache, attn_metadata)
|
| 173 |
+
output = self.wo(output)
|
| 174 |
+
|
| 175 |
+
return output
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class AttentionMonkeyPatch(Attention):
|
| 179 |
+
"""
|
| 180 |
+
Note:
|
| 181 |
+
In vllm, PagedAttention supports head sizes [64, 80, 96, 112, 128, 256].
|
| 182 |
+
However, LlamaGen-3B model has head size 100 (for some historical reasons).
|
| 183 |
+
Here we hack Attnetion to enable vllm support head size 100.
|
| 184 |
+
"""
|
| 185 |
+
def __init__(self, config: ModelArgs):
|
| 186 |
+
super().__init__(config)
|
| 187 |
+
# overwrite PagedAttention
|
| 188 |
+
# hard-coded 112 for LlamaGen-3B model
|
| 189 |
+
self.attn = pagedAttention(self.n_head, 112, 100**-0.5, num_kv_heads=self.n_kv_head)
|
| 190 |
+
|
| 191 |
+
def forward(
|
| 192 |
+
self,
|
| 193 |
+
x: torch.Tensor,
|
| 194 |
+
positions: torch.Tensor,
|
| 195 |
+
kv_cache: torch.Tensor,
|
| 196 |
+
attn_metadata: AttentionMetadata,
|
| 197 |
+
):
|
| 198 |
+
kv_size = self.n_kv_head * self.head_dim
|
| 199 |
+
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
|
| 200 |
+
|
| 201 |
+
xq = xq.view(*xq.shape[:-1], 1, self.n_head, self.head_dim)
|
| 202 |
+
xk = xk.view(*xk.shape[:-1], 1, self.n_kv_head, self.head_dim)
|
| 203 |
+
freqs_cis = self.freqs_cis[positions].unsqueeze(1)
|
| 204 |
+
xq = apply_rotary_emb_bs(xq, freqs_cis)
|
| 205 |
+
xk = apply_rotary_emb_bs(xk, freqs_cis)
|
| 206 |
+
xq = xq.flatten(1)
|
| 207 |
+
xk = xk.flatten(1)
|
| 208 |
+
############ padding to 112 to make vllm happy ############
|
| 209 |
+
zero_pad = torch.zeros(xq.shape[0], self.n_head, 112 - 100, device=xq.device, dtype=xq.dtype)
|
| 210 |
+
xq = xq.reshape(xq.shape[0], self.n_head, self.head_dim)
|
| 211 |
+
xk = xk.reshape(xk.shape[0], self.n_kv_head, self.head_dim)
|
| 212 |
+
xv = xv.reshape(xv.shape[0], self.n_kv_head, self.head_dim)
|
| 213 |
+
xq = torch.concat([xq, zero_pad], dim=-1).flatten(1)
|
| 214 |
+
xk = torch.concat([xk, zero_pad], dim=-1).flatten(1)
|
| 215 |
+
xv = torch.concat([xv, zero_pad], dim=-1).flatten(1)
|
| 216 |
+
|
| 217 |
+
output = self.attn(xq, xk, xv, kv_cache, attn_metadata)
|
| 218 |
+
############ de-padding to 100 ############
|
| 219 |
+
output = output.reshape(output.shape[0], self.n_head, 112)
|
| 220 |
+
output = output[..., :100].flatten(1)
|
| 221 |
+
|
| 222 |
+
output = self.wo(output)
|
| 223 |
+
|
| 224 |
+
return output
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class TransformerBlock(nn.Module):
|
| 228 |
+
def __init__(self, config: ModelArgs):
|
| 229 |
+
super().__init__()
|
| 230 |
+
if config.dim // config.n_head == 100:
|
| 231 |
+
self.attention = AttentionMonkeyPatch(config)
|
| 232 |
+
else:
|
| 233 |
+
self.attention = Attention(config)
|
| 234 |
+
self.feed_forward = FeedForward(config)
|
| 235 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 236 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 237 |
+
|
| 238 |
+
def forward(self, x: torch.Tensor, positions: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata):
|
| 239 |
+
h = x + self.attention(self.attention_norm(x), positions, kv_cache, attn_metadata)
|
| 240 |
+
out = h + self.feed_forward(self.ffn_norm(h))
|
| 241 |
+
return out
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class Transformer(nn.Module):
|
| 245 |
+
def __init__(self, config: ModelArgs):
|
| 246 |
+
super().__init__()
|
| 247 |
+
self.config = config
|
| 248 |
+
self.vocab_size = config.vocab_size
|
| 249 |
+
self.n_layer = config.n_layer
|
| 250 |
+
self.block_size = config.block_size
|
| 251 |
+
self.num_classes = config.num_classes
|
| 252 |
+
self.model_type = config.model_type
|
| 253 |
+
self.cls_token_num = config.cls_token_num
|
| 254 |
+
self.cfg_scale = config.cfg_scale
|
| 255 |
+
if self.model_type == 'c2i':
|
| 256 |
+
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
|
| 257 |
+
else:
|
| 258 |
+
raise Exception("vllm only supports c2i now, please check model type")
|
| 259 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
| 260 |
+
|
| 261 |
+
self.layers = torch.nn.ModuleList()
|
| 262 |
+
for layer_id in range(config.n_layer):
|
| 263 |
+
self.layers.append(TransformerBlock(config))
|
| 264 |
+
|
| 265 |
+
# output layer
|
| 266 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
| 267 |
+
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
|
| 268 |
+
|
| 269 |
+
self.logits_processor = LogitsProcessor(config.vocab_size)
|
| 270 |
+
|
| 271 |
+
self.sampler = Sampler(config.cfg_scale)
|
| 272 |
+
|
| 273 |
+
def forward(
|
| 274 |
+
self,
|
| 275 |
+
input_ids: torch.Tensor=None,
|
| 276 |
+
positions: torch.Tensor=None,
|
| 277 |
+
kv_caches: List[torch.Tensor]=None,
|
| 278 |
+
attn_metadata: AttentionMetadata=None,
|
| 279 |
+
):
|
| 280 |
+
# if positions.max() == 0: # prefill in inference
|
| 281 |
+
# token_embeddings = self.cls_embedding(input_ids)
|
| 282 |
+
# else: # decode_n_tokens(kv cache) in inference
|
| 283 |
+
# token_embeddings = self.tok_embeddings(input_ids)
|
| 284 |
+
cond_ids = torch.clamp(input_ids, max=self.num_classes)
|
| 285 |
+
token_embeddings = self.cls_embedding(cond_ids) * (positions.max() == 0) + \
|
| 286 |
+
self.tok_embeddings(input_ids) * (positions.max() != 0)
|
| 287 |
+
|
| 288 |
+
hh = token_embeddings
|
| 289 |
+
# transformer blocks
|
| 290 |
+
for layer_id, layer in enumerate(self.layers):
|
| 291 |
+
hh = layer(hh, positions, kv_caches[layer_id], attn_metadata)
|
| 292 |
+
|
| 293 |
+
# output layers
|
| 294 |
+
hh = self.norm(hh)
|
| 295 |
+
return hh
|
| 296 |
+
|
| 297 |
+
def compute_logits(self, hidden_states: torch.Tensor,
|
| 298 |
+
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
| 299 |
+
logits = self.logits_processor(self.output.weight, hidden_states, sampling_metadata)
|
| 300 |
+
return logits
|
| 301 |
+
|
| 302 |
+
def sample(
|
| 303 |
+
self,
|
| 304 |
+
logits: torch.Tensor,
|
| 305 |
+
sampling_metadata: SamplingMetadata,
|
| 306 |
+
) -> Optional[SamplerOutput]:
|
| 307 |
+
next_tokens = self.sampler(logits, sampling_metadata)
|
| 308 |
+
return next_tokens
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def custom_load_state_dict(self, model_weights):
|
| 312 |
+
model_weights = model_weights.copy()
|
| 313 |
+
for layer_id in range(len(self.layers)):
|
| 314 |
+
branch1 = f'layers.{layer_id}.feed_forward.w1.weight'
|
| 315 |
+
branch3 = f'layers.{layer_id}.feed_forward.w3.weight'
|
| 316 |
+
branch_merged = f'layers.{layer_id}.feed_forward.w_merged.weight'
|
| 317 |
+
model_weights[branch_merged] = torch.cat(
|
| 318 |
+
[model_weights[branch1], model_weights[branch3]], dim=0
|
| 319 |
+
)
|
| 320 |
+
model_weights.pop(branch1)
|
| 321 |
+
model_weights.pop(branch3)
|
| 322 |
+
|
| 323 |
+
if 'freqs_cis' in model_weights:
|
| 324 |
+
model_weights.pop('freqs_cis')
|
| 325 |
+
|
| 326 |
+
self.load_state_dict(model_weights, strict=False)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
#################################################################################
|
| 331 |
+
# Rotary Positional Embedding Functions #
|
| 332 |
+
#################################################################################
|
| 333 |
+
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
|
| 334 |
+
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
| 335 |
+
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
|
| 336 |
+
t = torch.arange(seq_len, device=freqs.device)
|
| 337 |
+
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
|
| 338 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
| 339 |
+
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
|
| 340 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
|
| 341 |
+
return cond_cache
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
|
| 345 |
+
# split the dimension into half, one for x and one for y
|
| 346 |
+
half_dim = n_elem // 2
|
| 347 |
+
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
|
| 348 |
+
t = torch.arange(grid_size, device=freqs.device)
|
| 349 |
+
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
|
| 350 |
+
freqs_grid = torch.concat([
|
| 351 |
+
freqs[:, None, :].expand(-1, grid_size, -1),
|
| 352 |
+
freqs[None, :, :].expand(grid_size, -1, -1),
|
| 353 |
+
], dim=-1) # (grid_size, grid_size, head_dim // 2)
|
| 354 |
+
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
|
| 355 |
+
cache = cache_grid.flatten(0, 1)
|
| 356 |
+
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
|
| 357 |
+
return cond_cache
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
|
| 361 |
+
# x: (bs, seq_len, n_head, head_dim)
|
| 362 |
+
# freqs_cis (seq_len, head_dim // 2, 2)
|
| 363 |
+
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
|
| 364 |
+
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
|
| 365 |
+
x_out2 = torch.stack([
|
| 366 |
+
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
| 367 |
+
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
| 368 |
+
], dim=-1)
|
| 369 |
+
x_out2 = x_out2.flatten(3)
|
| 370 |
+
return x_out2.type_as(x)
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
def apply_rotary_emb_bs(x: torch.Tensor, freqs_cis: torch.Tensor):
|
| 374 |
+
# x: (bs, seq_len, n_head, head_dim)
|
| 375 |
+
# freqs_cis (seq_len, head_dim // 2, 2)
|
| 376 |
+
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
|
| 377 |
+
freqs_cis = freqs_cis.view(xshaped.size(0), xshaped.size(1), 1, xshaped.size(3), 2) # (bs, seq_len, 1, head_dim//2, 2)
|
| 378 |
+
x_out2 = torch.stack([
|
| 379 |
+
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
| 380 |
+
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
| 381 |
+
], dim=-1)
|
| 382 |
+
x_out2 = x_out2.flatten(3)
|
| 383 |
+
return x_out2.type_as(x)
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
#################################################################################
|
| 387 |
+
# GPT Configs #
|
| 388 |
+
#################################################################################
|
| 389 |
+
### text-conditional
|
| 390 |
+
def GPT_7B(**kwargs):
|
| 391 |
+
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B
|
| 392 |
+
|
| 393 |
+
def GPT_3B(**kwargs):
|
| 394 |
+
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B
|
| 395 |
+
|
| 396 |
+
def GPT_1B(**kwargs):
|
| 397 |
+
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B
|
| 398 |
+
|
| 399 |
+
### class-conditional
|
| 400 |
+
def GPT_XXXL(**kwargs):
|
| 401 |
+
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B
|
| 402 |
+
|
| 403 |
+
def GPT_XXL(**kwargs):
|
| 404 |
+
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B
|
| 405 |
+
|
| 406 |
+
def GPT_XL(**kwargs):
|
| 407 |
+
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M
|
| 408 |
+
|
| 409 |
+
def GPT_L(**kwargs):
|
| 410 |
+
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M
|
| 411 |
+
|
| 412 |
+
def GPT_B(**kwargs):
|
| 413 |
+
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
GPT_models = {
|
| 417 |
+
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL,
|
| 418 |
+
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B,
|
| 419 |
+
}
|
autoregressive/serve/gpu_executor.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Set, Tuple, Optional, Set
|
| 2 |
+
import argparse
|
| 3 |
+
|
| 4 |
+
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
|
| 5 |
+
ModelConfig, ParallelConfig, SchedulerConfig,
|
| 6 |
+
SpeculativeConfig, VisionLanguageConfig)
|
| 7 |
+
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
|
| 8 |
+
from vllm.logger import init_logger
|
| 9 |
+
from vllm.lora.request import LoRARequest
|
| 10 |
+
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
|
| 11 |
+
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
|
| 12 |
+
make_async)
|
| 13 |
+
|
| 14 |
+
logger = init_logger(__name__)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class GPUExecutor(ExecutorBase):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
args: argparse.ArgumentParser,
|
| 21 |
+
model_config: ModelConfig,
|
| 22 |
+
cache_config: CacheConfig,
|
| 23 |
+
parallel_config: ParallelConfig,
|
| 24 |
+
scheduler_config: SchedulerConfig,
|
| 25 |
+
device_config: DeviceConfig,
|
| 26 |
+
load_config: LoadConfig,
|
| 27 |
+
lora_config: Optional[LoRAConfig],
|
| 28 |
+
vision_language_config: Optional[VisionLanguageConfig],
|
| 29 |
+
speculative_config: Optional[SpeculativeConfig],
|
| 30 |
+
) -> None:
|
| 31 |
+
self.args = args
|
| 32 |
+
self.model_config = model_config
|
| 33 |
+
self.cache_config = cache_config
|
| 34 |
+
self.lora_config = lora_config
|
| 35 |
+
self.load_config = load_config
|
| 36 |
+
self.parallel_config = parallel_config
|
| 37 |
+
self.scheduler_config = scheduler_config
|
| 38 |
+
self.device_config = device_config
|
| 39 |
+
self.vision_language_config = vision_language_config
|
| 40 |
+
self.speculative_config = speculative_config
|
| 41 |
+
|
| 42 |
+
self._init_executor()
|
| 43 |
+
|
| 44 |
+
def _init_executor(self) -> None:
|
| 45 |
+
"""Initialize the worker and load the model.
|
| 46 |
+
|
| 47 |
+
If speculative decoding is enabled, we instead create the speculative
|
| 48 |
+
worker.
|
| 49 |
+
"""
|
| 50 |
+
if self.speculative_config is None:
|
| 51 |
+
self._init_non_spec_worker()
|
| 52 |
+
else:
|
| 53 |
+
self._init_spec_worker()
|
| 54 |
+
|
| 55 |
+
def _init_non_spec_worker(self):
|
| 56 |
+
# Lazy import the Worker to avoid importing torch.cuda/xformers
|
| 57 |
+
# before CUDA_VISIBLE_DEVICES is set in the Worker
|
| 58 |
+
# from vllm.worker.worker import Worker
|
| 59 |
+
from autoregressive.serve.worker import Worker
|
| 60 |
+
|
| 61 |
+
assert self.parallel_config.world_size == 1, (
|
| 62 |
+
"GPUExecutor only supports single GPU.")
|
| 63 |
+
|
| 64 |
+
distributed_init_method = get_distributed_init_method(
|
| 65 |
+
get_ip(), get_open_port())
|
| 66 |
+
self.driver_worker = Worker(
|
| 67 |
+
model_config=self.model_config,
|
| 68 |
+
parallel_config=self.parallel_config,
|
| 69 |
+
scheduler_config=self.scheduler_config,
|
| 70 |
+
device_config=self.device_config,
|
| 71 |
+
cache_config=self.cache_config,
|
| 72 |
+
load_config=self.load_config,
|
| 73 |
+
local_rank=0,
|
| 74 |
+
rank=0,
|
| 75 |
+
distributed_init_method=distributed_init_method,
|
| 76 |
+
lora_config=self.lora_config,
|
| 77 |
+
vision_language_config=self.vision_language_config,
|
| 78 |
+
is_driver_worker=True,
|
| 79 |
+
)
|
| 80 |
+
self.driver_worker.init_device()
|
| 81 |
+
self.driver_worker.load_model(self.args)
|
| 82 |
+
|
| 83 |
+
def _init_spec_worker(self):
|
| 84 |
+
"""Initialize a SpecDecodeWorker, using a draft model for proposals.
|
| 85 |
+
"""
|
| 86 |
+
assert self.speculative_config is not None
|
| 87 |
+
|
| 88 |
+
from vllm.spec_decode.multi_step_worker import MultiStepWorker
|
| 89 |
+
from vllm.spec_decode.spec_decode_worker import SpecDecodeWorker
|
| 90 |
+
from vllm.worker.worker import Worker
|
| 91 |
+
|
| 92 |
+
distributed_init_method = get_distributed_init_method(
|
| 93 |
+
get_ip(), get_open_port())
|
| 94 |
+
|
| 95 |
+
target_worker = Worker(
|
| 96 |
+
model_config=self.model_config,
|
| 97 |
+
parallel_config=self.parallel_config,
|
| 98 |
+
scheduler_config=self.scheduler_config,
|
| 99 |
+
device_config=self.device_config,
|
| 100 |
+
cache_config=self.cache_config,
|
| 101 |
+
load_config=self.load_config,
|
| 102 |
+
local_rank=0,
|
| 103 |
+
rank=0,
|
| 104 |
+
distributed_init_method=distributed_init_method,
|
| 105 |
+
lora_config=self.lora_config,
|
| 106 |
+
vision_language_config=self.vision_language_config,
|
| 107 |
+
is_driver_worker=True,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
draft_worker = MultiStepWorker(
|
| 111 |
+
model_config=self.speculative_config.draft_model_config,
|
| 112 |
+
parallel_config=self.speculative_config.draft_parallel_config,
|
| 113 |
+
scheduler_config=self.scheduler_config,
|
| 114 |
+
device_config=self.device_config,
|
| 115 |
+
cache_config=self.cache_config,
|
| 116 |
+
load_config=self.load_config,
|
| 117 |
+
local_rank=0,
|
| 118 |
+
rank=0,
|
| 119 |
+
distributed_init_method=distributed_init_method,
|
| 120 |
+
lora_config=self.lora_config,
|
| 121 |
+
vision_language_config=self.vision_language_config,
|
| 122 |
+
is_driver_worker=True,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
spec_decode_worker = SpecDecodeWorker.from_workers(
|
| 126 |
+
proposer_worker=draft_worker, scorer_worker=target_worker)
|
| 127 |
+
|
| 128 |
+
assert self.parallel_config.world_size == 1, (
|
| 129 |
+
"GPUExecutor only supports single GPU.")
|
| 130 |
+
|
| 131 |
+
self.driver_worker = spec_decode_worker
|
| 132 |
+
|
| 133 |
+
# Load model handled in spec decode worker.
|
| 134 |
+
self.driver_worker.init_device()
|
| 135 |
+
|
| 136 |
+
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
| 137 |
+
"""Determine the number of available KV blocks by invoking the
|
| 138 |
+
underlying worker.
|
| 139 |
+
"""
|
| 140 |
+
return self.driver_worker.determine_num_available_blocks()
|
| 141 |
+
|
| 142 |
+
def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks) -> None:
|
| 143 |
+
"""Initialize the KV cache by invoking the underlying worker.
|
| 144 |
+
"""
|
| 145 |
+
# NOTE: This is logged in the executor because there can be >1 worker
|
| 146 |
+
# with other executors. We could log in the engine level, but work
|
| 147 |
+
# remains to abstract away the device for non-GPU configurations.
|
| 148 |
+
logger.info(f"# GPU blocks: {num_gpu_blocks}, "
|
| 149 |
+
f"# CPU blocks: {num_cpu_blocks}")
|
| 150 |
+
|
| 151 |
+
self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
|
| 152 |
+
|
| 153 |
+
def execute_model(
|
| 154 |
+
self,
|
| 155 |
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
| 156 |
+
blocks_to_swap_in: Dict[int, int],
|
| 157 |
+
blocks_to_swap_out: Dict[int, int],
|
| 158 |
+
blocks_to_copy: Dict[int, List[int]],
|
| 159 |
+
num_lookahead_slots: int,
|
| 160 |
+
) -> List[SamplerOutput]:
|
| 161 |
+
output = self.driver_worker.execute_model(
|
| 162 |
+
seq_group_metadata_list=seq_group_metadata_list,
|
| 163 |
+
blocks_to_swap_in=blocks_to_swap_in,
|
| 164 |
+
blocks_to_swap_out=blocks_to_swap_out,
|
| 165 |
+
blocks_to_copy=blocks_to_copy,
|
| 166 |
+
num_lookahead_slots=num_lookahead_slots,
|
| 167 |
+
)
|
| 168 |
+
return output
|
| 169 |
+
|
| 170 |
+
def add_lora(self, lora_request: LoRARequest) -> bool:
|
| 171 |
+
assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
|
| 172 |
+
return self.driver_worker.add_lora(lora_request)
|
| 173 |
+
|
| 174 |
+
def remove_lora(self, lora_id: int) -> bool:
|
| 175 |
+
assert lora_id > 0, "lora_id must be greater than 0."
|
| 176 |
+
return self.driver_worker.remove_lora(lora_id)
|
| 177 |
+
|
| 178 |
+
def list_loras(self) -> Set[int]:
|
| 179 |
+
return self.driver_worker.list_loras()
|
| 180 |
+
|
| 181 |
+
def check_health(self) -> None:
|
| 182 |
+
# GPUExecutor will always be healthy as long as
|
| 183 |
+
# it's running.
|
| 184 |
+
return
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class GPUExecutorAsync(GPUExecutor, ExecutorAsyncBase):
|
| 188 |
+
|
| 189 |
+
async def execute_model_async(
|
| 190 |
+
self,
|
| 191 |
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
| 192 |
+
blocks_to_swap_in: Dict[int, int],
|
| 193 |
+
blocks_to_swap_out: Dict[int, int],
|
| 194 |
+
blocks_to_copy: Dict[int, List[int]],
|
| 195 |
+
) -> SamplerOutput:
|
| 196 |
+
output = await make_async(self.driver_worker.execute_model)(
|
| 197 |
+
seq_group_metadata_list=seq_group_metadata_list,
|
| 198 |
+
blocks_to_swap_in=blocks_to_swap_in,
|
| 199 |
+
blocks_to_swap_out=blocks_to_swap_out,
|
| 200 |
+
blocks_to_copy=blocks_to_copy)
|
| 201 |
+
return output
|
autoregressive/serve/llm_engine.py
ADDED
|
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# vLLM: https://github.com/vllm-project/vllm/blob/main/vllm/engine/llm_engine.py
|
| 3 |
+
import time
|
| 4 |
+
from typing import Iterable, List, Optional, Type, Union
|
| 5 |
+
import argparse
|
| 6 |
+
|
| 7 |
+
from transformers import GenerationConfig, PreTrainedTokenizer
|
| 8 |
+
|
| 9 |
+
import vllm
|
| 10 |
+
from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig, LoadConfig,
|
| 11 |
+
LoRAConfig, ModelConfig, ParallelConfig,
|
| 12 |
+
SchedulerConfig, SpeculativeConfig,
|
| 13 |
+
VisionLanguageConfig)
|
| 14 |
+
from vllm.core.scheduler import Scheduler, SchedulerOutputs
|
| 15 |
+
from vllm.engine.arg_utils import EngineArgs
|
| 16 |
+
from vllm.engine.metrics import StatLogger, Stats
|
| 17 |
+
from vllm.engine.output_processor.interfaces import (
|
| 18 |
+
SequenceGroupOutputProcessor)
|
| 19 |
+
from vllm.engine.output_processor.stop_checker import StopChecker
|
| 20 |
+
from vllm.engine.output_processor.util import create_output_by_sequence_group
|
| 21 |
+
from vllm.engine.ray_utils import initialize_ray_cluster
|
| 22 |
+
from vllm.executor.executor_base import ExecutorBase
|
| 23 |
+
from vllm.logger import init_logger
|
| 24 |
+
from vllm.lora.request import LoRARequest
|
| 25 |
+
from vllm.outputs import RequestOutput
|
| 26 |
+
from vllm.sampling_params import SamplingParams
|
| 27 |
+
from vllm.sequence import (MultiModalData, SamplerOutput, Sequence,
|
| 28 |
+
SequenceGroup)
|
| 29 |
+
from vllm.transformers_utils.detokenizer import Detokenizer
|
| 30 |
+
from vllm.transformers_utils.tokenizer_group import (BaseTokenizerGroup,
|
| 31 |
+
get_tokenizer_group)
|
| 32 |
+
from vllm.usage.usage_lib import (UsageContext, is_usage_stats_enabled,
|
| 33 |
+
usage_message)
|
| 34 |
+
from vllm.utils import Counter
|
| 35 |
+
|
| 36 |
+
logger = init_logger(__name__)
|
| 37 |
+
_LOCAL_LOGGING_INTERVAL_SEC = 5
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def _load_generation_config_dict(model_config: ModelConfig):
|
| 41 |
+
try:
|
| 42 |
+
return GenerationConfig.from_pretrained(
|
| 43 |
+
model_config.model,
|
| 44 |
+
revision=model_config.revision,
|
| 45 |
+
).to_diff_dict()
|
| 46 |
+
except OSError:
|
| 47 |
+
# Not found.
|
| 48 |
+
return {}
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class LLMEngine:
|
| 52 |
+
"""An LLM engine that receives requests and generates texts.
|
| 53 |
+
|
| 54 |
+
This is the main class for the vLLM engine. It receives requests
|
| 55 |
+
from clients and generates texts from the LLM. It includes a tokenizer, a
|
| 56 |
+
language model (possibly distributed across multiple GPUs), and GPU memory
|
| 57 |
+
space allocated for intermediate states (aka KV cache). This class utilizes
|
| 58 |
+
iteration-level scheduling and efficient memory management to maximize the
|
| 59 |
+
serving throughput.
|
| 60 |
+
|
| 61 |
+
The `LLM` class wraps this class for offline batched inference and the
|
| 62 |
+
`AsyncLLMEngine` class wraps this class for online serving.
|
| 63 |
+
|
| 64 |
+
NOTE: The config arguments are derived from the `EngineArgs` class. For the
|
| 65 |
+
comprehensive list of arguments, see `EngineArgs`.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
model_config: The configuration related to the LLM model.
|
| 69 |
+
cache_config: The configuration related to the KV cache memory
|
| 70 |
+
management.
|
| 71 |
+
parallel_config: The configuration related to distributed execution.
|
| 72 |
+
scheduler_config: The configuration related to the request scheduler.
|
| 73 |
+
device_config: The configuration related to the device.
|
| 74 |
+
lora_config (Optional): The configuration related to serving multi-LoRA.
|
| 75 |
+
vision_language_config (Optional): The configuration related to vision
|
| 76 |
+
language models.
|
| 77 |
+
speculative_config (Optional): The configuration related to speculative
|
| 78 |
+
decoding.
|
| 79 |
+
executor_class: The model executor class for managing distributed
|
| 80 |
+
execution.
|
| 81 |
+
log_stats: Whether to log statistics.
|
| 82 |
+
usage_context: Specified entry point, used for usage info collection
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
args: argparse.ArgumentParser,
|
| 88 |
+
model_config: ModelConfig,
|
| 89 |
+
cache_config: CacheConfig,
|
| 90 |
+
parallel_config: ParallelConfig,
|
| 91 |
+
scheduler_config: SchedulerConfig,
|
| 92 |
+
device_config: DeviceConfig,
|
| 93 |
+
load_config: LoadConfig,
|
| 94 |
+
lora_config: Optional[LoRAConfig],
|
| 95 |
+
vision_language_config: Optional[VisionLanguageConfig],
|
| 96 |
+
speculative_config: Optional[SpeculativeConfig],
|
| 97 |
+
decoding_config: Optional[DecodingConfig],
|
| 98 |
+
executor_class: Type[ExecutorBase],
|
| 99 |
+
log_stats: bool,
|
| 100 |
+
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
| 101 |
+
) -> None:
|
| 102 |
+
logger.info(
|
| 103 |
+
f"Initializing an LLM engine (v{vllm.__version__}) with config: "
|
| 104 |
+
f"model={model_config.model!r}, "
|
| 105 |
+
f"speculative_config={speculative_config!r}, "
|
| 106 |
+
f"tokenizer={model_config.tokenizer!r}, "
|
| 107 |
+
f"skip_tokenizer_init={model_config.skip_tokenizer_init}, "
|
| 108 |
+
f"tokenizer_mode={model_config.tokenizer_mode}, "
|
| 109 |
+
f"revision={model_config.revision}, "
|
| 110 |
+
f"tokenizer_revision={model_config.tokenizer_revision}, "
|
| 111 |
+
f"trust_remote_code={model_config.trust_remote_code}, "
|
| 112 |
+
f"dtype={model_config.dtype}, "
|
| 113 |
+
f"max_seq_len={model_config.max_model_len}, "
|
| 114 |
+
f"download_dir={load_config.download_dir!r}, "
|
| 115 |
+
f"load_format={load_config.load_format}, "
|
| 116 |
+
f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
|
| 117 |
+
f"disable_custom_all_reduce="
|
| 118 |
+
f"{parallel_config.disable_custom_all_reduce}, "
|
| 119 |
+
f"quantization={model_config.quantization}, "
|
| 120 |
+
f"enforce_eager={model_config.enforce_eager}, "
|
| 121 |
+
f"kv_cache_dtype={cache_config.cache_dtype}, "
|
| 122 |
+
f"quantization_param_path={model_config.quantization_param_path}, "
|
| 123 |
+
f"device_config={device_config.device}, "
|
| 124 |
+
f"decoding_config={decoding_config!r}, "
|
| 125 |
+
f"seed={model_config.seed})")
|
| 126 |
+
# TODO(woosuk): Print more configs in debug mode.
|
| 127 |
+
|
| 128 |
+
self.model_config = model_config
|
| 129 |
+
self.cache_config = cache_config
|
| 130 |
+
self.lora_config = lora_config
|
| 131 |
+
self.vision_language_config = vision_language_config
|
| 132 |
+
self.parallel_config = parallel_config
|
| 133 |
+
self.scheduler_config = scheduler_config
|
| 134 |
+
self.device_config = device_config
|
| 135 |
+
self.speculative_config = speculative_config
|
| 136 |
+
self.load_config = load_config
|
| 137 |
+
self.decoding_config = decoding_config or DecodingConfig()
|
| 138 |
+
self.log_stats = log_stats
|
| 139 |
+
|
| 140 |
+
if not self.model_config.skip_tokenizer_init:
|
| 141 |
+
self.tokenizer: BaseTokenizerGroup
|
| 142 |
+
self._init_tokenizer()
|
| 143 |
+
self.detokenizer = Detokenizer(self.tokenizer)
|
| 144 |
+
else:
|
| 145 |
+
self.detokenizer = None
|
| 146 |
+
self.tokenizer = None
|
| 147 |
+
|
| 148 |
+
self.seq_counter = Counter()
|
| 149 |
+
self.generation_config_fields = _load_generation_config_dict(
|
| 150 |
+
model_config)
|
| 151 |
+
|
| 152 |
+
self.model_executor = executor_class(
|
| 153 |
+
args=args,
|
| 154 |
+
model_config=model_config,
|
| 155 |
+
cache_config=cache_config,
|
| 156 |
+
parallel_config=parallel_config,
|
| 157 |
+
scheduler_config=scheduler_config,
|
| 158 |
+
device_config=device_config,
|
| 159 |
+
lora_config=lora_config,
|
| 160 |
+
vision_language_config=vision_language_config,
|
| 161 |
+
speculative_config=speculative_config,
|
| 162 |
+
load_config=load_config,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
self._initialize_kv_caches()
|
| 166 |
+
|
| 167 |
+
# If usage stat is enabled, collect relevant info.
|
| 168 |
+
if is_usage_stats_enabled():
|
| 169 |
+
from vllm.model_executor.model_loader import (
|
| 170 |
+
get_architecture_class_name)
|
| 171 |
+
usage_message.report_usage(
|
| 172 |
+
get_architecture_class_name(model_config),
|
| 173 |
+
usage_context,
|
| 174 |
+
extra_kvs={
|
| 175 |
+
# Common configuration
|
| 176 |
+
"dtype":
|
| 177 |
+
str(model_config.dtype),
|
| 178 |
+
"tensor_parallel_size":
|
| 179 |
+
parallel_config.tensor_parallel_size,
|
| 180 |
+
"block_size":
|
| 181 |
+
cache_config.block_size,
|
| 182 |
+
"gpu_memory_utilization":
|
| 183 |
+
cache_config.gpu_memory_utilization,
|
| 184 |
+
|
| 185 |
+
# Quantization
|
| 186 |
+
"quantization":
|
| 187 |
+
model_config.quantization,
|
| 188 |
+
"kv_cache_dtype":
|
| 189 |
+
cache_config.cache_dtype,
|
| 190 |
+
|
| 191 |
+
# Feature flags
|
| 192 |
+
"enable_lora":
|
| 193 |
+
bool(lora_config),
|
| 194 |
+
"enable_prefix_caching":
|
| 195 |
+
cache_config.enable_prefix_caching,
|
| 196 |
+
"enforce_eager":
|
| 197 |
+
model_config.enforce_eager,
|
| 198 |
+
"disable_custom_all_reduce":
|
| 199 |
+
parallel_config.disable_custom_all_reduce,
|
| 200 |
+
})
|
| 201 |
+
|
| 202 |
+
if self.tokenizer:
|
| 203 |
+
# Ping the tokenizer to ensure liveness if it runs in a
|
| 204 |
+
# different process.
|
| 205 |
+
self.tokenizer.ping()
|
| 206 |
+
|
| 207 |
+
# Create the scheduler.
|
| 208 |
+
# NOTE: the cache_config here have been updated with the numbers of
|
| 209 |
+
# GPU and CPU blocks, which are profiled in the distributed executor.
|
| 210 |
+
self.scheduler = Scheduler(scheduler_config, cache_config, lora_config)
|
| 211 |
+
|
| 212 |
+
# Metric Logging.
|
| 213 |
+
if self.log_stats:
|
| 214 |
+
self.stat_logger = StatLogger(
|
| 215 |
+
local_interval=_LOCAL_LOGGING_INTERVAL_SEC,
|
| 216 |
+
labels=dict(model_name=model_config.model))
|
| 217 |
+
self.stat_logger.info("cache_config", self.cache_config)
|
| 218 |
+
|
| 219 |
+
# Create sequence output processor, e.g. for beam search or
|
| 220 |
+
# speculative decoding.
|
| 221 |
+
self.output_processor = (
|
| 222 |
+
SequenceGroupOutputProcessor.create_output_processor(
|
| 223 |
+
self.scheduler_config,
|
| 224 |
+
self.detokenizer,
|
| 225 |
+
self.scheduler,
|
| 226 |
+
self.seq_counter,
|
| 227 |
+
self.get_tokenizer_for_seq,
|
| 228 |
+
stop_checker=StopChecker(
|
| 229 |
+
self.scheduler_config.max_model_len,
|
| 230 |
+
self.get_tokenizer_for_seq,
|
| 231 |
+
),
|
| 232 |
+
))
|
| 233 |
+
|
| 234 |
+
def _initialize_kv_caches(self) -> None:
|
| 235 |
+
"""Initialize the KV cache in the worker(s).
|
| 236 |
+
|
| 237 |
+
The workers will determine the number of blocks in both the GPU cache
|
| 238 |
+
and the swap CPU cache.
|
| 239 |
+
"""
|
| 240 |
+
num_gpu_blocks, num_cpu_blocks = (
|
| 241 |
+
self.model_executor.determine_num_available_blocks())
|
| 242 |
+
|
| 243 |
+
if self.cache_config.num_gpu_blocks_override is not None:
|
| 244 |
+
num_gpu_blocks_override = self.cache_config.num_gpu_blocks_override
|
| 245 |
+
logger.info(f"Overriding {num_gpu_blocks=} with "
|
| 246 |
+
f"{num_gpu_blocks_override=}")
|
| 247 |
+
num_gpu_blocks = num_gpu_blocks_override
|
| 248 |
+
|
| 249 |
+
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
| 250 |
+
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
| 251 |
+
|
| 252 |
+
self.model_executor.initialize_cache(num_gpu_blocks, num_cpu_blocks)
|
| 253 |
+
|
| 254 |
+
@classmethod
|
| 255 |
+
def from_engine_args(
|
| 256 |
+
cls,
|
| 257 |
+
engine_args: EngineArgs,
|
| 258 |
+
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
| 259 |
+
args: argparse.ArgumentParser = None,
|
| 260 |
+
) -> "LLMEngine":
|
| 261 |
+
"""Creates an LLM engine from the engine arguments."""
|
| 262 |
+
# Create the engine configs.
|
| 263 |
+
engine_config = engine_args.create_engine_config()
|
| 264 |
+
|
| 265 |
+
# Initialize the cluster and specify the executor class.
|
| 266 |
+
if engine_config.device_config.device_type == "neuron":
|
| 267 |
+
from vllm.executor.neuron_executor import NeuronExecutor
|
| 268 |
+
executor_class = NeuronExecutor
|
| 269 |
+
elif engine_config.device_config.device_type == "cpu":
|
| 270 |
+
from vllm.executor.cpu_executor import CPUExecutor
|
| 271 |
+
executor_class = CPUExecutor
|
| 272 |
+
elif engine_config.parallel_config.worker_use_ray:
|
| 273 |
+
initialize_ray_cluster(engine_config.parallel_config)
|
| 274 |
+
from vllm.executor.ray_gpu_executor import RayGPUExecutor
|
| 275 |
+
executor_class = RayGPUExecutor
|
| 276 |
+
else:
|
| 277 |
+
assert engine_config.parallel_config.world_size == 1, (
|
| 278 |
+
"Ray is required if parallel_config.world_size > 1.")
|
| 279 |
+
# from vllm.executor.gpu_executor import GPUExecutor
|
| 280 |
+
from autoregressive.serve.gpu_executor import GPUExecutor
|
| 281 |
+
executor_class = GPUExecutor
|
| 282 |
+
|
| 283 |
+
# Create the LLM engine.
|
| 284 |
+
engine = cls(
|
| 285 |
+
**engine_config.to_dict(),
|
| 286 |
+
executor_class=executor_class,
|
| 287 |
+
log_stats=not engine_args.disable_log_stats,
|
| 288 |
+
usage_context=usage_context,
|
| 289 |
+
args=args,
|
| 290 |
+
)
|
| 291 |
+
return engine
|
| 292 |
+
|
| 293 |
+
def __reduce__(self):
|
| 294 |
+
# This is to ensure that the LLMEngine is not referenced in
|
| 295 |
+
# the closure used to initialize Ray worker actors
|
| 296 |
+
raise RuntimeError("LLMEngine should not be pickled!")
|
| 297 |
+
|
| 298 |
+
def get_tokenizer(self) -> "PreTrainedTokenizer":
|
| 299 |
+
return self.tokenizer.get_lora_tokenizer(None)
|
| 300 |
+
|
| 301 |
+
def get_tokenizer_for_seq(self,
|
| 302 |
+
sequence: Sequence) -> "PreTrainedTokenizer":
|
| 303 |
+
return self.tokenizer.get_lora_tokenizer(sequence.lora_request)
|
| 304 |
+
|
| 305 |
+
def _init_tokenizer(self, **tokenizer_init_kwargs):
|
| 306 |
+
init_kwargs = dict(
|
| 307 |
+
tokenizer_id=self.model_config.tokenizer,
|
| 308 |
+
enable_lora=bool(self.lora_config),
|
| 309 |
+
max_num_seqs=self.scheduler_config.max_num_seqs,
|
| 310 |
+
max_input_length=None,
|
| 311 |
+
tokenizer_mode=self.model_config.tokenizer_mode,
|
| 312 |
+
trust_remote_code=self.model_config.trust_remote_code,
|
| 313 |
+
revision=self.model_config.tokenizer_revision)
|
| 314 |
+
init_kwargs.update(tokenizer_init_kwargs)
|
| 315 |
+
self.tokenizer = get_tokenizer_group(
|
| 316 |
+
self.parallel_config.tokenizer_pool_config, **init_kwargs)
|
| 317 |
+
|
| 318 |
+
def _verify_args(self) -> None:
|
| 319 |
+
self.model_config.verify_with_parallel_config(self.parallel_config)
|
| 320 |
+
self.cache_config.verify_with_parallel_config(self.parallel_config)
|
| 321 |
+
if self.lora_config:
|
| 322 |
+
self.lora_config.verify_with_model_config(self.model_config)
|
| 323 |
+
self.lora_config.verify_with_scheduler_config(
|
| 324 |
+
self.scheduler_config)
|
| 325 |
+
|
| 326 |
+
def encode_request(
|
| 327 |
+
self,
|
| 328 |
+
request_id: str, # pylint: disable=unused-argument
|
| 329 |
+
prompt: Optional[str],
|
| 330 |
+
prompt_token_ids: Optional[List[int]] = None,
|
| 331 |
+
lora_request: Optional[LoRARequest] = None,
|
| 332 |
+
):
|
| 333 |
+
if prompt_token_ids is None:
|
| 334 |
+
assert prompt is not None
|
| 335 |
+
prompt_token_ids = self.tokenizer.encode(request_id=request_id,
|
| 336 |
+
prompt=prompt,
|
| 337 |
+
lora_request=lora_request)
|
| 338 |
+
return prompt_token_ids
|
| 339 |
+
|
| 340 |
+
def add_request(
|
| 341 |
+
self,
|
| 342 |
+
request_id: str,
|
| 343 |
+
prompt: Optional[str],
|
| 344 |
+
sampling_params: SamplingParams,
|
| 345 |
+
prompt_token_ids: Optional[List[int]] = None,
|
| 346 |
+
arrival_time: Optional[float] = None,
|
| 347 |
+
lora_request: Optional[LoRARequest] = None,
|
| 348 |
+
multi_modal_data: Optional[MultiModalData] = None,
|
| 349 |
+
) -> None:
|
| 350 |
+
"""Add a request to the engine's request pool.
|
| 351 |
+
|
| 352 |
+
The request is added to the request pool and will be processed by the
|
| 353 |
+
scheduler as `engine.step()` is called. The exact scheduling policy is
|
| 354 |
+
determined by the scheduler.
|
| 355 |
+
|
| 356 |
+
Args:
|
| 357 |
+
request_id: The unique ID of the request.
|
| 358 |
+
prompt: The prompt string. Can be None if prompt_token_ids is
|
| 359 |
+
provided.
|
| 360 |
+
sampling_params: The sampling parameters for text generation.
|
| 361 |
+
prompt_token_ids: The token IDs of the prompt. If None, we
|
| 362 |
+
use the tokenizer to convert the prompts to token IDs.
|
| 363 |
+
arrival_time: The arrival time of the request. If None, we use
|
| 364 |
+
the current monotonic time.
|
| 365 |
+
multi_modal_data: Multi modal data per request.
|
| 366 |
+
|
| 367 |
+
Details:
|
| 368 |
+
- Set arrival_time to the current time if it is None.
|
| 369 |
+
- Set prompt_token_ids to the encoded prompt if it is None.
|
| 370 |
+
- Create `best_of` number of :class:`~vllm.Sequence` objects.
|
| 371 |
+
- Create a :class:`~vllm.SequenceGroup` object
|
| 372 |
+
from the list of :class:`~vllm.Sequence`.
|
| 373 |
+
- Add the :class:`~vllm.SequenceGroup` object to the scheduler.
|
| 374 |
+
|
| 375 |
+
Example:
|
| 376 |
+
>>> # initialize engine
|
| 377 |
+
>>> engine = LLMEngine.from_engine_args(engine_args)
|
| 378 |
+
>>> # set request arguments
|
| 379 |
+
>>> example_prompt = "Who is the president of the United States?"
|
| 380 |
+
>>> sampling_params = SamplingParams(temperature=0.0)
|
| 381 |
+
>>> request_id = 0
|
| 382 |
+
>>>
|
| 383 |
+
>>> # add the request to the engine
|
| 384 |
+
>>> engine.add_request(
|
| 385 |
+
>>> str(request_id),
|
| 386 |
+
>>> example_prompt,
|
| 387 |
+
>>> SamplingParams(temperature=0.0))
|
| 388 |
+
>>> # continue the request processing
|
| 389 |
+
>>> ...
|
| 390 |
+
"""
|
| 391 |
+
if lora_request is not None and not self.lora_config:
|
| 392 |
+
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
|
| 393 |
+
"not enabled!")
|
| 394 |
+
max_logprobs = self.get_model_config().max_logprobs
|
| 395 |
+
if (sampling_params.logprobs
|
| 396 |
+
and sampling_params.logprobs > max_logprobs) or (
|
| 397 |
+
sampling_params.prompt_logprobs
|
| 398 |
+
and sampling_params.prompt_logprobs > max_logprobs):
|
| 399 |
+
raise ValueError(f"Cannot request more than "
|
| 400 |
+
f"{max_logprobs} logprobs.")
|
| 401 |
+
if arrival_time is None:
|
| 402 |
+
arrival_time = time.time()
|
| 403 |
+
prompt_token_ids = self.encode_request(
|
| 404 |
+
request_id=request_id,
|
| 405 |
+
prompt=prompt,
|
| 406 |
+
prompt_token_ids=prompt_token_ids,
|
| 407 |
+
lora_request=lora_request)
|
| 408 |
+
|
| 409 |
+
# Create the sequences.
|
| 410 |
+
block_size = self.cache_config.block_size
|
| 411 |
+
seq_id = next(self.seq_counter)
|
| 412 |
+
eos_token_id = None
|
| 413 |
+
if self.tokenizer:
|
| 414 |
+
eos_token_id = self.tokenizer.get_lora_tokenizer(
|
| 415 |
+
lora_request).eos_token_id
|
| 416 |
+
else:
|
| 417 |
+
logger.warning("Use None for EOS token id because tokenizer is "
|
| 418 |
+
"not initialized")
|
| 419 |
+
seq = Sequence(seq_id, prompt, prompt_token_ids, block_size,
|
| 420 |
+
eos_token_id, lora_request)
|
| 421 |
+
|
| 422 |
+
# Defensive copy of SamplingParams, which are used by the sampler,
|
| 423 |
+
# this doesn't deep-copy LogitsProcessor objects
|
| 424 |
+
sampling_params = sampling_params.clone()
|
| 425 |
+
# Add the eos token id into the sampling_params to support min_tokens
|
| 426 |
+
# processing
|
| 427 |
+
if seq.eos_token_id is not None:
|
| 428 |
+
sampling_params.all_stop_token_ids.add(seq.eos_token_id)
|
| 429 |
+
sampling_params.update_from_generation_config(
|
| 430 |
+
self.generation_config_fields)
|
| 431 |
+
|
| 432 |
+
# Create the sequence group.
|
| 433 |
+
seq_group = SequenceGroup(request_id, [seq], sampling_params,
|
| 434 |
+
arrival_time, lora_request, multi_modal_data)
|
| 435 |
+
|
| 436 |
+
# Add the sequence group to the scheduler.
|
| 437 |
+
self.scheduler.add_seq_group(seq_group)
|
| 438 |
+
|
| 439 |
+
def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
|
| 440 |
+
"""Aborts a request(s) with the given ID.
|
| 441 |
+
|
| 442 |
+
Args:
|
| 443 |
+
request_id: The ID(s) of the request to abort.
|
| 444 |
+
|
| 445 |
+
Details:
|
| 446 |
+
- Refer to the
|
| 447 |
+
:meth:`~vllm.core.scheduler.Scheduler.abort_seq_group`
|
| 448 |
+
from class :class:`~vllm.core.scheduler.Scheduler`.
|
| 449 |
+
|
| 450 |
+
Example:
|
| 451 |
+
>>> # initialize engine and add a request with request_id
|
| 452 |
+
>>> request_id = str(0)
|
| 453 |
+
>>> # abort the request
|
| 454 |
+
>>> engine.abort_request(request_id)
|
| 455 |
+
"""
|
| 456 |
+
self.scheduler.abort_seq_group(request_id)
|
| 457 |
+
|
| 458 |
+
def get_model_config(self) -> ModelConfig:
|
| 459 |
+
"""Gets the model configuration."""
|
| 460 |
+
return self.model_config
|
| 461 |
+
|
| 462 |
+
def get_num_unfinished_requests(self) -> int:
|
| 463 |
+
"""Gets the number of unfinished requests."""
|
| 464 |
+
return self.scheduler.get_num_unfinished_seq_groups()
|
| 465 |
+
|
| 466 |
+
def has_unfinished_requests(self) -> bool:
|
| 467 |
+
"""Returns True if there are unfinished requests."""
|
| 468 |
+
return self.scheduler.has_unfinished_seqs()
|
| 469 |
+
|
| 470 |
+
def _process_model_outputs(
|
| 471 |
+
self, output: List[SamplerOutput],
|
| 472 |
+
scheduled_seq_groups: List[SequenceGroup],
|
| 473 |
+
ignored_seq_groups: List[SequenceGroup]) -> List[RequestOutput]:
|
| 474 |
+
"""Apply the model output to the sequences in the scheduled seq groups.
|
| 475 |
+
|
| 476 |
+
Returns RequestOutputs that can be returned to the client.
|
| 477 |
+
"""
|
| 478 |
+
now = time.time()
|
| 479 |
+
|
| 480 |
+
# Organize outputs by [sequence group][step] instead of
|
| 481 |
+
# [step][sequence group].
|
| 482 |
+
output_by_sequence_group = create_output_by_sequence_group(
|
| 483 |
+
sampler_outputs=output, num_seq_groups=len(scheduled_seq_groups))
|
| 484 |
+
|
| 485 |
+
# Update the scheduled sequence groups with the model outputs.
|
| 486 |
+
for scheduled_seq_group, outputs in zip(scheduled_seq_groups,
|
| 487 |
+
output_by_sequence_group):
|
| 488 |
+
seq_group = scheduled_seq_group.seq_group
|
| 489 |
+
seq_group.update_num_computed_tokens(
|
| 490 |
+
scheduled_seq_group.token_chunk_size)
|
| 491 |
+
# If uncomputed tokens > 0, it means prefill is chunked.
|
| 492 |
+
# We don't need to process outputs in that case.
|
| 493 |
+
if seq_group.get_num_uncomputed_tokens() == 0:
|
| 494 |
+
self.output_processor.process_outputs(seq_group, outputs)
|
| 495 |
+
|
| 496 |
+
# Free the finished sequence groups.
|
| 497 |
+
self.scheduler.free_finished_seq_groups()
|
| 498 |
+
|
| 499 |
+
# Create the outputs.
|
| 500 |
+
request_outputs: List[RequestOutput] = []
|
| 501 |
+
for scheduled_seq_group in scheduled_seq_groups:
|
| 502 |
+
seq_group = scheduled_seq_group.seq_group
|
| 503 |
+
seq_group.maybe_set_first_token_time(now)
|
| 504 |
+
request_output = RequestOutput.from_seq_group(seq_group)
|
| 505 |
+
request_outputs.append(request_output)
|
| 506 |
+
for seq_group in ignored_seq_groups:
|
| 507 |
+
request_output = RequestOutput.from_seq_group(seq_group)
|
| 508 |
+
request_outputs.append(request_output)
|
| 509 |
+
return request_outputs
|
| 510 |
+
|
| 511 |
+
def step(self) -> List[RequestOutput]:
|
| 512 |
+
"""Performs one decoding iteration and returns newly generated results.
|
| 513 |
+
|
| 514 |
+
.. figure:: https://i.imgur.com/sv2HssD.png
|
| 515 |
+
:alt: Overview of the step function
|
| 516 |
+
:align: center
|
| 517 |
+
|
| 518 |
+
Overview of the step function.
|
| 519 |
+
|
| 520 |
+
Details:
|
| 521 |
+
- Step 1: Schedules the sequences to be executed in the next
|
| 522 |
+
iteration and the token blocks to be swapped in/out/copy.
|
| 523 |
+
|
| 524 |
+
- Depending on the scheduling policy,
|
| 525 |
+
sequences may be `preempted/reordered`.
|
| 526 |
+
- A Sequence Group (SG) refer to a group of sequences
|
| 527 |
+
that are generated from the same prompt.
|
| 528 |
+
|
| 529 |
+
- Step 2: Calls the distributed executor to execute the model.
|
| 530 |
+
- Step 3: Processes the model output. This mainly includes:
|
| 531 |
+
|
| 532 |
+
- Decodes the relevant outputs.
|
| 533 |
+
- Updates the scheduled sequence groups with model outputs
|
| 534 |
+
based on its `sampling parameters` (`use_beam_search` or not).
|
| 535 |
+
- Frees the finished sequence groups.
|
| 536 |
+
|
| 537 |
+
- Finally, it creates and returns the newly generated results.
|
| 538 |
+
|
| 539 |
+
Example:
|
| 540 |
+
>>> # Please see the example/ folder for more detailed examples.
|
| 541 |
+
>>>
|
| 542 |
+
>>> # initialize engine and request arguments
|
| 543 |
+
>>> engine = LLMEngine.from_engine_args(engine_args)
|
| 544 |
+
>>> example_inputs = [(0, "What is LLM?",
|
| 545 |
+
>>> SamplingParams(temperature=0.0))]
|
| 546 |
+
>>>
|
| 547 |
+
>>> # Start the engine with an event loop
|
| 548 |
+
>>> while True:
|
| 549 |
+
>>> if example_inputs:
|
| 550 |
+
>>> req_id, prompt, sampling_params = example_inputs.pop(0)
|
| 551 |
+
>>> engine.add_request(str(req_id), prompt, sampling_params)
|
| 552 |
+
>>>
|
| 553 |
+
>>> # continue the request processing
|
| 554 |
+
>>> request_outputs = engine.step()
|
| 555 |
+
>>> for request_output in request_outputs:
|
| 556 |
+
>>> if request_output.finished:
|
| 557 |
+
>>> # return or show the request output
|
| 558 |
+
>>>
|
| 559 |
+
>>> if not (engine.has_unfinished_requests() or example_inputs):
|
| 560 |
+
>>> break
|
| 561 |
+
"""
|
| 562 |
+
seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
|
| 563 |
+
if not scheduler_outputs.is_empty():
|
| 564 |
+
output = self.model_executor.execute_model(
|
| 565 |
+
seq_group_metadata_list=seq_group_metadata_list,
|
| 566 |
+
blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
|
| 567 |
+
blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
|
| 568 |
+
blocks_to_copy=scheduler_outputs.blocks_to_copy,
|
| 569 |
+
num_lookahead_slots=scheduler_outputs.num_lookahead_slots)
|
| 570 |
+
else:
|
| 571 |
+
output = []
|
| 572 |
+
|
| 573 |
+
request_outputs = self._process_model_outputs(
|
| 574 |
+
output, scheduler_outputs.scheduled_seq_groups,
|
| 575 |
+
scheduler_outputs.ignored_seq_groups)
|
| 576 |
+
|
| 577 |
+
# Log stats.
|
| 578 |
+
if self.log_stats:
|
| 579 |
+
self.stat_logger.log(self._get_stats(scheduler_outputs))
|
| 580 |
+
|
| 581 |
+
return request_outputs
|
| 582 |
+
|
| 583 |
+
def do_log_stats(self) -> None:
|
| 584 |
+
"""Forced log when no requests active."""
|
| 585 |
+
if self.log_stats:
|
| 586 |
+
self.stat_logger.log(self._get_stats(scheduler_outputs=None))
|
| 587 |
+
|
| 588 |
+
def _get_stats(self,
|
| 589 |
+
scheduler_outputs: Optional[SchedulerOutputs]) -> Stats:
|
| 590 |
+
"""Get Stats to be Logged to Prometheus."""
|
| 591 |
+
now = time.time()
|
| 592 |
+
|
| 593 |
+
# KV Cache Usage in %.
|
| 594 |
+
num_total_gpu = self.cache_config.num_gpu_blocks
|
| 595 |
+
num_free_gpu = self.scheduler.block_manager.get_num_free_gpu_blocks()
|
| 596 |
+
gpu_cache_usage = 1.0 - (num_free_gpu / num_total_gpu)
|
| 597 |
+
|
| 598 |
+
num_total_cpu = self.cache_config.num_cpu_blocks
|
| 599 |
+
cpu_cache_usage = 0.
|
| 600 |
+
if num_total_cpu > 0:
|
| 601 |
+
num_free_cpu = self.scheduler.block_manager.get_num_free_cpu_blocks(
|
| 602 |
+
)
|
| 603 |
+
cpu_cache_usage = 1.0 - (num_free_cpu / num_total_cpu)
|
| 604 |
+
|
| 605 |
+
# Scheduler State
|
| 606 |
+
num_running = len(self.scheduler.running)
|
| 607 |
+
num_swapped = len(self.scheduler.swapped)
|
| 608 |
+
num_waiting = len(self.scheduler.waiting)
|
| 609 |
+
|
| 610 |
+
# Iteration stats if we have scheduler output.
|
| 611 |
+
num_prompt_tokens = 0
|
| 612 |
+
num_generation_tokens = 0
|
| 613 |
+
time_to_first_tokens = []
|
| 614 |
+
time_per_output_tokens = []
|
| 615 |
+
time_e2e_requests = []
|
| 616 |
+
if scheduler_outputs is not None:
|
| 617 |
+
prompt_run = scheduler_outputs.num_prefill_groups > 0
|
| 618 |
+
|
| 619 |
+
# Number of Tokens.
|
| 620 |
+
if prompt_run:
|
| 621 |
+
num_prompt_tokens = sum(
|
| 622 |
+
len(scheduled_seq_group.seq_group.prompt_token_ids)
|
| 623 |
+
for scheduled_seq_group in
|
| 624 |
+
scheduler_outputs.scheduled_seq_groups)
|
| 625 |
+
num_generation_tokens = sum(
|
| 626 |
+
scheduled_seq_group.seq_group.num_seqs()
|
| 627 |
+
for scheduled_seq_group in
|
| 628 |
+
scheduler_outputs.scheduled_seq_groups)
|
| 629 |
+
else:
|
| 630 |
+
num_generation_tokens = scheduler_outputs.num_batched_tokens
|
| 631 |
+
|
| 632 |
+
# Latency Timings.
|
| 633 |
+
time_last_iters = []
|
| 634 |
+
for scheduled_seq_group in scheduler_outputs.scheduled_seq_groups:
|
| 635 |
+
seq_group = scheduled_seq_group.seq_group
|
| 636 |
+
# Time since last token.
|
| 637 |
+
# (n.b. updates seq_group.metrics.last_token_time)
|
| 638 |
+
time_last_iters.append(seq_group.get_last_latency(now))
|
| 639 |
+
# Time since arrival for all finished requests.
|
| 640 |
+
if seq_group.is_finished():
|
| 641 |
+
time_e2e_requests.append(now -
|
| 642 |
+
seq_group.metrics.arrival_time)
|
| 643 |
+
|
| 644 |
+
time_to_first_tokens = time_last_iters if prompt_run else []
|
| 645 |
+
time_per_output_tokens = [] if prompt_run else time_last_iters
|
| 646 |
+
|
| 647 |
+
return Stats(
|
| 648 |
+
now=now,
|
| 649 |
+
num_running=num_running,
|
| 650 |
+
num_swapped=num_swapped,
|
| 651 |
+
num_waiting=num_waiting,
|
| 652 |
+
gpu_cache_usage=gpu_cache_usage,
|
| 653 |
+
cpu_cache_usage=cpu_cache_usage,
|
| 654 |
+
num_prompt_tokens=num_prompt_tokens,
|
| 655 |
+
num_generation_tokens=num_generation_tokens,
|
| 656 |
+
time_to_first_tokens=time_to_first_tokens,
|
| 657 |
+
time_per_output_tokens=time_per_output_tokens,
|
| 658 |
+
time_e2e_requests=time_e2e_requests,
|
| 659 |
+
)
|
| 660 |
+
|
| 661 |
+
def add_lora(self, lora_request: LoRARequest) -> bool:
|
| 662 |
+
return self.model_executor.add_lora(lora_request)
|
| 663 |
+
|
| 664 |
+
def remove_lora(self, lora_id: int) -> bool:
|
| 665 |
+
return self.model_executor.remove_lora(lora_id)
|
| 666 |
+
|
| 667 |
+
def list_loras(self) -> List[int]:
|
| 668 |
+
return self.model_executor.list_loras()
|
| 669 |
+
|
| 670 |
+
def check_health(self) -> None:
|
| 671 |
+
self.model_executor.check_health()
|
autoregressive/serve/model_runner.py
ADDED
|
@@ -0,0 +1,1232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
import time
|
| 3 |
+
from enum import IntEnum
|
| 4 |
+
from typing import Dict, List, NamedTuple, Optional, Set, Tuple
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
|
| 10 |
+
from vllm.attention import (AttentionMetadata, AttentionMetadataPerStage,
|
| 11 |
+
get_attn_backend)
|
| 12 |
+
from vllm.config import (DeviceConfig, LoadConfig, LoRAConfig, ModelConfig,
|
| 13 |
+
ParallelConfig, SchedulerConfig, VisionLanguageConfig)
|
| 14 |
+
from vllm.distributed import broadcast_tensor_dict, with_pynccl_for_all_reduce
|
| 15 |
+
from vllm.distributed.device_communicators import (custom_all_reduce,
|
| 16 |
+
pynccl_utils)
|
| 17 |
+
from vllm.logger import init_logger
|
| 18 |
+
from vllm.lora.layers import LoRAMapping
|
| 19 |
+
from vllm.lora.request import LoRARequest
|
| 20 |
+
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
|
| 21 |
+
from vllm.model_executor import SamplingMetadata
|
| 22 |
+
from vllm.model_executor.model_loader import get_model
|
| 23 |
+
from vllm.sampling_params import SamplingParams, SamplingType
|
| 24 |
+
from vllm.sequence import (MultiModalData, SamplerOutput, SequenceData,
|
| 25 |
+
SequenceGroupMetadata)
|
| 26 |
+
from vllm.utils import (CudaMemoryProfiler, async_tensor_h2d, is_hip,
|
| 27 |
+
is_pin_memory_available, make_tensor_with_pad,
|
| 28 |
+
maybe_expand_dim)
|
| 29 |
+
from autoregressive.serve.gpt_model import GPT_models
|
| 30 |
+
|
| 31 |
+
logger = init_logger(__name__)
|
| 32 |
+
|
| 33 |
+
_PAD_SLOT_ID = -1
|
| 34 |
+
LORA_WARMUP_RANK = 8
|
| 35 |
+
_BATCH_SIZE_ALIGNMENT = 8
|
| 36 |
+
# Capture graphs for token size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256.
|
| 37 |
+
# NOTE: _get_graph_batch_size needs to be updated if this list is changed.
|
| 38 |
+
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
|
| 39 |
+
_BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class PreparePromptMetadata(NamedTuple):
|
| 44 |
+
input_tokens: List[int]
|
| 45 |
+
input_positions: List[int]
|
| 46 |
+
attn_metadata: Optional[AttentionMetadataPerStage]
|
| 47 |
+
prompt_lens: List[int]
|
| 48 |
+
subquery_lens: List[int]
|
| 49 |
+
lora_index_mapping: List[int]
|
| 50 |
+
lora_prompt_mapping: List[int]
|
| 51 |
+
lora_requests: Set[LoRARequest]
|
| 52 |
+
multi_modal_input: Optional[torch.Tensor]
|
| 53 |
+
slot_mapping: List[int]
|
| 54 |
+
|
| 55 |
+
@classmethod
|
| 56 |
+
def empty(cls):
|
| 57 |
+
return PreparePromptMetadata(
|
| 58 |
+
input_tokens=[],
|
| 59 |
+
input_positions=[],
|
| 60 |
+
attn_metadata=None,
|
| 61 |
+
prompt_lens=[],
|
| 62 |
+
subquery_lens=[],
|
| 63 |
+
lora_index_mapping=[],
|
| 64 |
+
lora_prompt_mapping=[],
|
| 65 |
+
lora_requests=set(),
|
| 66 |
+
multi_modal_input=None,
|
| 67 |
+
slot_mapping=[],
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class PrepareDecodeMetadata(NamedTuple):
|
| 72 |
+
input_tokens: List[int]
|
| 73 |
+
input_positions: List[int]
|
| 74 |
+
attn_metadata: Optional[AttentionMetadata]
|
| 75 |
+
lora_index_mapping: List[int]
|
| 76 |
+
lora_prompt_mapping: List[int]
|
| 77 |
+
lora_requests: Set[LoRARequest]
|
| 78 |
+
slot_mapping: List[int]
|
| 79 |
+
|
| 80 |
+
@classmethod
|
| 81 |
+
def empty(cls):
|
| 82 |
+
return PrepareDecodeMetadata(
|
| 83 |
+
input_tokens=[],
|
| 84 |
+
input_positions=[],
|
| 85 |
+
attn_metadata=None,
|
| 86 |
+
lora_index_mapping=[],
|
| 87 |
+
lora_prompt_mapping=[],
|
| 88 |
+
lora_requests=set(),
|
| 89 |
+
slot_mapping=[],
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# How batches are constructed.
|
| 94 |
+
class BatchType(IntEnum):
|
| 95 |
+
# Every batch is prefill.
|
| 96 |
+
PREFILL = 0
|
| 97 |
+
# Every batch is decode.
|
| 98 |
+
DECODE = 1
|
| 99 |
+
# Batch is a mixture of prefill and decode.
|
| 100 |
+
MIXED = 2
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class ModelRunner:
|
| 104 |
+
|
| 105 |
+
def __init__(
|
| 106 |
+
self,
|
| 107 |
+
model_config: ModelConfig,
|
| 108 |
+
parallel_config: ParallelConfig,
|
| 109 |
+
scheduler_config: SchedulerConfig,
|
| 110 |
+
device_config: DeviceConfig,
|
| 111 |
+
load_config: LoadConfig,
|
| 112 |
+
lora_config: Optional[LoRAConfig],
|
| 113 |
+
kv_cache_dtype: Optional[str] = "auto",
|
| 114 |
+
is_driver_worker: bool = False,
|
| 115 |
+
vision_language_config: Optional[VisionLanguageConfig] = None,
|
| 116 |
+
):
|
| 117 |
+
self.model_config = model_config
|
| 118 |
+
self.parallel_config = parallel_config
|
| 119 |
+
self.scheduler_config = scheduler_config
|
| 120 |
+
self.lora_config = lora_config
|
| 121 |
+
self.load_config = load_config
|
| 122 |
+
self.is_driver_worker = is_driver_worker
|
| 123 |
+
|
| 124 |
+
# model_config can be None in tests/samplers/test_sampler.py.
|
| 125 |
+
# FIXME(woosuk): This is a hack to make the tests work. Refactor this.
|
| 126 |
+
self.sliding_window = (model_config.get_sliding_window()
|
| 127 |
+
if model_config is not None else None)
|
| 128 |
+
self.device_config = (device_config
|
| 129 |
+
if device_config is not None else DeviceConfig())
|
| 130 |
+
self.device = self.device_config.device
|
| 131 |
+
|
| 132 |
+
# Set after load_model.
|
| 133 |
+
self.lora_manager: LRUCacheWorkerLoRAManager = None
|
| 134 |
+
|
| 135 |
+
self.graph_runners: Dict[int, CUDAGraphRunner] = {}
|
| 136 |
+
self.graph_memory_pool: Optional[Tuple[
|
| 137 |
+
int, int]] = None # Set during graph capture.
|
| 138 |
+
|
| 139 |
+
self.max_context_len_to_capture = (
|
| 140 |
+
self.model_config.max_context_len_to_capture
|
| 141 |
+
if self.model_config is not None else 0)
|
| 142 |
+
|
| 143 |
+
self.pin_memory = is_pin_memory_available()
|
| 144 |
+
self.kv_cache_dtype = kv_cache_dtype
|
| 145 |
+
self.vision_language_config = vision_language_config
|
| 146 |
+
|
| 147 |
+
self.attn_backend = get_attn_backend(
|
| 148 |
+
self.model_config.dtype if model_config is not None else None)
|
| 149 |
+
|
| 150 |
+
# Lazy initialization
|
| 151 |
+
self.model: torch.nn.Module # Set after load_model
|
| 152 |
+
self.block_size: int # Set after initial profiling.
|
| 153 |
+
# When using CUDA graph, the input block tables must be padded to
|
| 154 |
+
# max_context_len_to_capture. However, creating the block table in
|
| 155 |
+
# Python can be expensive. To optimize this, we cache the block table
|
| 156 |
+
# in numpy and only copy the actual input content at every iteration.
|
| 157 |
+
# The shape of the cached block table will be
|
| 158 |
+
# (max batch size to capture, max context len to capture / block size).
|
| 159 |
+
self.graph_block_tables: torch.Tensor # Set after initial profiling.
|
| 160 |
+
|
| 161 |
+
def load_model(self, args) -> None:
|
| 162 |
+
with CudaMemoryProfiler() as m:
|
| 163 |
+
# self.model = get_model(
|
| 164 |
+
# model_config=self.model_config,
|
| 165 |
+
# device_config=self.device_config,
|
| 166 |
+
# load_config=self.load_config,
|
| 167 |
+
# lora_config=self.lora_config,
|
| 168 |
+
# vision_language_config=self.vision_language_config,
|
| 169 |
+
# parallel_config=self.parallel_config,
|
| 170 |
+
# scheduler_config=self.scheduler_config,
|
| 171 |
+
# )
|
| 172 |
+
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
|
| 173 |
+
latent_size = args.image_size // args.downsample_size
|
| 174 |
+
gpt_model = GPT_models[args.gpt_model](
|
| 175 |
+
vocab_size=args.codebook_size,
|
| 176 |
+
block_size=latent_size ** 2,
|
| 177 |
+
num_classes=args.num_classes,
|
| 178 |
+
cls_token_num=args.cls_token_num,
|
| 179 |
+
model_type=args.gpt_type,
|
| 180 |
+
cfg_scale=args.cfg_scale,
|
| 181 |
+
).to(device='cuda', dtype=precision) # TODO: make device configurable
|
| 182 |
+
|
| 183 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 184 |
+
if args.from_fsdp: # fspd
|
| 185 |
+
model_weight = checkpoint
|
| 186 |
+
elif "model" in checkpoint: # ddp
|
| 187 |
+
model_weight = checkpoint["model"]
|
| 188 |
+
elif "state_dict" in checkpoint:
|
| 189 |
+
model_weight = checkpoint["state_dict"]
|
| 190 |
+
else:
|
| 191 |
+
raise Exception("please check model weight, maybe add --from-fsdp to run command")
|
| 192 |
+
gpt_model.custom_load_state_dict(model_weight)
|
| 193 |
+
gpt_model.eval()
|
| 194 |
+
del checkpoint
|
| 195 |
+
self.model = gpt_model
|
| 196 |
+
|
| 197 |
+
self.model_memory_usage = m.consumed_memory
|
| 198 |
+
logger.info(f"Loading model weights took "
|
| 199 |
+
f"{self.model_memory_usage / float(2**30):.4f} GB")
|
| 200 |
+
|
| 201 |
+
if self.lora_config:
|
| 202 |
+
assert hasattr(self.model, "supported_lora_modules"
|
| 203 |
+
) and self.model.supported_lora_modules, (
|
| 204 |
+
"Model does not support LoRA")
|
| 205 |
+
assert hasattr(
|
| 206 |
+
self.model,
|
| 207 |
+
"embedding_modules"), "Model does not have embedding_modules"
|
| 208 |
+
assert hasattr(self.model, "embedding_padding_modules"
|
| 209 |
+
), "Model does not have embedding_padding_modules"
|
| 210 |
+
self.lora_manager = LRUCacheWorkerLoRAManager(
|
| 211 |
+
self.scheduler_config.max_num_seqs,
|
| 212 |
+
self.scheduler_config.max_num_batched_tokens, self.vocab_size,
|
| 213 |
+
self.lora_config, self.device, self.model.embedding_modules,
|
| 214 |
+
self.model.embedding_padding_modules)
|
| 215 |
+
self.model = self.lora_manager.create_lora_manager(self.model)
|
| 216 |
+
|
| 217 |
+
if self.kv_cache_dtype == "fp8" and is_hip():
|
| 218 |
+
# Currently scaled KV cache is only enabled on ROCm
|
| 219 |
+
if self.model_config.quantization_param_path is not None:
|
| 220 |
+
if callable(getattr(self.model, "load_kv_cache_scales", None)):
|
| 221 |
+
self.model.load_kv_cache_scales(
|
| 222 |
+
self.model_config.quantization_param_path)
|
| 223 |
+
else:
|
| 224 |
+
raise RuntimeError("Using FP8 KV cache and scaling "
|
| 225 |
+
"factors provided but model "
|
| 226 |
+
f"{self.model.__class__} does not "
|
| 227 |
+
"support loading scaling factors.")
|
| 228 |
+
else:
|
| 229 |
+
logger.warn("Using FP8 KV cache but no scaling factors "
|
| 230 |
+
"provided. Defaulting to scaling factors of 1.0. "
|
| 231 |
+
"This may lead to less accurate results!")
|
| 232 |
+
elif self.model_config.quantization_param_path is not None:
|
| 233 |
+
logger.warn("KV cache scaling factors provided, "
|
| 234 |
+
"but the KV cache data type is not FP8. "
|
| 235 |
+
"KV cache scaling factors will not be used.")
|
| 236 |
+
|
| 237 |
+
def set_block_size(self, block_size: int) -> None:
|
| 238 |
+
self.block_size = block_size
|
| 239 |
+
|
| 240 |
+
self.graph_block_tables = np.zeros(
|
| 241 |
+
(max(_BATCH_SIZES_TO_CAPTURE), self.get_max_block_per_batch()),
|
| 242 |
+
dtype=np.int32)
|
| 243 |
+
|
| 244 |
+
def get_max_block_per_batch(self) -> int:
|
| 245 |
+
block_size = self.block_size
|
| 246 |
+
return (self.max_context_len_to_capture + block_size - 1) // block_size
|
| 247 |
+
|
| 248 |
+
def _prepare_prompt(
|
| 249 |
+
self,
|
| 250 |
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
| 251 |
+
) -> PreparePromptMetadata:
|
| 252 |
+
input_tokens: List[int] = []
|
| 253 |
+
input_positions: List[int] = []
|
| 254 |
+
slot_mapping: List[int] = []
|
| 255 |
+
lora_index_mapping: List[int] = []
|
| 256 |
+
lora_prompt_mapping: List[int] = []
|
| 257 |
+
lora_requests: Set[LoRARequest] = set()
|
| 258 |
+
|
| 259 |
+
prompt_lens: List[int] = []
|
| 260 |
+
context_lens: List[int] = []
|
| 261 |
+
subquery_lens: List[int] = []
|
| 262 |
+
prefix_block_tables: List[List[int]] = []
|
| 263 |
+
multi_modal_input_list: List[torch.Tensor] = []
|
| 264 |
+
|
| 265 |
+
if len(seq_group_metadata_list) == 0:
|
| 266 |
+
return PreparePromptMetadata.empty()
|
| 267 |
+
|
| 268 |
+
for seq_group_metadata in seq_group_metadata_list:
|
| 269 |
+
assert seq_group_metadata.is_prompt
|
| 270 |
+
seq_ids = list(seq_group_metadata.seq_data.keys())
|
| 271 |
+
assert len(seq_ids) == 1
|
| 272 |
+
seq_id = seq_ids[0]
|
| 273 |
+
|
| 274 |
+
computed_block_nums = seq_group_metadata.computed_block_nums
|
| 275 |
+
if (self.scheduler_config is not None
|
| 276 |
+
and self.scheduler_config.chunked_prefill_enabled
|
| 277 |
+
and not (computed_block_nums is None
|
| 278 |
+
or computed_block_nums == [])):
|
| 279 |
+
raise RuntimeError(
|
| 280 |
+
"chunked prefill cannot be used with prefix caching "
|
| 281 |
+
"now.")
|
| 282 |
+
|
| 283 |
+
token_chunk_size = seq_group_metadata.token_chunk_size
|
| 284 |
+
seq_data = seq_group_metadata.seq_data[seq_id]
|
| 285 |
+
computed_len = seq_data.get_num_computed_tokens()
|
| 286 |
+
# We should use get_len here because in case of preemption
|
| 287 |
+
# it contains output tokens.
|
| 288 |
+
prefill_end = min(seq_data.get_len(),
|
| 289 |
+
computed_len + token_chunk_size)
|
| 290 |
+
prompt_tokens = seq_data.get_token_ids()[computed_len:prefill_end]
|
| 291 |
+
prompt_len = prefill_end
|
| 292 |
+
prompt_lens.append(prompt_len)
|
| 293 |
+
|
| 294 |
+
# NOTE: This only works for oooooooxxx style attention.
|
| 295 |
+
if computed_block_nums is not None and len(
|
| 296 |
+
computed_block_nums) > 0 and self.sliding_window is None:
|
| 297 |
+
# Prefix is not supported with sliding_window
|
| 298 |
+
computed_len = len(computed_block_nums) * self.block_size
|
| 299 |
+
prompt_tokens = prompt_tokens[computed_len:]
|
| 300 |
+
prefix_block_tables.append(computed_block_nums)
|
| 301 |
+
elif self.scheduler_config.chunked_prefill_enabled:
|
| 302 |
+
if seq_group_metadata.block_tables is not None:
|
| 303 |
+
# Prefill has chunked before.
|
| 304 |
+
block_table = seq_group_metadata.block_tables[seq_id]
|
| 305 |
+
prefix_block_tables.append(block_table)
|
| 306 |
+
else:
|
| 307 |
+
# The first prefill.
|
| 308 |
+
prefix_block_tables.append([])
|
| 309 |
+
else:
|
| 310 |
+
prefix_block_tables.append([])
|
| 311 |
+
# Right now, prefill start is always 0. However, this
|
| 312 |
+
# assumption can be changed once chunked prefill is introduced.
|
| 313 |
+
assert computed_len == 0
|
| 314 |
+
|
| 315 |
+
# actual prompt lens
|
| 316 |
+
context_lens.append(computed_len)
|
| 317 |
+
subquery_lens.append(prompt_len - computed_len)
|
| 318 |
+
|
| 319 |
+
input_tokens.extend(prompt_tokens)
|
| 320 |
+
# NOTE(woosuk): Here we assume that the first token in the prompt
|
| 321 |
+
# is always the first token in the sequence.
|
| 322 |
+
input_positions.extend(list(range(computed_len, prefill_end)))
|
| 323 |
+
lora_id = seq_group_metadata.lora_int_id
|
| 324 |
+
|
| 325 |
+
if lora_id > 0:
|
| 326 |
+
lora_requests.add(seq_group_metadata.lora_request)
|
| 327 |
+
|
| 328 |
+
lora_index_mapping += [lora_id] * (prompt_len - computed_len)
|
| 329 |
+
lora_prompt_mapping.extend(
|
| 330 |
+
[lora_id] *
|
| 331 |
+
(prompt_len - computed_len
|
| 332 |
+
if seq_group_metadata.sampling_params.prompt_logprobs else 1))
|
| 333 |
+
|
| 334 |
+
if seq_group_metadata.multi_modal_data:
|
| 335 |
+
multi_modal_input_list.append(
|
| 336 |
+
seq_group_metadata.multi_modal_data.data)
|
| 337 |
+
|
| 338 |
+
if seq_group_metadata.block_tables is None:
|
| 339 |
+
# During memory profiling, the block tables are not initialized
|
| 340 |
+
# yet. In this case, we just use a dummy slot mapping.
|
| 341 |
+
slot_mapping.extend([_PAD_SLOT_ID] * prompt_len)
|
| 342 |
+
continue
|
| 343 |
+
|
| 344 |
+
# Compute the slot mapping.
|
| 345 |
+
block_table = seq_group_metadata.block_tables[seq_id]
|
| 346 |
+
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
|
| 347 |
+
# where start_idx is max(0, prompt_len - sliding_window).
|
| 348 |
+
# For example, if the prompt len is 10, sliding window is 8, and
|
| 349 |
+
# block size is 4, the first two tokens are masked and the slot
|
| 350 |
+
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
|
| 351 |
+
start_idx = 0
|
| 352 |
+
if self.sliding_window is not None:
|
| 353 |
+
assert computed_len == 0, (
|
| 354 |
+
"Prefix caching is currently not supported with "
|
| 355 |
+
"sliding window attention")
|
| 356 |
+
start_idx = max(0, prompt_len - self.sliding_window)
|
| 357 |
+
|
| 358 |
+
for i in range(computed_len, prefill_end):
|
| 359 |
+
if i < start_idx:
|
| 360 |
+
slot_mapping.append(_PAD_SLOT_ID)
|
| 361 |
+
continue
|
| 362 |
+
|
| 363 |
+
block_number = block_table[i // self.block_size]
|
| 364 |
+
block_offset = i % self.block_size
|
| 365 |
+
slot = block_number * self.block_size + block_offset
|
| 366 |
+
slot_mapping.append(slot)
|
| 367 |
+
|
| 368 |
+
max_subquery_len = max(subquery_lens)
|
| 369 |
+
max_prompt_len = max(prompt_lens)
|
| 370 |
+
assert max_subquery_len > 0
|
| 371 |
+
|
| 372 |
+
context_lens_tensor = torch.tensor(context_lens,
|
| 373 |
+
dtype=torch.int,
|
| 374 |
+
device=self.device)
|
| 375 |
+
|
| 376 |
+
if multi_modal_input_list:
|
| 377 |
+
assert self.vision_language_config, (
|
| 378 |
+
"Multi-modal inputs are only supported by "
|
| 379 |
+
"vision language models.")
|
| 380 |
+
multi_modal_input = torch.cat(multi_modal_input_list,
|
| 381 |
+
dim=0).to(self.device)
|
| 382 |
+
else:
|
| 383 |
+
multi_modal_input = None
|
| 384 |
+
|
| 385 |
+
# Prepare prefix block tables
|
| 386 |
+
max_prompt_block_table_len = max(len(t) for t in prefix_block_tables)
|
| 387 |
+
block_tables = make_tensor_with_pad(
|
| 388 |
+
prefix_block_tables,
|
| 389 |
+
max_len=max_prompt_block_table_len,
|
| 390 |
+
pad=0,
|
| 391 |
+
dtype=torch.int,
|
| 392 |
+
device=self.device,
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
# Query length can be shorter than key (i.e., prompt) when prefill
|
| 396 |
+
# is chunked or prefix cached.
|
| 397 |
+
subquery_lens_tensor = torch.tensor(subquery_lens,
|
| 398 |
+
dtype=torch.long,
|
| 399 |
+
device=self.device)
|
| 400 |
+
subquery_start_loc = torch.zeros(subquery_lens_tensor.shape[0] + 1,
|
| 401 |
+
dtype=torch.int32,
|
| 402 |
+
device=self.device)
|
| 403 |
+
|
| 404 |
+
prompt_lens_tensor = torch.tensor(prompt_lens,
|
| 405 |
+
dtype=torch.long,
|
| 406 |
+
device=self.device)
|
| 407 |
+
seq_start_loc = torch.zeros(prompt_lens_tensor.shape[0] + 1,
|
| 408 |
+
dtype=torch.int32,
|
| 409 |
+
device=self.device)
|
| 410 |
+
|
| 411 |
+
torch.cumsum(subquery_lens_tensor,
|
| 412 |
+
dim=0,
|
| 413 |
+
dtype=subquery_start_loc.dtype,
|
| 414 |
+
out=subquery_start_loc[1:])
|
| 415 |
+
|
| 416 |
+
torch.cumsum(prompt_lens_tensor,
|
| 417 |
+
dim=0,
|
| 418 |
+
dtype=seq_start_loc.dtype,
|
| 419 |
+
out=seq_start_loc[1:])
|
| 420 |
+
|
| 421 |
+
attn_metadata = self.attn_backend.make_metadata(
|
| 422 |
+
is_prompt=True,
|
| 423 |
+
prompt_lens=prompt_lens,
|
| 424 |
+
prompt_lens_tensor=prompt_lens_tensor,
|
| 425 |
+
max_subquery_len=max_subquery_len,
|
| 426 |
+
max_context_len=None,
|
| 427 |
+
max_prompt_len=max_prompt_len,
|
| 428 |
+
subquery_start_loc=subquery_start_loc,
|
| 429 |
+
seq_start_loc=seq_start_loc,
|
| 430 |
+
context_lens=context_lens_tensor,
|
| 431 |
+
block_tables=block_tables,
|
| 432 |
+
use_cuda_graph=False,
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
return PreparePromptMetadata(
|
| 436 |
+
input_tokens=input_tokens,
|
| 437 |
+
input_positions=input_positions,
|
| 438 |
+
attn_metadata=attn_metadata,
|
| 439 |
+
prompt_lens=prompt_lens,
|
| 440 |
+
subquery_lens=subquery_lens,
|
| 441 |
+
lora_index_mapping=lora_index_mapping,
|
| 442 |
+
lora_prompt_mapping=lora_prompt_mapping,
|
| 443 |
+
lora_requests=lora_requests,
|
| 444 |
+
multi_modal_input=multi_modal_input,
|
| 445 |
+
slot_mapping=slot_mapping,
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
def _prepare_decode(
|
| 449 |
+
self,
|
| 450 |
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
| 451 |
+
) -> PrepareDecodeMetadata:
|
| 452 |
+
input_tokens: List[int] = []
|
| 453 |
+
input_positions: List[int] = []
|
| 454 |
+
slot_mapping: List[int] = []
|
| 455 |
+
context_lens: List[int] = []
|
| 456 |
+
block_tables: List[List[int]] = []
|
| 457 |
+
lora_index_mapping: List[int] = []
|
| 458 |
+
lora_prompt_mapping: List[int] = []
|
| 459 |
+
lora_requests: Set[LoRARequest] = set()
|
| 460 |
+
|
| 461 |
+
if len(seq_group_metadata_list) == 0:
|
| 462 |
+
return PrepareDecodeMetadata.empty()
|
| 463 |
+
|
| 464 |
+
for seq_group_metadata in seq_group_metadata_list:
|
| 465 |
+
assert not seq_group_metadata.is_prompt
|
| 466 |
+
assert seq_group_metadata.token_chunk_size == 1
|
| 467 |
+
|
| 468 |
+
seq_ids = list(seq_group_metadata.seq_data.keys())
|
| 469 |
+
lora_id = seq_group_metadata.lora_int_id
|
| 470 |
+
|
| 471 |
+
if lora_id > 0:
|
| 472 |
+
lora_requests.add(seq_group_metadata.lora_request)
|
| 473 |
+
|
| 474 |
+
for seq_id in seq_ids:
|
| 475 |
+
seq_data = seq_group_metadata.seq_data[seq_id]
|
| 476 |
+
generation_token = seq_data.get_last_token_id()
|
| 477 |
+
input_tokens.append(generation_token)
|
| 478 |
+
|
| 479 |
+
seq_len = seq_data.get_len()
|
| 480 |
+
position = seq_len - 1
|
| 481 |
+
input_positions.append(position)
|
| 482 |
+
|
| 483 |
+
context_len = seq_len if self.sliding_window is None else min(
|
| 484 |
+
seq_len, self.sliding_window)
|
| 485 |
+
context_lens.append(context_len)
|
| 486 |
+
|
| 487 |
+
block_table = seq_group_metadata.block_tables[seq_id]
|
| 488 |
+
block_number = block_table[position // self.block_size]
|
| 489 |
+
block_offset = position % self.block_size
|
| 490 |
+
slot = block_number * self.block_size + block_offset
|
| 491 |
+
slot_mapping.append(slot)
|
| 492 |
+
lora_index_mapping.append(lora_id)
|
| 493 |
+
lora_prompt_mapping.append(lora_id)
|
| 494 |
+
|
| 495 |
+
if self.sliding_window is not None:
|
| 496 |
+
sliding_window_blocks = (self.sliding_window //
|
| 497 |
+
self.block_size)
|
| 498 |
+
block_table = block_table[-sliding_window_blocks:]
|
| 499 |
+
block_tables.append(block_table)
|
| 500 |
+
|
| 501 |
+
# vLLM uses cuda graph only for decoding requests.
|
| 502 |
+
# See `capture_model` API for more details.
|
| 503 |
+
# For decoding requests, batch_size == input_tokens.
|
| 504 |
+
batch_size = len(input_tokens)
|
| 505 |
+
max_context_len = max(context_lens)
|
| 506 |
+
use_captured_graph = (
|
| 507 |
+
not self.model_config.enforce_eager
|
| 508 |
+
and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
|
| 509 |
+
and max_context_len <= self.max_context_len_to_capture)
|
| 510 |
+
if use_captured_graph:
|
| 511 |
+
graph_batch_size = _get_graph_batch_size(batch_size)
|
| 512 |
+
assert graph_batch_size >= batch_size
|
| 513 |
+
for _ in range(graph_batch_size - batch_size):
|
| 514 |
+
input_tokens.append(0)
|
| 515 |
+
input_positions.append(0)
|
| 516 |
+
slot_mapping.append(_PAD_SLOT_ID)
|
| 517 |
+
context_lens.append(1)
|
| 518 |
+
block_tables.append([])
|
| 519 |
+
lora_index_mapping.append(0)
|
| 520 |
+
batch_size = graph_batch_size
|
| 521 |
+
|
| 522 |
+
context_lens_tensor = torch.tensor(context_lens,
|
| 523 |
+
dtype=torch.int,
|
| 524 |
+
device=self.device)
|
| 525 |
+
|
| 526 |
+
if use_captured_graph:
|
| 527 |
+
# When using cuda-graph all these tensors should be
|
| 528 |
+
# padded.
|
| 529 |
+
assert context_lens_tensor.shape[0] == len(input_tokens)
|
| 530 |
+
assert context_lens_tensor.shape[0] == len(input_positions)
|
| 531 |
+
assert context_lens_tensor.shape[0] == len(slot_mapping)
|
| 532 |
+
|
| 533 |
+
# The shape of graph_block_tables is
|
| 534 |
+
# [max batch size, max context len // block size].
|
| 535 |
+
input_block_tables = self.graph_block_tables[:batch_size]
|
| 536 |
+
for i, block_table in enumerate(block_tables):
|
| 537 |
+
if block_table:
|
| 538 |
+
input_block_tables[i, :len(block_table)] = block_table
|
| 539 |
+
block_tables = torch.tensor(input_block_tables, device=self.device)
|
| 540 |
+
else:
|
| 541 |
+
max_block_table_len = max(
|
| 542 |
+
len(block_table) for block_table in block_tables)
|
| 543 |
+
block_tables = make_tensor_with_pad(
|
| 544 |
+
block_tables,
|
| 545 |
+
max_len=max_block_table_len,
|
| 546 |
+
pad=0,
|
| 547 |
+
dtype=torch.int,
|
| 548 |
+
device=self.device,
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
attn_metadata = self.attn_backend.make_metadata(
|
| 552 |
+
is_prompt=False,
|
| 553 |
+
prompt_lens=None,
|
| 554 |
+
prompt_lens_tensor=None,
|
| 555 |
+
max_subquery_len=None,
|
| 556 |
+
max_context_len=max_context_len,
|
| 557 |
+
max_prompt_len=None,
|
| 558 |
+
subquery_start_loc=None,
|
| 559 |
+
seq_start_loc=None,
|
| 560 |
+
context_lens=context_lens_tensor,
|
| 561 |
+
block_tables=block_tables,
|
| 562 |
+
use_cuda_graph=use_captured_graph,
|
| 563 |
+
)
|
| 564 |
+
return PrepareDecodeMetadata(
|
| 565 |
+
input_tokens=input_tokens,
|
| 566 |
+
input_positions=input_positions,
|
| 567 |
+
attn_metadata=attn_metadata,
|
| 568 |
+
lora_index_mapping=lora_index_mapping,
|
| 569 |
+
lora_prompt_mapping=lora_prompt_mapping,
|
| 570 |
+
lora_requests=lora_requests,
|
| 571 |
+
slot_mapping=slot_mapping,
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
def _prepare_sample(
|
| 575 |
+
self,
|
| 576 |
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
| 577 |
+
prompt_lens: List[int],
|
| 578 |
+
subquery_lens: Optional[List[int]],
|
| 579 |
+
) -> SamplingMetadata:
|
| 580 |
+
seq_groups: List[Tuple[List[int], SamplingParams]] = []
|
| 581 |
+
selected_token_indices: List[int] = []
|
| 582 |
+
generators: List[torch.Generator] = []
|
| 583 |
+
selected_token_start_idx = 0
|
| 584 |
+
categorized_sample_indices: Dict[SamplingType,
|
| 585 |
+
List[Tuple[int, int]]] = {
|
| 586 |
+
t: []
|
| 587 |
+
for t in SamplingType
|
| 588 |
+
}
|
| 589 |
+
categorized_sample_indices_start_idx = 0
|
| 590 |
+
categorized_sampled_token_indices_start_idx = 0
|
| 591 |
+
|
| 592 |
+
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
|
| 593 |
+
seq_ids = list(seq_group_metadata.seq_data.keys())
|
| 594 |
+
sampling_params = seq_group_metadata.sampling_params
|
| 595 |
+
seq_groups.append((seq_ids, sampling_params))
|
| 596 |
+
|
| 597 |
+
if seq_group_metadata.is_prompt:
|
| 598 |
+
assert len(seq_ids) == 1
|
| 599 |
+
assert subquery_lens is not None
|
| 600 |
+
subquery_len = subquery_lens[i]
|
| 601 |
+
if sampling_params.prompt_logprobs is not None:
|
| 602 |
+
# NOTE: prompt token positions do not need sample, skip
|
| 603 |
+
categorized_sample_indices_start_idx += subquery_len - 1
|
| 604 |
+
|
| 605 |
+
categorized_sample_indices[
|
| 606 |
+
sampling_params.sampling_type].append(
|
| 607 |
+
(categorized_sample_indices_start_idx,
|
| 608 |
+
categorized_sampled_token_indices_start_idx))
|
| 609 |
+
categorized_sample_indices_start_idx += 1
|
| 610 |
+
categorized_sampled_token_indices_start_idx += 1
|
| 611 |
+
|
| 612 |
+
if sampling_params.prompt_logprobs is not None:
|
| 613 |
+
selected_token_indices.extend(
|
| 614 |
+
range(selected_token_start_idx,
|
| 615 |
+
selected_token_start_idx + subquery_len - 1))
|
| 616 |
+
selected_token_indices.append(selected_token_start_idx +
|
| 617 |
+
subquery_len - 1)
|
| 618 |
+
selected_token_start_idx += subquery_len
|
| 619 |
+
|
| 620 |
+
if sampling_params.seed is not None:
|
| 621 |
+
seq_group_metadata.state.generator = torch.Generator(
|
| 622 |
+
device=self.device).manual_seed(sampling_params.seed)
|
| 623 |
+
else:
|
| 624 |
+
num_seqs = len(seq_ids)
|
| 625 |
+
selected_token_indices.extend(
|
| 626 |
+
range(selected_token_start_idx,
|
| 627 |
+
selected_token_start_idx + num_seqs))
|
| 628 |
+
selected_token_start_idx += num_seqs
|
| 629 |
+
|
| 630 |
+
categorized_sample_indices[
|
| 631 |
+
sampling_params.sampling_type].extend(
|
| 632 |
+
list(
|
| 633 |
+
zip(
|
| 634 |
+
range(
|
| 635 |
+
categorized_sample_indices_start_idx,
|
| 636 |
+
categorized_sample_indices_start_idx +
|
| 637 |
+
num_seqs),
|
| 638 |
+
range(
|
| 639 |
+
categorized_sampled_token_indices_start_idx,
|
| 640 |
+
categorized_sampled_token_indices_start_idx
|
| 641 |
+
+ num_seqs))))
|
| 642 |
+
categorized_sample_indices_start_idx += num_seqs
|
| 643 |
+
categorized_sampled_token_indices_start_idx += num_seqs
|
| 644 |
+
|
| 645 |
+
if sampling_params.seed is not None:
|
| 646 |
+
generators.append(seq_group_metadata.state.generator)
|
| 647 |
+
|
| 648 |
+
selected_token_indices = async_tensor_h2d(selected_token_indices,
|
| 649 |
+
dtype=torch.long,
|
| 650 |
+
target_device=self.device,
|
| 651 |
+
pin_memory=self.pin_memory)
|
| 652 |
+
|
| 653 |
+
categorized_sample_indices = {
|
| 654 |
+
t: maybe_expand_dim(
|
| 655 |
+
async_tensor_h2d(seq_ids,
|
| 656 |
+
dtype=torch.int,
|
| 657 |
+
target_device=self.device,
|
| 658 |
+
pin_memory=self.pin_memory), 2, 2)
|
| 659 |
+
for t, seq_ids in categorized_sample_indices.items()
|
| 660 |
+
}
|
| 661 |
+
|
| 662 |
+
seq_data: Dict[int, SequenceData] = {}
|
| 663 |
+
for seq_group_metadata in seq_group_metadata_list:
|
| 664 |
+
seq_data.update(seq_group_metadata.seq_data)
|
| 665 |
+
|
| 666 |
+
sampling_metadata = SamplingMetadata(
|
| 667 |
+
seq_groups=seq_groups,
|
| 668 |
+
seq_data=seq_data,
|
| 669 |
+
prompt_lens=prompt_lens,
|
| 670 |
+
selected_token_indices=selected_token_indices,
|
| 671 |
+
categorized_sample_indices=categorized_sample_indices,
|
| 672 |
+
generators=generators,
|
| 673 |
+
)
|
| 674 |
+
return sampling_metadata
|
| 675 |
+
|
| 676 |
+
def prepare_input_tensors(
|
| 677 |
+
self,
|
| 678 |
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
| 679 |
+
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, SamplingMetadata,
|
| 680 |
+
Set[LoRARequest], LoRAMapping, torch.Tensor]:
|
| 681 |
+
if self.is_driver_worker:
|
| 682 |
+
prefill_reqs = []
|
| 683 |
+
decode_reqs = []
|
| 684 |
+
for seq_group_meta in seq_group_metadata_list:
|
| 685 |
+
if seq_group_meta.is_prompt:
|
| 686 |
+
prefill_reqs.append(seq_group_meta)
|
| 687 |
+
else:
|
| 688 |
+
decode_reqs.append(seq_group_meta)
|
| 689 |
+
|
| 690 |
+
# Prepare input tensors.
|
| 691 |
+
(
|
| 692 |
+
input_tokens,
|
| 693 |
+
input_positions,
|
| 694 |
+
prefill_attn_metadata,
|
| 695 |
+
prompt_lens,
|
| 696 |
+
subquery_lens,
|
| 697 |
+
lora_index_mapping,
|
| 698 |
+
lora_prompt_mapping,
|
| 699 |
+
lora_requests,
|
| 700 |
+
multi_modal_input,
|
| 701 |
+
slot_mapping,
|
| 702 |
+
) = self._prepare_prompt(prefill_reqs)
|
| 703 |
+
(
|
| 704 |
+
decode_input_tokens,
|
| 705 |
+
decode_input_positions,
|
| 706 |
+
decode_attn_metadata,
|
| 707 |
+
decode_lora_index_mapping,
|
| 708 |
+
decode_lora_prompt_mapping,
|
| 709 |
+
decode_lora_requests,
|
| 710 |
+
decode_slot_mapping,
|
| 711 |
+
) = self._prepare_decode(decode_reqs)
|
| 712 |
+
sampling_metadata = self._prepare_sample(seq_group_metadata_list,
|
| 713 |
+
prompt_lens,
|
| 714 |
+
subquery_lens)
|
| 715 |
+
|
| 716 |
+
if not self.scheduler_config.chunked_prefill_enabled:
|
| 717 |
+
assert (len(prefill_reqs) and len(decode_reqs)) == 0
|
| 718 |
+
|
| 719 |
+
num_prefills = len(prompt_lens)
|
| 720 |
+
num_prefill_tokens = len(input_tokens)
|
| 721 |
+
num_decode_tokens = len(decode_input_tokens)
|
| 722 |
+
|
| 723 |
+
# Coalesce tensors. Note that attn_metadata is currently not
|
| 724 |
+
# coalesced for simplicity.
|
| 725 |
+
input_tokens.extend(decode_input_tokens)
|
| 726 |
+
input_positions.extend(decode_input_positions)
|
| 727 |
+
slot_mapping.extend(decode_slot_mapping)
|
| 728 |
+
lora_index_mapping.extend(decode_lora_index_mapping)
|
| 729 |
+
lora_prompt_mapping.extend(decode_lora_prompt_mapping)
|
| 730 |
+
lora_requests.update(decode_lora_requests)
|
| 731 |
+
|
| 732 |
+
input_tokens = torch.tensor(input_tokens,
|
| 733 |
+
dtype=torch.long,
|
| 734 |
+
device=self.device)
|
| 735 |
+
input_positions = torch.tensor(input_positions,
|
| 736 |
+
dtype=torch.long,
|
| 737 |
+
device=self.device)
|
| 738 |
+
slot_mapping = torch.tensor(slot_mapping,
|
| 739 |
+
dtype=torch.long,
|
| 740 |
+
device=self.device)
|
| 741 |
+
|
| 742 |
+
if self.lora_config:
|
| 743 |
+
lora_mapping = LoRAMapping(
|
| 744 |
+
lora_index_mapping,
|
| 745 |
+
lora_prompt_mapping,
|
| 746 |
+
)
|
| 747 |
+
else:
|
| 748 |
+
lora_mapping = None
|
| 749 |
+
|
| 750 |
+
# Broadcast the metadata.
|
| 751 |
+
# If batch contains both prefill and decode, it sends 2 broadcasts.
|
| 752 |
+
# If it only contains 1 type, it triggers a single broadcast.
|
| 753 |
+
if (prefill_attn_metadata is not None
|
| 754 |
+
and decode_attn_metadata is not None):
|
| 755 |
+
batch_type = BatchType.MIXED
|
| 756 |
+
elif prefill_attn_metadata is not None:
|
| 757 |
+
batch_type = BatchType.PREFILL
|
| 758 |
+
else:
|
| 759 |
+
batch_type = BatchType.DECODE
|
| 760 |
+
|
| 761 |
+
metadata_dict = {
|
| 762 |
+
"input_tokens": input_tokens,
|
| 763 |
+
"input_positions": input_positions,
|
| 764 |
+
"selected_token_indices":
|
| 765 |
+
sampling_metadata.selected_token_indices,
|
| 766 |
+
"lora_requests": lora_requests,
|
| 767 |
+
"lora_mapping": lora_mapping,
|
| 768 |
+
"multi_modal_input": multi_modal_input,
|
| 769 |
+
"num_prefill_tokens": num_prefill_tokens,
|
| 770 |
+
"num_decode_tokens": num_decode_tokens,
|
| 771 |
+
"slot_mapping": slot_mapping,
|
| 772 |
+
"num_prefills": num_prefills,
|
| 773 |
+
"batch_type": batch_type,
|
| 774 |
+
}
|
| 775 |
+
if prefill_attn_metadata is not None:
|
| 776 |
+
metadata_dict.update(prefill_attn_metadata.asdict_zerocopy())
|
| 777 |
+
else:
|
| 778 |
+
assert decode_attn_metadata is not None
|
| 779 |
+
metadata_dict.update(decode_attn_metadata.asdict_zerocopy())
|
| 780 |
+
broadcast_tensor_dict(metadata_dict, src=0)
|
| 781 |
+
|
| 782 |
+
# Broadcast decode attn metadata for mixed batch type.
|
| 783 |
+
# The additional broadcast costs 300us overhead on 4 A10 GPUs.
|
| 784 |
+
# We can potentially reduce the overhead by coelescing tensors.
|
| 785 |
+
if batch_type == BatchType.MIXED:
|
| 786 |
+
assert decode_attn_metadata is not None
|
| 787 |
+
metadata_dict = decode_attn_metadata.asdict_zerocopy()
|
| 788 |
+
broadcast_tensor_dict(metadata_dict, src=0)
|
| 789 |
+
else:
|
| 790 |
+
metadata_dict = broadcast_tensor_dict(src=0)
|
| 791 |
+
input_tokens = metadata_dict.pop("input_tokens")
|
| 792 |
+
input_positions = metadata_dict.pop("input_positions")
|
| 793 |
+
slot_mapping = metadata_dict.pop("slot_mapping")
|
| 794 |
+
num_prefills = metadata_dict.pop("num_prefills")
|
| 795 |
+
selected_token_indices = metadata_dict.pop(
|
| 796 |
+
"selected_token_indices")
|
| 797 |
+
lora_mapping = metadata_dict.pop("lora_mapping")
|
| 798 |
+
lora_requests = metadata_dict.pop("lora_requests")
|
| 799 |
+
multi_modal_input = metadata_dict.pop("multi_modal_input")
|
| 800 |
+
num_prefill_tokens = metadata_dict.pop("num_prefill_tokens")
|
| 801 |
+
num_decode_tokens = metadata_dict.pop("num_decode_tokens")
|
| 802 |
+
batch_type = metadata_dict.pop("batch_type")
|
| 803 |
+
|
| 804 |
+
# Create an attention metadata.
|
| 805 |
+
prefill_attn_metadata = None
|
| 806 |
+
decode_attn_metadata = None
|
| 807 |
+
if batch_type == BatchType.PREFILL or batch_type == BatchType.MIXED:
|
| 808 |
+
prefill_attn_metadata = self.attn_backend.make_metadata(
|
| 809 |
+
**metadata_dict)
|
| 810 |
+
else:
|
| 811 |
+
decode_attn_metadata = self.attn_backend.make_metadata(
|
| 812 |
+
**metadata_dict)
|
| 813 |
+
sampling_metadata = SamplingMetadata(
|
| 814 |
+
seq_groups=None,
|
| 815 |
+
seq_data=None,
|
| 816 |
+
prompt_lens=None,
|
| 817 |
+
selected_token_indices=selected_token_indices,
|
| 818 |
+
categorized_sample_indices=None,
|
| 819 |
+
generators=None,
|
| 820 |
+
perform_sampling=False,
|
| 821 |
+
)
|
| 822 |
+
|
| 823 |
+
# if it is a mixed batch, decode attn_metadata is broadcasted
|
| 824 |
+
# separately.
|
| 825 |
+
if batch_type == BatchType.MIXED:
|
| 826 |
+
metadata_dict = broadcast_tensor_dict(src=0)
|
| 827 |
+
decode_attn_metadata = self.attn_backend.make_metadata(
|
| 828 |
+
**metadata_dict)
|
| 829 |
+
|
| 830 |
+
attn_metadata = AttentionMetadata(
|
| 831 |
+
num_prefills=num_prefills,
|
| 832 |
+
slot_mapping=slot_mapping,
|
| 833 |
+
num_prefill_tokens=num_prefill_tokens,
|
| 834 |
+
num_decode_tokens=num_decode_tokens,
|
| 835 |
+
prefill_metadata=prefill_attn_metadata,
|
| 836 |
+
decode_metadata=decode_attn_metadata,
|
| 837 |
+
kv_cache_dtype=self.kv_cache_dtype,
|
| 838 |
+
)
|
| 839 |
+
|
| 840 |
+
return (input_tokens, input_positions, attn_metadata,
|
| 841 |
+
sampling_metadata, lora_requests, lora_mapping,
|
| 842 |
+
multi_modal_input)
|
| 843 |
+
|
| 844 |
+
@torch.inference_mode()
|
| 845 |
+
def execute_model(
|
| 846 |
+
self,
|
| 847 |
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
| 848 |
+
kv_caches: List[torch.Tensor],
|
| 849 |
+
) -> Optional[SamplerOutput]:
|
| 850 |
+
(input_tokens, input_positions, attn_metadata, sampling_metadata,
|
| 851 |
+
lora_requests, lora_mapping, multi_modal_input
|
| 852 |
+
) = self.prepare_input_tensors(seq_group_metadata_list)
|
| 853 |
+
if self.lora_config:
|
| 854 |
+
self.set_active_loras(lora_requests, lora_mapping)
|
| 855 |
+
|
| 856 |
+
# Currently cuda graph is only supported by the decode phase.
|
| 857 |
+
prefill_meta = attn_metadata.prefill_metadata
|
| 858 |
+
decode_meta = attn_metadata.decode_metadata
|
| 859 |
+
if prefill_meta is None and decode_meta.use_cuda_graph:
|
| 860 |
+
graph_batch_size = input_tokens.shape[0]
|
| 861 |
+
model_executable = self.graph_runners[graph_batch_size]
|
| 862 |
+
else:
|
| 863 |
+
model_executable = self.model
|
| 864 |
+
execute_model_kwargs = {
|
| 865 |
+
"input_ids": input_tokens,
|
| 866 |
+
"positions": input_positions,
|
| 867 |
+
"kv_caches": kv_caches,
|
| 868 |
+
"attn_metadata": attn_metadata,
|
| 869 |
+
}
|
| 870 |
+
if self.vision_language_config:
|
| 871 |
+
execute_model_kwargs.update({"image_input": multi_modal_input})
|
| 872 |
+
hidden_states = model_executable(**execute_model_kwargs)
|
| 873 |
+
|
| 874 |
+
# Compute the logits.
|
| 875 |
+
logits = self.model.compute_logits(hidden_states, sampling_metadata)
|
| 876 |
+
|
| 877 |
+
# Only perform sampling in the driver worker.
|
| 878 |
+
if not sampling_metadata.perform_sampling:
|
| 879 |
+
return None
|
| 880 |
+
|
| 881 |
+
# Sample the next token.
|
| 882 |
+
output = self.model.sample(
|
| 883 |
+
logits=logits,
|
| 884 |
+
sampling_metadata=sampling_metadata,
|
| 885 |
+
)
|
| 886 |
+
return output
|
| 887 |
+
|
| 888 |
+
@torch.inference_mode()
|
| 889 |
+
def profile_run(self) -> None:
|
| 890 |
+
# Enable top-k sampling to reflect the accurate memory usage.
|
| 891 |
+
sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
|
| 892 |
+
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
|
| 893 |
+
max_num_seqs = self.scheduler_config.max_num_seqs
|
| 894 |
+
|
| 895 |
+
# This represents the maximum number of different requests
|
| 896 |
+
# that will have unique loras, an therefore the max amount of memory
|
| 897 |
+
# consumption create dummy lora request copies from the lora request
|
| 898 |
+
# passed in, which contains a lora from the lora warmup path.
|
| 899 |
+
dummy_lora_requests = []
|
| 900 |
+
dummy_lora_requests_per_seq = []
|
| 901 |
+
if self.lora_config:
|
| 902 |
+
for idx in range(self.lora_config.max_loras):
|
| 903 |
+
lora_id = idx + 1
|
| 904 |
+
dummy_lora_request = LoRARequest(
|
| 905 |
+
lora_name=f"warmup_{lora_id}",
|
| 906 |
+
lora_int_id=lora_id,
|
| 907 |
+
lora_local_path="/not/a/real/path",
|
| 908 |
+
)
|
| 909 |
+
self.lora_manager.add_dummy_lora(dummy_lora_request,
|
| 910 |
+
rank=LORA_WARMUP_RANK)
|
| 911 |
+
dummy_lora_requests.append(dummy_lora_request)
|
| 912 |
+
dummy_lora_requests_per_seq = [
|
| 913 |
+
dummy_lora_requests[idx % len(dummy_lora_requests)]
|
| 914 |
+
for idx in range(max_num_seqs)
|
| 915 |
+
]
|
| 916 |
+
|
| 917 |
+
# Profile memory usage with max_num_sequences sequences and the total
|
| 918 |
+
# number of tokens equal to max_num_batched_tokens.
|
| 919 |
+
seqs: List[SequenceGroupMetadata] = []
|
| 920 |
+
# Additional GPU memory may be needed for vision encoding, which needs
|
| 921 |
+
# to be accounted for when calculating the GPU blocks for
|
| 922 |
+
# vLLM blocker manager.
|
| 923 |
+
# To exercise the worst scenario for GPU memory consumption,
|
| 924 |
+
# the number of seqs (batch_size) is chosen to maximize the number
|
| 925 |
+
# of images processed.
|
| 926 |
+
if self.vision_language_config:
|
| 927 |
+
max_num_seqs = min(
|
| 928 |
+
max_num_seqs,
|
| 929 |
+
int(max_num_batched_tokens /
|
| 930 |
+
self.vision_language_config.image_feature_size))
|
| 931 |
+
for group_id in range(max_num_seqs):
|
| 932 |
+
seq_len = (max_num_batched_tokens // max_num_seqs +
|
| 933 |
+
(group_id < max_num_batched_tokens % max_num_seqs))
|
| 934 |
+
seq_data, fake_multi_modal_input = _prepare_fake_inputs(
|
| 935 |
+
seq_len, self.vision_language_config)
|
| 936 |
+
seq = SequenceGroupMetadata(
|
| 937 |
+
request_id=str(group_id),
|
| 938 |
+
is_prompt=True,
|
| 939 |
+
seq_data={group_id: seq_data},
|
| 940 |
+
sampling_params=sampling_params,
|
| 941 |
+
block_tables=None,
|
| 942 |
+
lora_request=dummy_lora_requests_per_seq[group_id]
|
| 943 |
+
if dummy_lora_requests_per_seq else None,
|
| 944 |
+
multi_modal_data=fake_multi_modal_input,
|
| 945 |
+
)
|
| 946 |
+
seqs.append(seq)
|
| 947 |
+
|
| 948 |
+
# Run the model with the dummy inputs.
|
| 949 |
+
num_layers = self.model_config.get_num_layers(self.parallel_config)
|
| 950 |
+
kv_caches = [None] * num_layers
|
| 951 |
+
self.execute_model(seqs, kv_caches)
|
| 952 |
+
torch.cuda.synchronize()
|
| 953 |
+
return
|
| 954 |
+
|
| 955 |
+
def remove_all_loras(self) -> bool:
|
| 956 |
+
if not self.lora_manager:
|
| 957 |
+
raise RuntimeError("LoRA is not enabled.")
|
| 958 |
+
return self.lora_manager.remove_all_loras()
|
| 959 |
+
|
| 960 |
+
def set_active_loras(self, lora_requests: Set[LoRARequest],
|
| 961 |
+
lora_mapping: LoRAMapping) -> None:
|
| 962 |
+
if not self.lora_manager:
|
| 963 |
+
raise RuntimeError("LoRA is not enabled.")
|
| 964 |
+
self.lora_manager.set_active_loras(lora_requests, lora_mapping)
|
| 965 |
+
|
| 966 |
+
def add_lora(self, lora_request: LoRARequest) -> bool:
|
| 967 |
+
if not self.lora_manager:
|
| 968 |
+
raise RuntimeError("LoRA is not enabled.")
|
| 969 |
+
return self.lora_manager.add_lora(lora_request)
|
| 970 |
+
|
| 971 |
+
def remove_lora(self, lora_id: int) -> bool:
|
| 972 |
+
if not self.lora_manager:
|
| 973 |
+
raise RuntimeError("LoRA is not enabled.")
|
| 974 |
+
return self.lora_manager.remove_lora(lora_id)
|
| 975 |
+
|
| 976 |
+
def list_loras(self) -> Set[int]:
|
| 977 |
+
if not self.lora_manager:
|
| 978 |
+
raise RuntimeError("LoRA is not enabled.")
|
| 979 |
+
return self.lora_manager.list_loras()
|
| 980 |
+
|
| 981 |
+
@torch.inference_mode()
|
| 982 |
+
def capture_model(self, kv_caches: List[torch.Tensor]) -> None:
|
| 983 |
+
"""Cuda graph capture a model.
|
| 984 |
+
|
| 985 |
+
Note that CUDA graph's performance gain is negligible if number
|
| 986 |
+
of batched tokens are larger than 200. And since CUDA graph
|
| 987 |
+
requires fixed sized tensors, supporting large/variable batch
|
| 988 |
+
size requires high GPU memory overhead. Thus, vLLM only captures
|
| 989 |
+
decoding requests. Mixed batch (chunked prefill + decoding) or
|
| 990 |
+
prefill requests are not captured.
|
| 991 |
+
|
| 992 |
+
Since it is used for decoding-only, it assumes there's only 1 token
|
| 993 |
+
per sequence in the batch.
|
| 994 |
+
"""
|
| 995 |
+
# NOTE(woosuk): This is a hack to ensure that the NCCL backend is never
|
| 996 |
+
# deleted before the CUDA graphs.
|
| 997 |
+
self.pynccl_backend = pynccl_utils.get_nccl_backend()
|
| 998 |
+
|
| 999 |
+
assert not self.model_config.enforce_eager
|
| 1000 |
+
logger.info("Capturing the model for CUDA graphs. This may lead to "
|
| 1001 |
+
"unexpected consequences if the model is not static. To "
|
| 1002 |
+
"run the model in eager mode, set 'enforce_eager=True' or "
|
| 1003 |
+
"use '--enforce-eager' in the CLI.")
|
| 1004 |
+
logger.info("CUDA graphs can take additional 1~3 GiB memory per GPU. "
|
| 1005 |
+
"If you are running out of memory, consider decreasing "
|
| 1006 |
+
"`gpu_memory_utilization` or enforcing eager mode. "
|
| 1007 |
+
"You can also reduce the `max_num_seqs` as needed "
|
| 1008 |
+
"to decrease memory usage.")
|
| 1009 |
+
start_time = time.perf_counter()
|
| 1010 |
+
|
| 1011 |
+
# Prepare dummy inputs. These will be reused for all batch sizes.
|
| 1012 |
+
max_batch_size = max(_BATCH_SIZES_TO_CAPTURE)
|
| 1013 |
+
input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda()
|
| 1014 |
+
input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda()
|
| 1015 |
+
slot_mapping = torch.empty(max_batch_size, dtype=torch.long).cuda()
|
| 1016 |
+
slot_mapping.fill_(_PAD_SLOT_ID)
|
| 1017 |
+
context_lens = torch.ones(max_batch_size, dtype=torch.int32).cuda()
|
| 1018 |
+
block_tables = torch.from_numpy(self.graph_block_tables).cuda()
|
| 1019 |
+
|
| 1020 |
+
graph_batch_size = _get_graph_batch_size(
|
| 1021 |
+
self.scheduler_config.max_num_seqs)
|
| 1022 |
+
batch_size_capture_list = [
|
| 1023 |
+
bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size
|
| 1024 |
+
]
|
| 1025 |
+
|
| 1026 |
+
# NOTE(woosuk): There are 3 backends for all-reduce: custom all-reduce
|
| 1027 |
+
# kernel, pynccl, and PyTorch NCCL. When using CUDA graph, we use
|
| 1028 |
+
# either custom all-reduce kernel or pynccl. When not using CUDA
|
| 1029 |
+
# graph, we use either custom all-reduce kernel or PyTorch NCCL.
|
| 1030 |
+
# We always prioritize using custom all-reduce kernel but fall back
|
| 1031 |
+
# to PyTorch or pynccl if it is disabled or not supported.
|
| 1032 |
+
with custom_all_reduce.capture():
|
| 1033 |
+
# NOTE: Capturing the largest batch size first may help reduce the
|
| 1034 |
+
# memory usage of CUDA graph.
|
| 1035 |
+
for batch_size in reversed(batch_size_capture_list):
|
| 1036 |
+
# Create dummy attn_metadata.
|
| 1037 |
+
decode_metadata = self.attn_backend.make_metadata(
|
| 1038 |
+
is_prompt=False,
|
| 1039 |
+
prompt_lens=None,
|
| 1040 |
+
prompt_lens_tensor=None,
|
| 1041 |
+
max_subquery_len=None,
|
| 1042 |
+
max_context_len=self.max_context_len_to_capture,
|
| 1043 |
+
max_prompt_len=None,
|
| 1044 |
+
subquery_start_loc=None,
|
| 1045 |
+
seq_start_loc=None,
|
| 1046 |
+
context_lens=context_lens[:batch_size],
|
| 1047 |
+
block_tables=block_tables[:batch_size],
|
| 1048 |
+
use_cuda_graph=True,
|
| 1049 |
+
)
|
| 1050 |
+
attn_metadata = AttentionMetadata(
|
| 1051 |
+
num_prefills=0,
|
| 1052 |
+
num_prefill_tokens=0,
|
| 1053 |
+
num_decode_tokens=batch_size,
|
| 1054 |
+
slot_mapping=slot_mapping[:batch_size],
|
| 1055 |
+
prefill_metadata=None,
|
| 1056 |
+
decode_metadata=decode_metadata,
|
| 1057 |
+
kv_cache_dtype=self.kv_cache_dtype,
|
| 1058 |
+
)
|
| 1059 |
+
|
| 1060 |
+
if self.lora_config:
|
| 1061 |
+
lora_mapping = LoRAMapping(
|
| 1062 |
+
[0] * batch_size,
|
| 1063 |
+
[0] * batch_size,
|
| 1064 |
+
)
|
| 1065 |
+
self.set_active_loras(set(), lora_mapping)
|
| 1066 |
+
|
| 1067 |
+
graph_runner = CUDAGraphRunner(self.model)
|
| 1068 |
+
graph_runner.capture(
|
| 1069 |
+
input_tokens[:batch_size],
|
| 1070 |
+
input_positions[:batch_size],
|
| 1071 |
+
kv_caches,
|
| 1072 |
+
attn_metadata,
|
| 1073 |
+
memory_pool=self.graph_memory_pool,
|
| 1074 |
+
)
|
| 1075 |
+
self.graph_memory_pool = graph_runner.graph.pool()
|
| 1076 |
+
self.graph_runners[batch_size] = graph_runner
|
| 1077 |
+
|
| 1078 |
+
end_time = time.perf_counter()
|
| 1079 |
+
elapsed_time = end_time - start_time
|
| 1080 |
+
# This usually takes < 10 seconds.
|
| 1081 |
+
logger.info(f"Graph capturing finished in {elapsed_time:.0f} secs.")
|
| 1082 |
+
|
| 1083 |
+
def __del__(self) -> None:
|
| 1084 |
+
# Delete the CUDA graphs before deleting the pynccl communicator.
|
| 1085 |
+
# NOTE(woosuk): This is necessary because otherwise deadlocks can
|
| 1086 |
+
# happen.
|
| 1087 |
+
# FIXME(woosuk): This is a bit hacky. Find a more robust solution.
|
| 1088 |
+
# TODO(youkaichao): when we get enough user feedback that pynccl is
|
| 1089 |
+
# more stable than cupy, we can remove this, e.g. in v0.4.1.
|
| 1090 |
+
self.graph_runners.clear()
|
| 1091 |
+
self.pynccl_backend = None
|
| 1092 |
+
|
| 1093 |
+
@property
|
| 1094 |
+
def vocab_size(self) -> int:
|
| 1095 |
+
return self.model_config.get_vocab_size()
|
| 1096 |
+
|
| 1097 |
+
|
| 1098 |
+
class CUDAGraphRunner:
|
| 1099 |
+
|
| 1100 |
+
def __init__(self, model: nn.Module):
|
| 1101 |
+
self.model = model
|
| 1102 |
+
self.input_buffers: Dict[str, torch.Tensor] = {}
|
| 1103 |
+
self.output_buffers: Dict[str, torch.Tensor] = {}
|
| 1104 |
+
|
| 1105 |
+
self._graph: Optional[torch.cuda.CUDAGraph] = None
|
| 1106 |
+
|
| 1107 |
+
@property
|
| 1108 |
+
def graph(self):
|
| 1109 |
+
assert self._graph is not None
|
| 1110 |
+
return self._graph
|
| 1111 |
+
|
| 1112 |
+
def capture(
|
| 1113 |
+
self,
|
| 1114 |
+
input_ids: torch.Tensor,
|
| 1115 |
+
positions: torch.Tensor,
|
| 1116 |
+
kv_caches: List[torch.Tensor],
|
| 1117 |
+
attn_metadata: AttentionMetadata,
|
| 1118 |
+
memory_pool,
|
| 1119 |
+
**kwargs,
|
| 1120 |
+
) -> None:
|
| 1121 |
+
assert self._graph is None
|
| 1122 |
+
# Run the model once without capturing the graph.
|
| 1123 |
+
# This is to make sure that the captured graph does not include the
|
| 1124 |
+
# kernel launches for initial benchmarking (e.g., Triton autotune).
|
| 1125 |
+
with _maybe_pynccl():
|
| 1126 |
+
self.model(
|
| 1127 |
+
input_ids,
|
| 1128 |
+
positions,
|
| 1129 |
+
kv_caches,
|
| 1130 |
+
attn_metadata,
|
| 1131 |
+
**kwargs,
|
| 1132 |
+
)
|
| 1133 |
+
torch.cuda.synchronize()
|
| 1134 |
+
|
| 1135 |
+
# Capture the graph.
|
| 1136 |
+
# NOTE(woosuk): Python 3.8 does not support multi-line with statements.
|
| 1137 |
+
# https://stackoverflow.com/questions/31039022/python-multi-line-with-statement
|
| 1138 |
+
self._graph = torch.cuda.CUDAGraph()
|
| 1139 |
+
with torch.cuda.graph(self._graph, pool=memory_pool): # noqa: SIM117
|
| 1140 |
+
with _maybe_pynccl():
|
| 1141 |
+
hidden_states = self.model(
|
| 1142 |
+
input_ids,
|
| 1143 |
+
positions,
|
| 1144 |
+
kv_caches,
|
| 1145 |
+
attn_metadata,
|
| 1146 |
+
**kwargs,
|
| 1147 |
+
)
|
| 1148 |
+
torch.cuda.synchronize()
|
| 1149 |
+
|
| 1150 |
+
# Save the input and output buffers.
|
| 1151 |
+
self.input_buffers = {
|
| 1152 |
+
"input_ids": input_ids,
|
| 1153 |
+
"positions": positions,
|
| 1154 |
+
"kv_caches": kv_caches,
|
| 1155 |
+
"slot_mapping": attn_metadata.slot_mapping,
|
| 1156 |
+
"context_lens": attn_metadata.decode_metadata.context_lens,
|
| 1157 |
+
"block_tables": attn_metadata.decode_metadata.block_tables,
|
| 1158 |
+
}
|
| 1159 |
+
self.output_buffers = {"hidden_states": hidden_states}
|
| 1160 |
+
return
|
| 1161 |
+
|
| 1162 |
+
def forward(
|
| 1163 |
+
self,
|
| 1164 |
+
input_ids: torch.Tensor,
|
| 1165 |
+
positions: torch.Tensor,
|
| 1166 |
+
kv_caches: List[torch.Tensor],
|
| 1167 |
+
attn_metadata: AttentionMetadata,
|
| 1168 |
+
**kwargs,
|
| 1169 |
+
) -> torch.Tensor:
|
| 1170 |
+
# KV caches are fixed tensors, so we don't need to copy them.
|
| 1171 |
+
del kv_caches
|
| 1172 |
+
|
| 1173 |
+
# Copy the input tensors to the input buffers.
|
| 1174 |
+
self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
|
| 1175 |
+
self.input_buffers["positions"].copy_(positions, non_blocking=True)
|
| 1176 |
+
self.input_buffers["slot_mapping"].copy_(attn_metadata.slot_mapping,
|
| 1177 |
+
non_blocking=True)
|
| 1178 |
+
self.input_buffers["context_lens"].copy_(
|
| 1179 |
+
attn_metadata.decode_metadata.context_lens, non_blocking=True)
|
| 1180 |
+
self.input_buffers["block_tables"].copy_(
|
| 1181 |
+
attn_metadata.decode_metadata.block_tables, non_blocking=True)
|
| 1182 |
+
# Run the graph.
|
| 1183 |
+
self.graph.replay()
|
| 1184 |
+
|
| 1185 |
+
# Return the output tensor.
|
| 1186 |
+
return self.output_buffers["hidden_states"]
|
| 1187 |
+
|
| 1188 |
+
def __call__(self, *args, **kwargs):
|
| 1189 |
+
return self.forward(*args, **kwargs)
|
| 1190 |
+
|
| 1191 |
+
|
| 1192 |
+
@contextlib.contextmanager
|
| 1193 |
+
def _maybe_pynccl():
|
| 1194 |
+
if pynccl_utils.is_initialized(
|
| 1195 |
+
) and not custom_all_reduce.is_initialized():
|
| 1196 |
+
with with_pynccl_for_all_reduce():
|
| 1197 |
+
yield
|
| 1198 |
+
else:
|
| 1199 |
+
yield
|
| 1200 |
+
|
| 1201 |
+
|
| 1202 |
+
def _get_graph_batch_size(batch_size: int) -> int:
|
| 1203 |
+
"""Returns the padded batch size given actual batch size.
|
| 1204 |
+
|
| 1205 |
+
Batch sizes are 1, 2, 4, _BATCH_SIZE_ALIGNMENT,
|
| 1206 |
+
2*_BATCH_SIZE_ALIGNMENT, 3*_BATCH_SIZE_ALIGNMENT...
|
| 1207 |
+
"""
|
| 1208 |
+
if batch_size <= 2:
|
| 1209 |
+
return batch_size
|
| 1210 |
+
elif batch_size <= 4:
|
| 1211 |
+
return 4
|
| 1212 |
+
else:
|
| 1213 |
+
return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) //
|
| 1214 |
+
_BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT)
|
| 1215 |
+
|
| 1216 |
+
|
| 1217 |
+
def _prepare_fake_inputs(
|
| 1218 |
+
seq_len: int, vision_language_config: Optional[VisionLanguageConfig]):
|
| 1219 |
+
"""Prepare fake inputs for profile run."""
|
| 1220 |
+
if vision_language_config:
|
| 1221 |
+
prompt_tokens = [
|
| 1222 |
+
vision_language_config.image_token_id
|
| 1223 |
+
] * vision_language_config.image_feature_size + [0] * (
|
| 1224 |
+
seq_len - vision_language_config.image_feature_size)
|
| 1225 |
+
fake_image_input = MultiModalData(
|
| 1226 |
+
type=MultiModalData.Type.IMAGE,
|
| 1227 |
+
data=torch.zeros(vision_language_config.image_input_shape,
|
| 1228 |
+
dtype=torch.float16))
|
| 1229 |
+
else:
|
| 1230 |
+
prompt_tokens = [0] * seq_len
|
| 1231 |
+
fake_image_input = None
|
| 1232 |
+
return SequenceData(prompt_tokens), fake_image_input
|
autoregressive/serve/sample_c2i.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import argparse
|
| 3 |
+
import torch
|
| 4 |
+
from torchvision.utils import save_image
|
| 5 |
+
import sys
|
| 6 |
+
sys.path.append('/data/zongmingli/LlamaGen')
|
| 7 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 8 |
+
from autoregressive.serve.gpt_model import GPT_models
|
| 9 |
+
from autoregressive.serve.llm import LLM
|
| 10 |
+
from vllm import SamplingParams
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def main(args):
|
| 14 |
+
# Setup PyTorch:
|
| 15 |
+
torch.manual_seed(args.seed)
|
| 16 |
+
torch.backends.cudnn.deterministic = True
|
| 17 |
+
torch.backends.cudnn.benchmark = False
|
| 18 |
+
torch.set_grad_enabled(False)
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
|
| 21 |
+
# create and load model
|
| 22 |
+
vq_model = VQ_models[args.vq_model](
|
| 23 |
+
codebook_size=args.codebook_size,
|
| 24 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 25 |
+
vq_model.to(device)
|
| 26 |
+
vq_model.eval()
|
| 27 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 28 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 29 |
+
del checkpoint
|
| 30 |
+
print(f"image tokenizer is loaded")
|
| 31 |
+
|
| 32 |
+
# Labels to condition the model with (feel free to change):
|
| 33 |
+
class_labels = [207, 360, 387, 974, 88, 979, 417, 279]
|
| 34 |
+
latent_size = args.image_size // args.downsample_size
|
| 35 |
+
qzshape = [len(class_labels), args.codebook_embed_dim, latent_size, latent_size]
|
| 36 |
+
prompt_token_ids = [[cind] for cind in class_labels]
|
| 37 |
+
if args.cfg_scale > 1.0:
|
| 38 |
+
prompt_token_ids.extend([[args.num_classes] for _ in range(len(prompt_token_ids))])
|
| 39 |
+
# Create an LLM.
|
| 40 |
+
llm = LLM(
|
| 41 |
+
args=args,
|
| 42 |
+
model='autoregressive/serve/fake_json/{}.json'.format(args.gpt_model),
|
| 43 |
+
gpu_memory_utilization=0.9,
|
| 44 |
+
skip_tokenizer_init=True)
|
| 45 |
+
print(f"gpt model is loaded")
|
| 46 |
+
|
| 47 |
+
# Create a sampling params object.
|
| 48 |
+
sampling_params = SamplingParams(
|
| 49 |
+
temperature=args.temperature, top_p=args.top_p, top_k=args.top_k,
|
| 50 |
+
max_tokens=latent_size ** 2)
|
| 51 |
+
|
| 52 |
+
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
| 53 |
+
# that contain the prompt, generated text, and other information.
|
| 54 |
+
t1 = time.time()
|
| 55 |
+
outputs = llm.generate(
|
| 56 |
+
prompt_token_ids=prompt_token_ids,
|
| 57 |
+
sampling_params=sampling_params,
|
| 58 |
+
use_tqdm=False)
|
| 59 |
+
sampling_time = time.time() - t1
|
| 60 |
+
print(f"gpt sampling takes about {sampling_time:.2f} seconds.")
|
| 61 |
+
|
| 62 |
+
# decode to image
|
| 63 |
+
index_sample = torch.tensor([output.outputs[0].token_ids for output in outputs], device=device)
|
| 64 |
+
if args.cfg_scale > 1.0:
|
| 65 |
+
index_sample = index_sample[:len(class_labels)]
|
| 66 |
+
t2 = time.time()
|
| 67 |
+
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
|
| 68 |
+
decoder_time = time.time() - t2
|
| 69 |
+
print(f"decoder takes about {decoder_time:.2f} seconds.")
|
| 70 |
+
|
| 71 |
+
# Save and display images:
|
| 72 |
+
save_image(samples, "sample_{}_vllm.png".format(args.gpt_type), nrow=4, normalize=True, value_range=(-1, 1))
|
| 73 |
+
print(f"image is saved to sample_{args.gpt_type}_vllm.png")
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
if __name__ == '__main__':
|
| 77 |
+
parser = argparse.ArgumentParser()
|
| 78 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 79 |
+
parser.add_argument("--gpt-ckpt", type=str, required=True, help="ckpt path for gpt model")
|
| 80 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
|
| 81 |
+
parser.add_argument("--from-fsdp", action='store_true')
|
| 82 |
+
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
|
| 83 |
+
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 84 |
+
parser.add_argument("--compile", action='store_true', default=False)
|
| 85 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 86 |
+
parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
|
| 87 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 88 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 89 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384)
|
| 90 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 91 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 92 |
+
parser.add_argument("--cfg-scale", type=float, default=4.0)
|
| 93 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 94 |
+
parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with")
|
| 95 |
+
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
|
| 96 |
+
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
|
| 97 |
+
args = parser.parse_args()
|
| 98 |
+
main(args)
|
autoregressive/serve/sampler.py
ADDED
|
@@ -0,0 +1,868 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""A layer that samples the next tokens from the model's outputs."""
|
| 2 |
+
import itertools
|
| 3 |
+
from typing import Dict, List, Optional, Tuple
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from vllm.model_executor.layers.ops.sample import sample as sample_triton
|
| 9 |
+
from vllm.model_executor.sampling_metadata import (SamplingMetadata,
|
| 10 |
+
SamplingTensors)
|
| 11 |
+
from vllm.sampling_params import SamplingParams, SamplingType
|
| 12 |
+
from vllm.sequence import (Logprob, PromptLogprobs, SampleLogprobs,
|
| 13 |
+
SamplerOutput, SequenceData, SequenceGroupOutput,
|
| 14 |
+
SequenceOutput)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Sampler(nn.Module):
|
| 18 |
+
"""Samples the next tokens from the model's outputs.
|
| 19 |
+
|
| 20 |
+
This layer does the following:
|
| 21 |
+
1. Discard the hidden states that are not used for sampling (i.e., all
|
| 22 |
+
tokens except the final one in each prompt).
|
| 23 |
+
2. Compute the logits for the next tokens.
|
| 24 |
+
3. Apply presence, frequency and repetition penalties.
|
| 25 |
+
4. Apply temperature scaling.
|
| 26 |
+
5. Apply top-p and top-k truncation.
|
| 27 |
+
6. Sample the next tokens.
|
| 28 |
+
Here, each sequence group within the batch can have different sampling
|
| 29 |
+
parameters (e.g., sampling method, temperature, top-p, top-k, etc.).
|
| 30 |
+
|
| 31 |
+
The structure of the logits tensor is coupled with the seq_groups in
|
| 32 |
+
sampling_metadata. Typically, each sequence in each seq_group has one row in
|
| 33 |
+
logits for the next token to be sampled; however, for a seq_group with a
|
| 34 |
+
prompt request with the prompt_logprobs sampling parameter, there are rows
|
| 35 |
+
in logits for each token in the input prompt.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self, cfg_scale=1.0):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.cfg_scale = cfg_scale
|
| 41 |
+
# Whether or not the SamplerOutput should have on-device tensors
|
| 42 |
+
# containing the sampled token ids and probabilities. This is used by
|
| 43 |
+
# speculative decoding.
|
| 44 |
+
self.include_gpu_probs_tensor = False
|
| 45 |
+
|
| 46 |
+
def forward(
|
| 47 |
+
self,
|
| 48 |
+
logits: torch.Tensor,
|
| 49 |
+
sampling_metadata: SamplingMetadata,
|
| 50 |
+
) -> Optional[SamplerOutput]:
|
| 51 |
+
assert logits is not None
|
| 52 |
+
_, vocab_size = logits.shape
|
| 53 |
+
|
| 54 |
+
if self.cfg_scale > 1.0:
|
| 55 |
+
logits_combined = logits
|
| 56 |
+
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
|
| 57 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * self.cfg_scale
|
| 58 |
+
logits = torch.cat([logits, logits], dim=0)
|
| 59 |
+
|
| 60 |
+
# Apply min_tokens penalty which sets stop tokens to -inf if min_tokens
|
| 61 |
+
# have not been generated yet
|
| 62 |
+
logits = _apply_min_tokens_penalty(logits, sampling_metadata)
|
| 63 |
+
|
| 64 |
+
# Prepare sampling tensors with pinned memory to avoid blocking.
|
| 65 |
+
(sampling_tensors, do_penalties, do_top_p_top_k,
|
| 66 |
+
do_min_p) = SamplingTensors.from_sampling_metadata(
|
| 67 |
+
sampling_metadata, vocab_size, logits.device, logits.dtype)
|
| 68 |
+
|
| 69 |
+
# Apply presence and frequency penalties.
|
| 70 |
+
if do_penalties:
|
| 71 |
+
logits = _apply_penalties(logits, sampling_tensors.prompt_tokens,
|
| 72 |
+
sampling_tensors.output_tokens,
|
| 73 |
+
sampling_tensors.presence_penalties,
|
| 74 |
+
sampling_tensors.frequency_penalties,
|
| 75 |
+
sampling_tensors.repetition_penalties)
|
| 76 |
+
|
| 77 |
+
# Apply temperature scaling.
|
| 78 |
+
# Use in-place division to avoid creating a new tensor.
|
| 79 |
+
logits.div_(sampling_tensors.temperatures.unsqueeze_(dim=1))
|
| 80 |
+
|
| 81 |
+
if do_top_p_top_k:
|
| 82 |
+
logits = _apply_top_k_top_p(logits, sampling_tensors.top_ps,
|
| 83 |
+
sampling_tensors.top_ks)
|
| 84 |
+
|
| 85 |
+
if do_min_p:
|
| 86 |
+
logits = _apply_min_p(logits, sampling_tensors.min_ps)
|
| 87 |
+
|
| 88 |
+
# We use float32 for probabilities and log probabilities.
|
| 89 |
+
# Compute the probabilities.
|
| 90 |
+
probs = torch.softmax(logits, dim=-1, dtype=torch.float)
|
| 91 |
+
# Compute the log probabilities.
|
| 92 |
+
# Use log_softmax to ensure numerical stability.
|
| 93 |
+
logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float)
|
| 94 |
+
|
| 95 |
+
# Sample the next tokens.
|
| 96 |
+
sample_results, maybe_sampled_tokens_tensor = _sample(
|
| 97 |
+
probs,
|
| 98 |
+
logprobs,
|
| 99 |
+
sampling_metadata,
|
| 100 |
+
sampling_tensors,
|
| 101 |
+
include_gpu_probs_tensor=self.include_gpu_probs_tensor,
|
| 102 |
+
modify_greedy_probs=self._should_modify_greedy_probs_inplace,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
if self.cfg_scale > 1.0:
|
| 107 |
+
cond_result = sample_results[:len(sample_results) // 2]
|
| 108 |
+
sample_results = cond_result + cond_result
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
if self.include_gpu_probs_tensor:
|
| 112 |
+
assert maybe_sampled_tokens_tensor is not None
|
| 113 |
+
sampled_tokens_tensor = maybe_sampled_tokens_tensor
|
| 114 |
+
on_device_tensors = (probs, sampled_tokens_tensor)
|
| 115 |
+
else:
|
| 116 |
+
on_device_tensors = None
|
| 117 |
+
|
| 118 |
+
# Get the logprobs query results.
|
| 119 |
+
prompt_logprobs, sample_logprobs = _get_logprobs(
|
| 120 |
+
logprobs, sampling_metadata, sample_results)
|
| 121 |
+
return _build_sampler_output(sample_results,
|
| 122 |
+
sampling_metadata,
|
| 123 |
+
prompt_logprobs,
|
| 124 |
+
sample_logprobs,
|
| 125 |
+
on_device_tensors=on_device_tensors)
|
| 126 |
+
|
| 127 |
+
@property
|
| 128 |
+
def _should_modify_greedy_probs_inplace(self) -> bool:
|
| 129 |
+
"""Whether or not the sampler should modify the probability distribution
|
| 130 |
+
of greedily-sampled tokens such that multinomial sampling would sample
|
| 131 |
+
the greedily-sampled token.
|
| 132 |
+
|
| 133 |
+
In other words, if True then we set the probability of the greedily-
|
| 134 |
+
sampled token to 1.
|
| 135 |
+
|
| 136 |
+
This is used by speculative decoding, which requires that the sampling
|
| 137 |
+
method be encoded into the probability distribution.
|
| 138 |
+
"""
|
| 139 |
+
# Modify greedy probs if include_gpu_probs_tensor is set.
|
| 140 |
+
return self.include_gpu_probs_tensor
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def _get_bin_counts_and_mask(
|
| 144 |
+
tokens: torch.Tensor,
|
| 145 |
+
vocab_size: int,
|
| 146 |
+
num_seqs: int,
|
| 147 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 148 |
+
# Compute the bin counts for the tokens.
|
| 149 |
+
# vocab_size + 1 for padding.
|
| 150 |
+
bin_counts = torch.zeros((num_seqs, vocab_size + 1),
|
| 151 |
+
dtype=torch.long,
|
| 152 |
+
device=tokens.device)
|
| 153 |
+
bin_counts.scatter_add_(1, tokens, torch.ones_like(tokens))
|
| 154 |
+
bin_counts = bin_counts[:, :vocab_size]
|
| 155 |
+
mask = bin_counts > 0
|
| 156 |
+
|
| 157 |
+
return bin_counts, mask
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def _apply_min_tokens_penalty(
|
| 161 |
+
logits: torch.Tensor,
|
| 162 |
+
sampling_metadata: SamplingMetadata,
|
| 163 |
+
) -> torch.Tensor:
|
| 164 |
+
# list of indices in logits that will be set to -inf
|
| 165 |
+
logits_to_penalize = []
|
| 166 |
+
start_idx = 0
|
| 167 |
+
for i, seq_group in enumerate(sampling_metadata.seq_groups):
|
| 168 |
+
seq_ids, sampling_params = seq_group
|
| 169 |
+
|
| 170 |
+
# handle prompt_logprobs by skipping rows in logits added for the prompt
|
| 171 |
+
# tokens (prompt logprobs are not penalized)
|
| 172 |
+
if (i < sampling_metadata.num_prompts
|
| 173 |
+
and sampling_params.prompt_logprobs is not None):
|
| 174 |
+
assert len(seq_ids) == 1
|
| 175 |
+
start_idx += sampling_metadata.prompt_lens[i] - 1
|
| 176 |
+
|
| 177 |
+
min_tokens = sampling_params.min_tokens
|
| 178 |
+
if min_tokens > 0:
|
| 179 |
+
seqs_to_penalize = []
|
| 180 |
+
for i, seq_id in enumerate(seq_ids):
|
| 181 |
+
seq_data = sampling_metadata.seq_data[seq_id]
|
| 182 |
+
if len(seq_data.output_token_ids) < min_tokens:
|
| 183 |
+
seqs_to_penalize.append(i)
|
| 184 |
+
|
| 185 |
+
if seqs_to_penalize:
|
| 186 |
+
# convert to the index into logits
|
| 187 |
+
seqs_to_penalize = [start_idx + i for i in seqs_to_penalize]
|
| 188 |
+
# use set() to remove any duplicates
|
| 189 |
+
token_ids_to_penalize = set(sampling_params.stop_token_ids +
|
| 190 |
+
[sampling_params.eos_token_id])
|
| 191 |
+
# itertools.product pairs each seq index with every token id
|
| 192 |
+
logits_to_penalize.extend(
|
| 193 |
+
itertools.product(seqs_to_penalize, token_ids_to_penalize))
|
| 194 |
+
|
| 195 |
+
start_idx += len(seq_ids)
|
| 196 |
+
|
| 197 |
+
if logits_to_penalize:
|
| 198 |
+
# use zip and * to group indices along each dimension
|
| 199 |
+
# eg. [ (1,2), (1,3), (5,6) ] -> ( (1,1,5), (2,3,6) )
|
| 200 |
+
logits[tuple(zip(*logits_to_penalize))] = -float("inf")
|
| 201 |
+
|
| 202 |
+
# verifies that no rows in logits were missed unexpectedly
|
| 203 |
+
assert start_idx == logits.shape[0]
|
| 204 |
+
return logits
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def _apply_penalties(logits: torch.Tensor, prompt_tokens_tensor: torch.Tensor,
|
| 208 |
+
output_tokens_tensor: torch.Tensor,
|
| 209 |
+
presence_penalties: torch.Tensor,
|
| 210 |
+
frequency_penalties: torch.Tensor,
|
| 211 |
+
repetition_penalties: torch.Tensor) -> torch.Tensor:
|
| 212 |
+
num_seqs, vocab_size = logits.shape
|
| 213 |
+
_, prompt_mask = _get_bin_counts_and_mask(prompt_tokens_tensor, vocab_size,
|
| 214 |
+
num_seqs)
|
| 215 |
+
output_bin_counts, output_mask = _get_bin_counts_and_mask(
|
| 216 |
+
output_tokens_tensor, vocab_size, num_seqs)
|
| 217 |
+
|
| 218 |
+
repetition_penalties = repetition_penalties[:, None].repeat(1, vocab_size)
|
| 219 |
+
repetition_penalties[~(prompt_mask | output_mask)] = 1.0
|
| 220 |
+
logits = torch.where(logits > 0, logits / repetition_penalties,
|
| 221 |
+
logits * repetition_penalties)
|
| 222 |
+
|
| 223 |
+
# We follow the definition in OpenAI API.
|
| 224 |
+
# Refer to https://platform.openai.com/docs/api-reference/parameter-details
|
| 225 |
+
logits -= frequency_penalties.unsqueeze_(dim=1) * output_bin_counts
|
| 226 |
+
logits -= presence_penalties.unsqueeze_(dim=1) * output_mask
|
| 227 |
+
return logits
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def _apply_top_k_top_p(
|
| 231 |
+
logits: torch.Tensor,
|
| 232 |
+
p: torch.Tensor,
|
| 233 |
+
k: torch.Tensor,
|
| 234 |
+
) -> torch.Tensor:
|
| 235 |
+
logits_sort, logits_idx = logits.sort(dim=-1, descending=False)
|
| 236 |
+
|
| 237 |
+
# Apply top-k.
|
| 238 |
+
top_k_mask = logits_sort.size(1) - k.to(torch.long)
|
| 239 |
+
# Get all the top_k values.
|
| 240 |
+
top_k_mask = logits_sort.gather(1, top_k_mask.unsqueeze(dim=1))
|
| 241 |
+
top_k_mask = logits_sort < top_k_mask
|
| 242 |
+
logits_sort.masked_fill_(top_k_mask, -float("inf"))
|
| 243 |
+
|
| 244 |
+
# Apply top-p.
|
| 245 |
+
probs_sort = logits_sort.softmax(dim=-1)
|
| 246 |
+
probs_sum = probs_sort.cumsum(dim=-1)
|
| 247 |
+
top_p_mask = probs_sum <= 1 - p.unsqueeze(dim=1)
|
| 248 |
+
# at least one
|
| 249 |
+
top_p_mask[:, -1] = False
|
| 250 |
+
logits_sort.masked_fill_(top_p_mask, -float("inf"))
|
| 251 |
+
|
| 252 |
+
# Re-sort the probabilities.
|
| 253 |
+
src = torch.arange(logits_idx.shape[-1],
|
| 254 |
+
device=logits_idx.device).expand_as(logits_idx)
|
| 255 |
+
logits_idx_inv = torch.empty_like(logits_idx).scatter_(dim=-1,
|
| 256 |
+
index=logits_idx,
|
| 257 |
+
src=src)
|
| 258 |
+
logits = torch.gather(logits_sort, dim=-1, index=logits_idx_inv)
|
| 259 |
+
return logits
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _apply_min_p(
|
| 263 |
+
logits: torch.Tensor,
|
| 264 |
+
min_p: torch.Tensor,
|
| 265 |
+
) -> torch.Tensor:
|
| 266 |
+
"""
|
| 267 |
+
Adapted from
|
| 268 |
+
https://github.com/oobabooga/text-generation-webui/blob/3146124ec01f02c8fb1650a6517cf1b60b537aaf/modules/sampler_hijack.py#L16C17-L16C17
|
| 269 |
+
"""
|
| 270 |
+
probs = torch.softmax(logits, dim=-1)
|
| 271 |
+
top_probs, _ = probs.max(dim=-1, keepdim=True)
|
| 272 |
+
scaled_min_p = min_p.unsqueeze_(dim=1) * top_probs
|
| 273 |
+
tokens_to_remove = probs < scaled_min_p
|
| 274 |
+
logits = logits.masked_fill_(tokens_to_remove, -float("inf"))
|
| 275 |
+
|
| 276 |
+
return logits
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def _greedy_sample(
|
| 280 |
+
selected_seq_groups: List[Tuple[List[int], SamplingParams]],
|
| 281 |
+
samples: torch.Tensor,
|
| 282 |
+
) -> List[Tuple[List[int], List[int]]]:
|
| 283 |
+
samples = samples.tolist()
|
| 284 |
+
sample_idx = 0
|
| 285 |
+
results = []
|
| 286 |
+
for seq_group in selected_seq_groups:
|
| 287 |
+
seq_ids, _ = seq_group
|
| 288 |
+
num_parent_seqs = len(seq_ids)
|
| 289 |
+
assert num_parent_seqs == 1, (
|
| 290 |
+
"Greedy sampling should have only one seq.")
|
| 291 |
+
parent_ids = list(range(num_parent_seqs))
|
| 292 |
+
next_token_ids = [samples[sample_idx]]
|
| 293 |
+
results.append((next_token_ids, parent_ids))
|
| 294 |
+
sample_idx += num_parent_seqs
|
| 295 |
+
return results
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def _random_sample(
|
| 299 |
+
selected_seq_groups: List[Tuple[List[int], SamplingParams]],
|
| 300 |
+
is_prompts: List[bool],
|
| 301 |
+
random_samples: torch.Tensor,
|
| 302 |
+
) -> List[Tuple[List[int], List[int]]]:
|
| 303 |
+
# Find the maximum best_of value of the prompt phase requests.
|
| 304 |
+
random_samples = random_samples.cpu()
|
| 305 |
+
sample_idx = 0
|
| 306 |
+
results = []
|
| 307 |
+
for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
|
| 308 |
+
seq_ids, sampling_params = seq_group
|
| 309 |
+
num_parent_seqs = len(seq_ids)
|
| 310 |
+
if is_prompt:
|
| 311 |
+
# Prompt phase.
|
| 312 |
+
parent_ids = [0] * sampling_params.best_of
|
| 313 |
+
next_token_ids = random_samples[
|
| 314 |
+
sample_idx, :sampling_params.best_of].tolist()
|
| 315 |
+
else:
|
| 316 |
+
# Generation phase.
|
| 317 |
+
parent_ids = list(range(num_parent_seqs))
|
| 318 |
+
next_token_ids = random_samples[sample_idx:sample_idx +
|
| 319 |
+
num_parent_seqs, 0].tolist()
|
| 320 |
+
results.append((next_token_ids, parent_ids))
|
| 321 |
+
sample_idx += num_parent_seqs
|
| 322 |
+
return results
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _beam_search_sample(
|
| 326 |
+
selected_seq_groups: List[Tuple[List[int], SamplingParams]],
|
| 327 |
+
is_prompts: List[bool],
|
| 328 |
+
seq_data: Dict[int, SequenceData],
|
| 329 |
+
logprobs: torch.Tensor,
|
| 330 |
+
) -> List[Tuple[List[int], List[int]]]:
|
| 331 |
+
# We sample 2 * beam_width candidates to make sure that with high
|
| 332 |
+
# probability we can get `beam_width` candidates in addition to
|
| 333 |
+
# the finished sequences for the next iteration. See
|
| 334 |
+
# https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L557-L563
|
| 335 |
+
# for details. See also HF reference:
|
| 336 |
+
# https://github.com/huggingface/transformers/blob/a4dd53d88e4852f023332d284ff07a01afcd5681/src/transformers/generation/utils.py#L3063-L3065
|
| 337 |
+
#
|
| 338 |
+
# NOTE: Beam search is not vectorized, so its speed can be slower than
|
| 339 |
+
# other sampling methods.
|
| 340 |
+
sample_idx = 0
|
| 341 |
+
results = []
|
| 342 |
+
for seq_group, is_prompt in zip(selected_seq_groups, is_prompts):
|
| 343 |
+
seq_ids, sampling_params = seq_group
|
| 344 |
+
num_parent_seqs = len(seq_ids)
|
| 345 |
+
beam_width = sampling_params.best_of
|
| 346 |
+
seq_group_logprobs = logprobs[sample_idx:sample_idx + num_parent_seqs]
|
| 347 |
+
if is_prompt:
|
| 348 |
+
# Prompt phase.
|
| 349 |
+
assert num_parent_seqs == 1, (
|
| 350 |
+
"Prompt input should have only one seq.")
|
| 351 |
+
parent_ids = [0] * (2 * beam_width)
|
| 352 |
+
_, next_token_ids = torch.topk(seq_group_logprobs[0],
|
| 353 |
+
2 * beam_width)
|
| 354 |
+
next_token_ids = next_token_ids.tolist()
|
| 355 |
+
else:
|
| 356 |
+
# Generation phase.
|
| 357 |
+
cumulative_logprobs = [
|
| 358 |
+
seq_data[seq_id].cumulative_logprob for seq_id in seq_ids
|
| 359 |
+
]
|
| 360 |
+
cumulative_logprobs = torch.tensor(
|
| 361 |
+
cumulative_logprobs,
|
| 362 |
+
dtype=torch.float,
|
| 363 |
+
device=seq_group_logprobs.device)
|
| 364 |
+
seq_group_logprobs = (seq_group_logprobs +
|
| 365 |
+
cumulative_logprobs.unsqueeze(dim=1))
|
| 366 |
+
_, topk_ids = torch.topk(seq_group_logprobs.flatten(),
|
| 367 |
+
2 * beam_width)
|
| 368 |
+
topk_ids = topk_ids.tolist()
|
| 369 |
+
vocab_size = seq_group_logprobs.size(-1)
|
| 370 |
+
parent_ids = [i // vocab_size for i in topk_ids]
|
| 371 |
+
next_token_ids = [i % vocab_size for i in topk_ids]
|
| 372 |
+
results.append((next_token_ids, parent_ids))
|
| 373 |
+
sample_idx += num_parent_seqs
|
| 374 |
+
assert sample_idx == logprobs.size(0)
|
| 375 |
+
return results
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
# torch.multinomial forces a GPU<->CPU sync.
|
| 379 |
+
# Therefore, we use an optimized implementation instead.
|
| 380 |
+
# Note that we always sample with replacement.
|
| 381 |
+
# probs will be modified in place, but this is fine, as we pass
|
| 382 |
+
# in a copy already.
|
| 383 |
+
def _multinomial(
|
| 384 |
+
probs: torch.Tensor,
|
| 385 |
+
num_samples: int,
|
| 386 |
+
seq_groups: Optional[List[Tuple[List[int], SamplingParams]]] = None,
|
| 387 |
+
generators: Optional[List[torch.Generator]] = None,
|
| 388 |
+
) -> torch.Tensor:
|
| 389 |
+
if num_samples > 1:
|
| 390 |
+
# This is equivalent to torch.repeat_interleaved (which also
|
| 391 |
+
# forces a GPU<->CPU sync).
|
| 392 |
+
# This allows us to do sampling with replacement by creating
|
| 393 |
+
# num_samples copies of each row in the tensor, and then
|
| 394 |
+
# batch sampling the resulting tensor.
|
| 395 |
+
probs = probs[:, None, :].expand(probs.shape[0], num_samples,
|
| 396 |
+
probs.shape[1]).contiguous().view(
|
| 397 |
+
-1, probs.shape[1])
|
| 398 |
+
q = torch.empty_like(probs)
|
| 399 |
+
if seq_groups is None:
|
| 400 |
+
q.exponential_()
|
| 401 |
+
else:
|
| 402 |
+
sample_idx = 0
|
| 403 |
+
for (seq_ids, _), generator in zip(seq_groups, generators):
|
| 404 |
+
next_sample_idx = sample_idx + len(seq_ids) * num_samples
|
| 405 |
+
q[sample_idx:next_sample_idx].exponential_(generator=generator)
|
| 406 |
+
sample_idx = next_sample_idx
|
| 407 |
+
return probs.div_(q).argmax(dim=1).view(-1, num_samples)
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
def _sample_with_torch(
|
| 411 |
+
probs: torch.Tensor,
|
| 412 |
+
logprobs: torch.Tensor,
|
| 413 |
+
sampling_metadata: SamplingMetadata,
|
| 414 |
+
include_gpu_probs_tensor: bool,
|
| 415 |
+
modify_greedy_probs: bool,
|
| 416 |
+
) -> Tuple[List[Tuple[List[int], List[int]]], Optional[torch.Tensor]]:
|
| 417 |
+
categorized_seq_group_ids = {t: [] for t in SamplingType}
|
| 418 |
+
categorized_sample_indices = sampling_metadata.categorized_sample_indices
|
| 419 |
+
for i, seq_group in enumerate(sampling_metadata.seq_groups):
|
| 420 |
+
_, sampling_params = seq_group
|
| 421 |
+
sampling_type = sampling_params.sampling_type
|
| 422 |
+
categorized_seq_group_ids[sampling_type].append(i)
|
| 423 |
+
|
| 424 |
+
sample_results_dict: Dict[int, Tuple[List[int], List[int]]] = {}
|
| 425 |
+
sample_metadata = {}
|
| 426 |
+
multinomial_samples = {}
|
| 427 |
+
|
| 428 |
+
# Create output tensor for sampled token ids.
|
| 429 |
+
if include_gpu_probs_tensor:
|
| 430 |
+
sampled_token_ids_tensor = torch.empty(logprobs.shape[0],
|
| 431 |
+
1,
|
| 432 |
+
dtype=torch.long,
|
| 433 |
+
device=logprobs.device)
|
| 434 |
+
else:
|
| 435 |
+
sampled_token_ids_tensor = None
|
| 436 |
+
|
| 437 |
+
# Counterintiutively, having two loops here is actually faster.
|
| 438 |
+
# The first loop can run without waiting on GPU<->CPU sync.
|
| 439 |
+
for sampling_type in SamplingType:
|
| 440 |
+
sample_indices = categorized_sample_indices[sampling_type][:, 0]
|
| 441 |
+
num_tokens = len(sample_indices)
|
| 442 |
+
if num_tokens == 0:
|
| 443 |
+
continue
|
| 444 |
+
seq_group_ids = categorized_seq_group_ids[sampling_type]
|
| 445 |
+
seq_groups = [sampling_metadata.seq_groups[i] for i in seq_group_ids]
|
| 446 |
+
is_prompts = [i < sampling_metadata.num_prompts for i in seq_group_ids]
|
| 447 |
+
sample_metadata[sampling_type] = (seq_group_ids, seq_groups,
|
| 448 |
+
is_prompts, sample_indices)
|
| 449 |
+
long_sample_indices = sample_indices.long()
|
| 450 |
+
|
| 451 |
+
if sampling_type == SamplingType.GREEDY:
|
| 452 |
+
greedy_samples = torch.argmax(logprobs[long_sample_indices],
|
| 453 |
+
dim=-1)
|
| 454 |
+
|
| 455 |
+
if include_gpu_probs_tensor:
|
| 456 |
+
# Store sampled tokens in output tensor.
|
| 457 |
+
sampled_token_ids_tensor[
|
| 458 |
+
long_sample_indices] = greedy_samples.unsqueeze(-1)
|
| 459 |
+
|
| 460 |
+
if modify_greedy_probs:
|
| 461 |
+
# If required, modify the probabilities such that sampling from
|
| 462 |
+
# the modified distribution would always sample the argmax
|
| 463 |
+
# token id.
|
| 464 |
+
_modify_greedy_probs_inplace(logprobs, probs,
|
| 465 |
+
long_sample_indices,
|
| 466 |
+
greedy_samples)
|
| 467 |
+
|
| 468 |
+
elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
|
| 469 |
+
max_best_of_in_batch = 1
|
| 470 |
+
for seq_group, is_prompt in zip(seq_groups, is_prompts):
|
| 471 |
+
if is_prompt:
|
| 472 |
+
_, sampling_params = seq_group
|
| 473 |
+
max_best_of_in_batch = max(max_best_of_in_batch,
|
| 474 |
+
sampling_params.best_of)
|
| 475 |
+
seeded_args = {} if sampling_type == SamplingType.RANDOM else {
|
| 476 |
+
"seq_groups": seq_groups,
|
| 477 |
+
"generators": sampling_metadata.generators,
|
| 478 |
+
}
|
| 479 |
+
|
| 480 |
+
multinomial_samples[sampling_type] = _multinomial(
|
| 481 |
+
probs[long_sample_indices], max_best_of_in_batch,
|
| 482 |
+
**seeded_args)
|
| 483 |
+
|
| 484 |
+
if include_gpu_probs_tensor:
|
| 485 |
+
# Store sampled tokens in output tensor.
|
| 486 |
+
sampled_token_ids_tensor[
|
| 487 |
+
long_sample_indices] = multinomial_samples[sampling_type]
|
| 488 |
+
|
| 489 |
+
elif sampling_type == SamplingType.BEAM:
|
| 490 |
+
beam_search_logprobs = logprobs[sample_indices]
|
| 491 |
+
else:
|
| 492 |
+
raise ValueError(f"Unsupported sampling type: {sampling_type}")
|
| 493 |
+
|
| 494 |
+
# GPU<->CPU sync happens in the loop below.
|
| 495 |
+
# This also converts the sample output to Python objects.
|
| 496 |
+
|
| 497 |
+
for sampling_type in SamplingType:
|
| 498 |
+
if sampling_type not in sample_metadata:
|
| 499 |
+
continue
|
| 500 |
+
seq_group_ids, seq_groups, is_prompts, sample_indices = sample_metadata[
|
| 501 |
+
sampling_type]
|
| 502 |
+
if sampling_type == SamplingType.GREEDY:
|
| 503 |
+
sample_results = _greedy_sample(seq_groups, greedy_samples)
|
| 504 |
+
elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
|
| 505 |
+
sample_results = _random_sample(seq_groups, is_prompts,
|
| 506 |
+
multinomial_samples[sampling_type])
|
| 507 |
+
elif sampling_type == SamplingType.BEAM:
|
| 508 |
+
sample_results = _beam_search_sample(seq_groups, is_prompts,
|
| 509 |
+
sampling_metadata.seq_data,
|
| 510 |
+
beam_search_logprobs)
|
| 511 |
+
sample_results_dict.update(zip(seq_group_ids, sample_results))
|
| 512 |
+
|
| 513 |
+
sample_results = [
|
| 514 |
+
sample_results_dict[i]
|
| 515 |
+
for i in range(len(sampling_metadata.seq_groups))
|
| 516 |
+
]
|
| 517 |
+
return sample_results, sampled_token_ids_tensor
|
| 518 |
+
|
| 519 |
+
|
| 520 |
+
def _sample_with_triton_kernel(
|
| 521 |
+
probs: torch.Tensor,
|
| 522 |
+
logprobs: torch.Tensor,
|
| 523 |
+
sampling_metadata: SamplingMetadata,
|
| 524 |
+
sampling_tensors: SamplingTensors,
|
| 525 |
+
) -> List[Tuple[List[int], List[int]]]:
|
| 526 |
+
categorized_seq_group_ids = {t: [] for t in SamplingType}
|
| 527 |
+
categorized_sample_indices = sampling_metadata.categorized_sample_indices
|
| 528 |
+
for i, seq_group in enumerate(sampling_metadata.seq_groups):
|
| 529 |
+
_, sampling_params = seq_group
|
| 530 |
+
sampling_type = sampling_params.sampling_type
|
| 531 |
+
categorized_seq_group_ids[sampling_type].append(i)
|
| 532 |
+
|
| 533 |
+
sample_results_dict: Dict[int, Tuple[List[int], List[int]]] = {}
|
| 534 |
+
sample_metadata = {}
|
| 535 |
+
max_best_of_in_batch = 1
|
| 536 |
+
|
| 537 |
+
# Counterintiutively, having two loops here is actually faster.
|
| 538 |
+
# The first loop can run without waiting on GPU<->CPU sync.
|
| 539 |
+
for sampling_type in SamplingType:
|
| 540 |
+
sample_indices = categorized_sample_indices[sampling_type][:, 0]
|
| 541 |
+
sampled_token_indices = categorized_sample_indices[sampling_type][:, 1]
|
| 542 |
+
num_tokens = len(sample_indices)
|
| 543 |
+
if num_tokens == 0:
|
| 544 |
+
continue
|
| 545 |
+
seq_group_ids = categorized_seq_group_ids[sampling_type]
|
| 546 |
+
seq_groups = [sampling_metadata.seq_groups[i] for i in seq_group_ids]
|
| 547 |
+
is_prompts = [i < sampling_metadata.num_prompts for i in seq_group_ids]
|
| 548 |
+
sample_metadata[sampling_type] = (seq_group_ids, seq_groups,
|
| 549 |
+
is_prompts, sample_indices,
|
| 550 |
+
sampled_token_indices)
|
| 551 |
+
if sampling_type in (SamplingType.GREEDY, SamplingType.RANDOM,
|
| 552 |
+
SamplingType.RANDOM_SEED):
|
| 553 |
+
for seq_group, is_prompt in zip(seq_groups, is_prompts):
|
| 554 |
+
if is_prompt:
|
| 555 |
+
_, sampling_params = seq_group
|
| 556 |
+
max_best_of_in_batch = max(max_best_of_in_batch,
|
| 557 |
+
sampling_params.best_of)
|
| 558 |
+
elif sampling_type == SamplingType.BEAM:
|
| 559 |
+
beam_search_logprobs = logprobs[sample_indices]
|
| 560 |
+
else:
|
| 561 |
+
raise ValueError(f"Unsupported sampling type: {sampling_type}")
|
| 562 |
+
|
| 563 |
+
sampled_tokens, _, _ = sample_triton(
|
| 564 |
+
probs=probs,
|
| 565 |
+
seeds=sampling_tensors.sampling_seeds,
|
| 566 |
+
max_best_of=max_best_of_in_batch,
|
| 567 |
+
sample_indices=sampling_tensors.sample_indices,
|
| 568 |
+
logprobs=logprobs,
|
| 569 |
+
# don't save logprobs because we have logic for that below
|
| 570 |
+
# TODO: use this instead of the CPU-based logic below
|
| 571 |
+
save_logprobs=False,
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
# GPU<->CPU sync happens in the loop below.
|
| 575 |
+
|
| 576 |
+
for sampling_type in SamplingType:
|
| 577 |
+
if sampling_type not in sample_metadata:
|
| 578 |
+
continue
|
| 579 |
+
(seq_group_ids, seq_groups, is_prompts, sample_indices,
|
| 580 |
+
sampled_token_indices) = sample_metadata[sampling_type]
|
| 581 |
+
if sampling_type == SamplingType.GREEDY:
|
| 582 |
+
sample_results = _greedy_sample(
|
| 583 |
+
seq_groups, sampled_tokens[sampled_token_indices][:, 0])
|
| 584 |
+
elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED):
|
| 585 |
+
sample_results = _random_sample(
|
| 586 |
+
seq_groups, is_prompts, sampled_tokens[sampled_token_indices])
|
| 587 |
+
elif sampling_type == SamplingType.BEAM:
|
| 588 |
+
sample_results = _beam_search_sample(seq_groups, is_prompts,
|
| 589 |
+
sampling_metadata.seq_data,
|
| 590 |
+
beam_search_logprobs)
|
| 591 |
+
sample_results_dict.update(zip(seq_group_ids, sample_results))
|
| 592 |
+
|
| 593 |
+
sample_results = [
|
| 594 |
+
sample_results_dict[i]
|
| 595 |
+
for i in range(len(sampling_metadata.seq_groups))
|
| 596 |
+
]
|
| 597 |
+
return sample_results
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
def _sample(
|
| 601 |
+
probs: torch.Tensor, logprobs: torch.Tensor,
|
| 602 |
+
sampling_metadata: SamplingMetadata, sampling_tensors: SamplingTensors,
|
| 603 |
+
include_gpu_probs_tensor: bool, modify_greedy_probs: bool
|
| 604 |
+
) -> Tuple[List[Tuple[List[int], List[int]]], Optional[torch.Tensor]]:
|
| 605 |
+
return _sample_with_torch(
|
| 606 |
+
probs,
|
| 607 |
+
logprobs,
|
| 608 |
+
sampling_metadata,
|
| 609 |
+
include_gpu_probs_tensor=include_gpu_probs_tensor,
|
| 610 |
+
modify_greedy_probs=modify_greedy_probs,
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
# TODO: Enable once Triton kernel & associated code is faster.
|
| 614 |
+
# return _sample_with_triton_kernel(probs, logprobs, sampling_metadata,
|
| 615 |
+
# sampling_tensors)
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
def _get_ranks(x: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
|
| 619 |
+
"""
|
| 620 |
+
This function calculates the ranks of the chosen tokens in a logprob tensor.
|
| 621 |
+
|
| 622 |
+
Args:
|
| 623 |
+
x (torch.Tensor): 2D logprob tensor of shape (N, M)
|
| 624 |
+
where N is the no. of tokens and M is the vocab dim.
|
| 625 |
+
indices (torch.Tensor): List of chosen token indices.
|
| 626 |
+
|
| 627 |
+
Returns:
|
| 628 |
+
torch.Tensor: 1D tensor of shape (N,) where N is the no. of tokens.
|
| 629 |
+
Each element in the returned tensor represents the rank
|
| 630 |
+
of the chosen token in the input logprob tensor.
|
| 631 |
+
"""
|
| 632 |
+
vals = x[torch.arange(0, len(x), device=x.device, dtype=indices.dtype),
|
| 633 |
+
indices]
|
| 634 |
+
return (x > vals[:, None]).long().sum(1).add_(1)
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
def _get_logprobs(
|
| 638 |
+
logprobs: torch.Tensor,
|
| 639 |
+
sampling_metadata: SamplingMetadata,
|
| 640 |
+
sample_results: List[Tuple[List[int], List[int]]],
|
| 641 |
+
) -> Tuple[List[Optional[List[Optional[Dict[int, float]]]]], List[List[Dict[
|
| 642 |
+
int, float]]]]:
|
| 643 |
+
# Prepare query indices
|
| 644 |
+
batched_logprobs_query_seq_indices: List[int] = []
|
| 645 |
+
batched_logprobs_query_token_indices: List[int] = []
|
| 646 |
+
# at least get one logprob for each token
|
| 647 |
+
largest_num_logprobs = 1
|
| 648 |
+
sample_idx = 0
|
| 649 |
+
for i, (seq_group, sample_result) in enumerate(
|
| 650 |
+
zip(sampling_metadata.seq_groups, sample_results)):
|
| 651 |
+
seq_ids, sampling_params = seq_group
|
| 652 |
+
next_token_ids, parent_ids = sample_result
|
| 653 |
+
num_parent_seqs = len(seq_ids)
|
| 654 |
+
if (i < sampling_metadata.num_prompts
|
| 655 |
+
and sampling_params.prompt_logprobs is not None):
|
| 656 |
+
largest_num_logprobs = max(largest_num_logprobs,
|
| 657 |
+
sampling_params.prompt_logprobs)
|
| 658 |
+
prompt_len = sampling_metadata.prompt_lens[i]
|
| 659 |
+
prompt_tokens = sampling_metadata.seq_data[
|
| 660 |
+
seq_ids[0]].prompt_token_ids
|
| 661 |
+
batched_logprobs_query_seq_indices.extend(
|
| 662 |
+
sample_idx + j for j in range(prompt_len - 1))
|
| 663 |
+
batched_logprobs_query_token_indices.extend(
|
| 664 |
+
token_id for token_id in prompt_tokens[1:])
|
| 665 |
+
sample_idx += prompt_len - 1
|
| 666 |
+
batched_logprobs_query_seq_indices.extend(
|
| 667 |
+
[sample_idx + parent_id for parent_id in parent_ids])
|
| 668 |
+
batched_logprobs_query_token_indices.extend(next_token_ids)
|
| 669 |
+
if sampling_params.logprobs is not None:
|
| 670 |
+
largest_num_logprobs = max(largest_num_logprobs,
|
| 671 |
+
sampling_params.logprobs)
|
| 672 |
+
sample_idx += num_parent_seqs
|
| 673 |
+
assert sample_idx == logprobs.size(0)
|
| 674 |
+
|
| 675 |
+
batched_logprobs_query_seq_indices_gpu = torch.tensor(
|
| 676 |
+
batched_logprobs_query_seq_indices, device=logprobs.device)
|
| 677 |
+
batched_logprobs_query_token_indices_gpu = torch.tensor(
|
| 678 |
+
batched_logprobs_query_token_indices, device=logprobs.device)
|
| 679 |
+
|
| 680 |
+
# Batched query for logprobs of selected token
|
| 681 |
+
batched_logprobs_query_result = logprobs[[
|
| 682 |
+
batched_logprobs_query_seq_indices_gpu,
|
| 683 |
+
batched_logprobs_query_token_indices_gpu
|
| 684 |
+
]]
|
| 685 |
+
|
| 686 |
+
batched_ranks_query_result = _get_ranks(
|
| 687 |
+
logprobs[batched_logprobs_query_seq_indices_gpu],
|
| 688 |
+
batched_logprobs_query_token_indices_gpu)
|
| 689 |
+
|
| 690 |
+
# Batched query for logprobs of topk tokens
|
| 691 |
+
if largest_num_logprobs > 0:
|
| 692 |
+
top_logprobs, top_token_ids = torch.topk(logprobs,
|
| 693 |
+
largest_num_logprobs,
|
| 694 |
+
dim=-1)
|
| 695 |
+
top_logprobs = top_logprobs.cpu()
|
| 696 |
+
top_token_ids = top_token_ids.cpu()
|
| 697 |
+
else:
|
| 698 |
+
top_logprobs, top_token_ids = None, None
|
| 699 |
+
|
| 700 |
+
batched_logprobs_query_result = batched_logprobs_query_result.cpu()
|
| 701 |
+
batched_ranks_query_result = batched_ranks_query_result.cpu()
|
| 702 |
+
|
| 703 |
+
# Gather results
|
| 704 |
+
result_prompt_logprobs: List[Optional[PromptLogprobs]] = []
|
| 705 |
+
result_sample_logprobs: List[SampleLogprobs] = []
|
| 706 |
+
sample_idx = 0
|
| 707 |
+
query_result_idx = 0
|
| 708 |
+
for i, (seq_group, sample_result) in enumerate(
|
| 709 |
+
zip(sampling_metadata.seq_groups, sample_results)):
|
| 710 |
+
seq_ids, sampling_params = seq_group
|
| 711 |
+
next_token_ids, parent_ids = sample_result
|
| 712 |
+
|
| 713 |
+
# Prompt logprobs
|
| 714 |
+
if (i < sampling_metadata.num_prompts
|
| 715 |
+
and sampling_params.prompt_logprobs is not None):
|
| 716 |
+
num_logprobs = sampling_params.prompt_logprobs
|
| 717 |
+
prompt_tokens = sampling_metadata.seq_data[
|
| 718 |
+
seq_ids[0]].prompt_token_ids
|
| 719 |
+
group_prompt_logprobs: PromptLogprobs = [None]
|
| 720 |
+
for token_id in prompt_tokens[1:]:
|
| 721 |
+
prompt_logprobs_dict = {
|
| 722 |
+
token_id:
|
| 723 |
+
(batched_logprobs_query_result[query_result_idx].item(),
|
| 724 |
+
batched_ranks_query_result[query_result_idx].item())
|
| 725 |
+
}
|
| 726 |
+
if num_logprobs > 0:
|
| 727 |
+
prompt_logprobs_dict.update(
|
| 728 |
+
zip(
|
| 729 |
+
top_token_ids[sample_idx, :num_logprobs].tolist(),
|
| 730 |
+
zip(
|
| 731 |
+
top_logprobs[
|
| 732 |
+
sample_idx, :num_logprobs].tolist(),
|
| 733 |
+
range(1, num_logprobs + 1))))
|
| 734 |
+
group_prompt_logprobs.append({
|
| 735 |
+
token_id: Logprob(*logprob_rank)
|
| 736 |
+
for token_id, logprob_rank in prompt_logprobs_dict.items()
|
| 737 |
+
})
|
| 738 |
+
sample_idx += 1
|
| 739 |
+
query_result_idx += 1
|
| 740 |
+
result_prompt_logprobs.append(group_prompt_logprobs)
|
| 741 |
+
else:
|
| 742 |
+
result_prompt_logprobs.append(None)
|
| 743 |
+
|
| 744 |
+
# Sample logprobs
|
| 745 |
+
num_logprobs = sampling_params.logprobs
|
| 746 |
+
if num_logprobs is None:
|
| 747 |
+
num_logprobs = 0
|
| 748 |
+
group_sample_logprobs: SampleLogprobs = []
|
| 749 |
+
for next_token_id, parent_id in zip(next_token_ids, parent_ids):
|
| 750 |
+
sample_logprobs_dict = {
|
| 751 |
+
next_token_id:
|
| 752 |
+
(batched_logprobs_query_result[query_result_idx].item(),
|
| 753 |
+
batched_ranks_query_result[query_result_idx].item())
|
| 754 |
+
}
|
| 755 |
+
query_result_idx += 1
|
| 756 |
+
if num_logprobs >= 0:
|
| 757 |
+
sample_logprobs_dict.update(
|
| 758 |
+
zip(
|
| 759 |
+
top_token_ids[sample_idx +
|
| 760 |
+
parent_id, :num_logprobs].tolist(),
|
| 761 |
+
zip(
|
| 762 |
+
top_logprobs[sample_idx +
|
| 763 |
+
parent_id, :num_logprobs].tolist(),
|
| 764 |
+
range(1, num_logprobs + 1))))
|
| 765 |
+
group_sample_logprobs.append({
|
| 766 |
+
token_id: Logprob(*logprob_rank)
|
| 767 |
+
for token_id, logprob_rank in sample_logprobs_dict.items()
|
| 768 |
+
})
|
| 769 |
+
result_sample_logprobs.append(group_sample_logprobs)
|
| 770 |
+
sample_idx += len(seq_ids)
|
| 771 |
+
|
| 772 |
+
return result_prompt_logprobs, result_sample_logprobs
|
| 773 |
+
|
| 774 |
+
|
| 775 |
+
def _modify_greedy_probs_inplace(logprobs: torch.Tensor, probs: torch.Tensor,
|
| 776 |
+
sample_indices: torch.Tensor,
|
| 777 |
+
greedy_samples: torch.Tensor) -> None:
|
| 778 |
+
"""Modify the probability distributions of the greedily-sampled tokens such
|
| 779 |
+
that each sampled token has a "probability" of 1.0. This is required by
|
| 780 |
+
speculative decoding, which depends on the sampling method being encoded
|
| 781 |
+
within the probability distribution for correctness.
|
| 782 |
+
|
| 783 |
+
# Why do we only need to do this for greedy sampling?
|
| 784 |
+
|
| 785 |
+
vLLM's sampler performs the following steps for greedy or multinomial
|
| 786 |
+
(random) sampling:
|
| 787 |
+
1. Get logits from model.
|
| 788 |
+
2. Modify logits according to per-sequence sampling parameters.
|
| 789 |
+
- Multiply by temperature, top-k and top-p masking, penalize tokens
|
| 790 |
+
according to their frequency, etc.
|
| 791 |
+
3. Sample a token.
|
| 792 |
+
- Random sampling simply samples from the modified probability
|
| 793 |
+
distribution.
|
| 794 |
+
- Greedy sampling performs `argmax` to obtain the token with the
|
| 795 |
+
highest likelihood.
|
| 796 |
+
|
| 797 |
+
Ignoring greedy sampling for a moment, we find that the computed probability
|
| 798 |
+
distribution has the following property: we can sample from it independently
|
| 799 |
+
and find that the token sampled by the Sampler has a frequency corresponding
|
| 800 |
+
to how often we see it in our sampling. In other words, for tokens sampled
|
| 801 |
+
with vLLM's random SamplingType, the computed probability distribution
|
| 802 |
+
encodes the sampling methodology completely.
|
| 803 |
+
|
| 804 |
+
Greedy sampling does not normally have this property. vLLM modifies logits
|
| 805 |
+
according to sampling params, then performs `argmax`, then returns the
|
| 806 |
+
sampled token and the computed probability distribution. If we sample from
|
| 807 |
+
the distribution, we'll find the likelihood of the greedily-sampled token
|
| 808 |
+
is not always 1.0.
|
| 809 |
+
|
| 810 |
+
Since lossless speculative decoding requires that the sampling methodology
|
| 811 |
+
be encoded within the probability distribution, we are motivated to modify
|
| 812 |
+
the probability distribution such that the sampled token has probability 1
|
| 813 |
+
when speculative decoding is used.
|
| 814 |
+
|
| 815 |
+
NOTE: Alternatively, we could use an extremely low temperature to achieve
|
| 816 |
+
greedy sampling using multinomial computation and unite the codepaths. This
|
| 817 |
+
has implications on the overall design of the sampler, e.g. how to record
|
| 818 |
+
accurate logprobs for the user, so this improvement is deferred to later.
|
| 819 |
+
"""
|
| 820 |
+
logprobs[sample_indices, :] = -float('inf')
|
| 821 |
+
logprobs[sample_indices, greedy_samples] = 0.0
|
| 822 |
+
probs[sample_indices, :] = 0
|
| 823 |
+
probs[sample_indices, greedy_samples] = 1.0
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
def _build_sampler_output(
|
| 827 |
+
sample_results: List[Tuple[List[int], List[int]]],
|
| 828 |
+
sampling_metadata: SamplingMetadata,
|
| 829 |
+
prompt_logprobs: List[Optional[PromptLogprobs]],
|
| 830 |
+
sample_logprobs: List[SampleLogprobs],
|
| 831 |
+
on_device_tensors: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
| 832 |
+
) -> SamplerOutput:
|
| 833 |
+
"""Construct Python objects with the output of sampling.
|
| 834 |
+
|
| 835 |
+
Args:
|
| 836 |
+
on_device_tensors: Tuple containing on-device tensors with the
|
| 837 |
+
probabilities used in sampling and the sampled token ids. This
|
| 838 |
+
allows post-processing without copies to CPU/serialization, e.g. in
|
| 839 |
+
speculative decoding rejection sampling.
|
| 840 |
+
"""
|
| 841 |
+
|
| 842 |
+
sampler_output = []
|
| 843 |
+
for (seq_group, sample_result, group_prompt_logprobs,
|
| 844 |
+
group_sample_logprobs) in zip(sampling_metadata.seq_groups,
|
| 845 |
+
sample_results, prompt_logprobs,
|
| 846 |
+
sample_logprobs):
|
| 847 |
+
seq_ids, _ = seq_group
|
| 848 |
+
next_token_ids, parent_ids = sample_result
|
| 849 |
+
seq_outputs = []
|
| 850 |
+
for parent_id, next_token_id, logprobs in zip(parent_ids,
|
| 851 |
+
next_token_ids,
|
| 852 |
+
group_sample_logprobs):
|
| 853 |
+
seq_outputs.append(
|
| 854 |
+
SequenceOutput(seq_ids[parent_id], next_token_id, logprobs))
|
| 855 |
+
sampler_output.append(
|
| 856 |
+
SequenceGroupOutput(seq_outputs, group_prompt_logprobs))
|
| 857 |
+
|
| 858 |
+
# If not specified, store None values in SamplerOutput.
|
| 859 |
+
if on_device_tensors is not None:
|
| 860 |
+
sampled_token_probs, sampled_token_ids = on_device_tensors
|
| 861 |
+
else:
|
| 862 |
+
sampled_token_probs, sampled_token_ids = (None, None)
|
| 863 |
+
|
| 864 |
+
return SamplerOutput(
|
| 865 |
+
outputs=sampler_output,
|
| 866 |
+
sampled_token_probs=sampled_token_probs,
|
| 867 |
+
sampled_token_ids=sampled_token_ids,
|
| 868 |
+
)
|
autoregressive/serve/worker.py
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""A GPU worker class."""
|
| 2 |
+
import gc
|
| 3 |
+
import os
|
| 4 |
+
from typing import Any, Dict, List, Optional, Set, Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.distributed
|
| 8 |
+
|
| 9 |
+
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
|
| 10 |
+
ModelConfig, ParallelConfig, SchedulerConfig,
|
| 11 |
+
VisionLanguageConfig)
|
| 12 |
+
from vllm.distributed import (broadcast_tensor_dict,
|
| 13 |
+
ensure_model_parallel_initialized,
|
| 14 |
+
init_distributed_environment)
|
| 15 |
+
from vllm.distributed.device_communicators import pynccl_utils
|
| 16 |
+
from vllm.distributed.device_communicators.custom_all_reduce import (
|
| 17 |
+
init_custom_ar)
|
| 18 |
+
from vllm.lora.request import LoRARequest
|
| 19 |
+
from vllm.model_executor import set_random_seed
|
| 20 |
+
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
|
| 21 |
+
from vllm.worker.cache_engine import CacheEngine
|
| 22 |
+
# from vllm.worker.model_runner import ModelRunner
|
| 23 |
+
from vllm.worker.worker_base import WorkerBase
|
| 24 |
+
from autoregressive.serve.model_runner import ModelRunner
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Worker(WorkerBase):
|
| 28 |
+
"""A worker class that executes (a partition of) the model on a GPU.
|
| 29 |
+
|
| 30 |
+
Each worker is associated with a single GPU. The worker is responsible for
|
| 31 |
+
maintaining the KV cache and executing the model on the GPU. In case of
|
| 32 |
+
distributed inference, each worker is assigned a partition of the model.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
model_config: ModelConfig,
|
| 38 |
+
parallel_config: ParallelConfig,
|
| 39 |
+
scheduler_config: SchedulerConfig,
|
| 40 |
+
device_config: DeviceConfig,
|
| 41 |
+
cache_config: CacheConfig,
|
| 42 |
+
load_config: LoadConfig,
|
| 43 |
+
local_rank: int,
|
| 44 |
+
rank: int,
|
| 45 |
+
distributed_init_method: str,
|
| 46 |
+
lora_config: Optional[LoRAConfig] = None,
|
| 47 |
+
vision_language_config: Optional[VisionLanguageConfig] = None,
|
| 48 |
+
is_driver_worker: bool = False,
|
| 49 |
+
) -> None:
|
| 50 |
+
self.model_config = model_config
|
| 51 |
+
self.parallel_config = parallel_config
|
| 52 |
+
self.scheduler_config = scheduler_config
|
| 53 |
+
self.device_config = device_config
|
| 54 |
+
self.cache_config = cache_config
|
| 55 |
+
self.local_rank = local_rank
|
| 56 |
+
self.rank = rank
|
| 57 |
+
self.distributed_init_method = distributed_init_method
|
| 58 |
+
self.lora_config = lora_config
|
| 59 |
+
self.load_config = load_config
|
| 60 |
+
self.is_driver_worker = is_driver_worker
|
| 61 |
+
if self.is_driver_worker:
|
| 62 |
+
assert self.rank == 0, "The driver worker must have rank 0."
|
| 63 |
+
|
| 64 |
+
if self.model_config.trust_remote_code:
|
| 65 |
+
# note: lazy import to avoid importing torch before initializing
|
| 66 |
+
from vllm.utils import init_cached_hf_modules
|
| 67 |
+
init_cached_hf_modules()
|
| 68 |
+
self.vision_language_config = vision_language_config
|
| 69 |
+
if self.vision_language_config:
|
| 70 |
+
assert not self.lora_config, (
|
| 71 |
+
"To be tested: vision language model with LoRA settings.")
|
| 72 |
+
|
| 73 |
+
self.model_runner = ModelRunner(
|
| 74 |
+
model_config,
|
| 75 |
+
parallel_config,
|
| 76 |
+
scheduler_config,
|
| 77 |
+
device_config,
|
| 78 |
+
load_config=load_config,
|
| 79 |
+
lora_config=self.lora_config,
|
| 80 |
+
kv_cache_dtype=self.cache_config.cache_dtype,
|
| 81 |
+
is_driver_worker=is_driver_worker,
|
| 82 |
+
vision_language_config=vision_language_config,
|
| 83 |
+
)
|
| 84 |
+
# Uninitialized cache engine. Will be initialized by
|
| 85 |
+
# initialize_cache.
|
| 86 |
+
self.cache_engine: CacheEngine
|
| 87 |
+
self.gpu_cache: List[torch.Tensor]
|
| 88 |
+
|
| 89 |
+
def init_device(self) -> None:
|
| 90 |
+
if self.device_config.device.type == "cuda":
|
| 91 |
+
# torch.distributed.all_reduce does not free the input tensor until
|
| 92 |
+
# the synchronization point. This causes the memory usage to grow
|
| 93 |
+
# as the number of all_reduce calls increases. This env var disables
|
| 94 |
+
# this behavior.
|
| 95 |
+
# Related issue:
|
| 96 |
+
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
|
| 97 |
+
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
|
| 98 |
+
|
| 99 |
+
# This env var set by Ray causes exceptions with graph building.
|
| 100 |
+
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
|
| 101 |
+
self.device = torch.device(f"cuda:{self.local_rank}")
|
| 102 |
+
torch.cuda.set_device(self.device)
|
| 103 |
+
|
| 104 |
+
_check_if_gpu_supports_dtype(self.model_config.dtype)
|
| 105 |
+
torch.cuda.empty_cache()
|
| 106 |
+
self.init_gpu_memory = torch.cuda.mem_get_info()[0]
|
| 107 |
+
else:
|
| 108 |
+
raise RuntimeError(
|
| 109 |
+
f"Not support device type: {self.device_config.device}")
|
| 110 |
+
# Initialize the distributed environment.
|
| 111 |
+
init_worker_distributed_environment(self.parallel_config, self.rank,
|
| 112 |
+
self.distributed_init_method,
|
| 113 |
+
self.local_rank)
|
| 114 |
+
# Set random seed.
|
| 115 |
+
set_random_seed(self.model_config.seed)
|
| 116 |
+
|
| 117 |
+
def load_model(self, args):
|
| 118 |
+
self.model_runner.load_model(args)
|
| 119 |
+
|
| 120 |
+
@torch.inference_mode()
|
| 121 |
+
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
| 122 |
+
"""Profiles the peak memory usage of the model to determine how many
|
| 123 |
+
KV blocks may be allocated without OOMs.
|
| 124 |
+
|
| 125 |
+
The engine will first conduct a profiling of the existing memory usage.
|
| 126 |
+
Then, it calculate the maximum possible number of GPU and CPU blocks
|
| 127 |
+
that can be allocated with the remaining free memory.
|
| 128 |
+
|
| 129 |
+
.. tip::
|
| 130 |
+
You may limit the usage of GPU memory
|
| 131 |
+
by adjusting the `gpu_memory_utilization` parameter.
|
| 132 |
+
"""
|
| 133 |
+
# Profile the memory usage of the model and get the maximum number of
|
| 134 |
+
# cache blocks that can be allocated with the remaining free memory.
|
| 135 |
+
torch.cuda.empty_cache()
|
| 136 |
+
|
| 137 |
+
# Execute a forward pass with dummy inputs to profile the memory usage
|
| 138 |
+
# of the model.
|
| 139 |
+
self.model_runner.profile_run()
|
| 140 |
+
|
| 141 |
+
# Calculate the number of blocks that can be allocated with the
|
| 142 |
+
# profiled peak memory.
|
| 143 |
+
torch.cuda.synchronize()
|
| 144 |
+
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
|
| 145 |
+
# NOTE(woosuk): Here we assume that the other processes using the same
|
| 146 |
+
# GPU did not change their memory usage during the profiling.
|
| 147 |
+
peak_memory = self.init_gpu_memory - free_gpu_memory
|
| 148 |
+
assert peak_memory > 0, (
|
| 149 |
+
"Error in memory profiling. This happens when the GPU memory was "
|
| 150 |
+
"not properly cleaned up before initializing the vLLM instance.")
|
| 151 |
+
|
| 152 |
+
cache_block_size = self.get_cache_block_size_bytes()
|
| 153 |
+
num_gpu_blocks = int(
|
| 154 |
+
(total_gpu_memory * self.cache_config.gpu_memory_utilization -
|
| 155 |
+
peak_memory) // cache_block_size)
|
| 156 |
+
num_cpu_blocks = int(self.cache_config.swap_space_bytes //
|
| 157 |
+
cache_block_size)
|
| 158 |
+
num_gpu_blocks = max(num_gpu_blocks, 0)
|
| 159 |
+
num_cpu_blocks = max(num_cpu_blocks, 0)
|
| 160 |
+
if self.model_runner.lora_manager:
|
| 161 |
+
self.model_runner.remove_all_loras()
|
| 162 |
+
gc.collect()
|
| 163 |
+
torch.cuda.empty_cache()
|
| 164 |
+
return num_gpu_blocks, num_cpu_blocks
|
| 165 |
+
|
| 166 |
+
def initialize_cache(self, num_gpu_blocks: int,
|
| 167 |
+
num_cpu_blocks: int) -> None:
|
| 168 |
+
"""Allocate GPU and CPU KV cache with the specified number of blocks.
|
| 169 |
+
|
| 170 |
+
This also warms up the model, which may record CUDA graphs.
|
| 171 |
+
"""
|
| 172 |
+
raise_if_cache_size_invalid(num_gpu_blocks,
|
| 173 |
+
self.cache_config.block_size,
|
| 174 |
+
self.model_config.max_model_len)
|
| 175 |
+
|
| 176 |
+
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
| 177 |
+
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
| 178 |
+
|
| 179 |
+
self._init_cache_engine()
|
| 180 |
+
self._warm_up_model()
|
| 181 |
+
|
| 182 |
+
def _init_cache_engine(self):
|
| 183 |
+
assert self.cache_config.num_gpu_blocks is not None
|
| 184 |
+
self.cache_engine = CacheEngine(self.cache_config, self.model_config,
|
| 185 |
+
self.parallel_config)
|
| 186 |
+
self.gpu_cache = self.cache_engine.gpu_cache
|
| 187 |
+
self.model_runner.set_block_size(self.cache_engine.block_size)
|
| 188 |
+
|
| 189 |
+
def _warm_up_model(self) -> None:
|
| 190 |
+
if not self.model_config.enforce_eager:
|
| 191 |
+
self.model_runner.capture_model(self.gpu_cache)
|
| 192 |
+
# Reset the seed to ensure that the random state is not affected by
|
| 193 |
+
# the model initialization and profiling.
|
| 194 |
+
set_random_seed(self.model_config.seed)
|
| 195 |
+
|
| 196 |
+
def cache_swap(
|
| 197 |
+
self,
|
| 198 |
+
blocks_to_swap_in: Dict[int, int],
|
| 199 |
+
blocks_to_swap_out: Dict[int, int],
|
| 200 |
+
blocks_to_copy: Dict[int, List[int]],
|
| 201 |
+
) -> None:
|
| 202 |
+
# Issue cache operations.
|
| 203 |
+
# TODO(woosuk): Profile swapping overhead and optimize if needed.
|
| 204 |
+
if blocks_to_swap_in:
|
| 205 |
+
self.cache_engine.swap_in(blocks_to_swap_in)
|
| 206 |
+
if blocks_to_swap_out:
|
| 207 |
+
self.cache_engine.swap_out(blocks_to_swap_out)
|
| 208 |
+
if blocks_to_copy:
|
| 209 |
+
self.cache_engine.copy(blocks_to_copy)
|
| 210 |
+
|
| 211 |
+
@torch.inference_mode()
|
| 212 |
+
def execute_model(
|
| 213 |
+
self,
|
| 214 |
+
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None,
|
| 215 |
+
blocks_to_swap_in: Optional[Dict[int, int]] = None,
|
| 216 |
+
blocks_to_swap_out: Optional[Dict[int, int]] = None,
|
| 217 |
+
blocks_to_copy: Optional[Dict[int, List[int]]] = None,
|
| 218 |
+
num_lookahead_slots: int = 0,
|
| 219 |
+
) -> List[SamplerOutput]:
|
| 220 |
+
|
| 221 |
+
if self.is_driver_worker:
|
| 222 |
+
assert seq_group_metadata_list is not None
|
| 223 |
+
num_seq_groups = len(seq_group_metadata_list)
|
| 224 |
+
assert blocks_to_swap_in is not None
|
| 225 |
+
assert blocks_to_swap_out is not None
|
| 226 |
+
assert blocks_to_copy is not None
|
| 227 |
+
data: Dict[str, Any] = {
|
| 228 |
+
"num_seq_groups": num_seq_groups,
|
| 229 |
+
"blocks_to_swap_in": blocks_to_swap_in,
|
| 230 |
+
"blocks_to_swap_out": blocks_to_swap_out,
|
| 231 |
+
"blocks_to_copy": blocks_to_copy,
|
| 232 |
+
}
|
| 233 |
+
broadcast_tensor_dict(data, src=0)
|
| 234 |
+
else:
|
| 235 |
+
data = broadcast_tensor_dict(src=0)
|
| 236 |
+
num_seq_groups = data["num_seq_groups"]
|
| 237 |
+
blocks_to_swap_in = data["blocks_to_swap_in"]
|
| 238 |
+
blocks_to_swap_out = data["blocks_to_swap_out"]
|
| 239 |
+
blocks_to_copy = data["blocks_to_copy"]
|
| 240 |
+
|
| 241 |
+
assert blocks_to_swap_in is not None
|
| 242 |
+
assert blocks_to_swap_out is not None
|
| 243 |
+
assert blocks_to_copy is not None
|
| 244 |
+
self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)
|
| 245 |
+
|
| 246 |
+
# If there is no input, we don't need to execute the model.
|
| 247 |
+
if num_seq_groups == 0:
|
| 248 |
+
return []
|
| 249 |
+
|
| 250 |
+
output = self.model_runner.execute_model(seq_group_metadata_list,
|
| 251 |
+
self.gpu_cache)
|
| 252 |
+
|
| 253 |
+
# Worker only supports single-step execution. Wrap the output in a list
|
| 254 |
+
# to conform to interface.
|
| 255 |
+
return [output]
|
| 256 |
+
|
| 257 |
+
def add_lora(self, lora_request: LoRARequest) -> bool:
|
| 258 |
+
return self.model_runner.add_lora(lora_request)
|
| 259 |
+
|
| 260 |
+
def remove_lora(self, lora_id: int) -> bool:
|
| 261 |
+
return self.model_runner.remove_lora(lora_id)
|
| 262 |
+
|
| 263 |
+
def list_loras(self) -> Set[int]:
|
| 264 |
+
return self.model_runner.list_loras()
|
| 265 |
+
|
| 266 |
+
@property
|
| 267 |
+
def max_model_len(self) -> int:
|
| 268 |
+
return self.model_config.max_model_len
|
| 269 |
+
|
| 270 |
+
@property
|
| 271 |
+
def vocab_size(self) -> int:
|
| 272 |
+
return self.model_runner.vocab_size
|
| 273 |
+
|
| 274 |
+
def get_cache_block_size_bytes(self) -> int:
|
| 275 |
+
"""Get the size of the KV cache block size in bytes.
|
| 276 |
+
"""
|
| 277 |
+
return CacheEngine.get_cache_block_size(self.cache_config,
|
| 278 |
+
self.model_config,
|
| 279 |
+
self.parallel_config)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
def init_worker_distributed_environment(
|
| 283 |
+
parallel_config: ParallelConfig,
|
| 284 |
+
rank: int,
|
| 285 |
+
distributed_init_method: Optional[str] = None,
|
| 286 |
+
local_rank: int = -1,
|
| 287 |
+
) -> None:
|
| 288 |
+
"""Initialize the distributed environment."""
|
| 289 |
+
init_distributed_environment(parallel_config.world_size, rank,
|
| 290 |
+
distributed_init_method, local_rank)
|
| 291 |
+
|
| 292 |
+
if pynccl_utils.is_initialized():
|
| 293 |
+
pynccl_world_size = pynccl_utils.get_world_size()
|
| 294 |
+
if pynccl_world_size != parallel_config.world_size:
|
| 295 |
+
raise RuntimeError(
|
| 296 |
+
"pynccl is already initialized but the pynccl world "
|
| 297 |
+
"size does not match parallel_config.world_size "
|
| 298 |
+
f"({pynccl_world_size} vs. {parallel_config.world_size}).")
|
| 299 |
+
elif parallel_config.world_size > 1:
|
| 300 |
+
# NOTE(woosuk): We don't initialize pynccl process group when world size
|
| 301 |
+
# is 1.
|
| 302 |
+
pynccl_utils.init_process_group(
|
| 303 |
+
world_size=parallel_config.world_size,
|
| 304 |
+
local_rank=local_rank,
|
| 305 |
+
rank=rank,
|
| 306 |
+
init_method=distributed_init_method,
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
|
| 310 |
+
parallel_config.pipeline_parallel_size)
|
| 311 |
+
|
| 312 |
+
# Initialize a custom fast all-reduce implementation.
|
| 313 |
+
if not parallel_config.disable_custom_all_reduce:
|
| 314 |
+
init_custom_ar()
|
| 315 |
+
|
| 316 |
+
# A small all_reduce for warmup.
|
| 317 |
+
torch.distributed.all_reduce(torch.zeros(1).cuda())
|
| 318 |
+
if pynccl_utils.is_initialized():
|
| 319 |
+
pynccl_utils.all_reduce(torch.zeros(1).cuda())
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
|
| 323 |
+
# Check if the GPU supports the dtype.
|
| 324 |
+
if torch_dtype == torch.bfloat16:
|
| 325 |
+
compute_capability = torch.cuda.get_device_capability()
|
| 326 |
+
if compute_capability[0] < 8:
|
| 327 |
+
gpu_name = torch.cuda.get_device_name()
|
| 328 |
+
raise ValueError(
|
| 329 |
+
"Bfloat16 is only supported on GPUs with compute capability "
|
| 330 |
+
f"of at least 8.0. Your {gpu_name} GPU has compute capability "
|
| 331 |
+
f"{compute_capability[0]}.{compute_capability[1]}. "
|
| 332 |
+
"You can use float16 instead by explicitly setting the"
|
| 333 |
+
"`dtype` flag in CLI, for example: --dtype=half.")
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
def raise_if_cache_size_invalid(num_gpu_blocks, block_size,
|
| 337 |
+
max_model_len) -> None:
|
| 338 |
+
if num_gpu_blocks <= 0:
|
| 339 |
+
raise ValueError("No available memory for the cache blocks. "
|
| 340 |
+
"Try increasing `gpu_memory_utilization` when "
|
| 341 |
+
"initializing the engine.")
|
| 342 |
+
max_seq_len = block_size * num_gpu_blocks
|
| 343 |
+
if max_model_len > max_seq_len:
|
| 344 |
+
raise ValueError(
|
| 345 |
+
f"The model's max seq len ({max_model_len}) "
|
| 346 |
+
"is larger than the maximum number of tokens that can be "
|
| 347 |
+
f"stored in KV cache ({max_seq_len}). Try increasing "
|
| 348 |
+
"`gpu_memory_utilization` or decreasing `max_model_len` when "
|
| 349 |
+
"initializing the engine.")
|
autoregressive/test/metric.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from skimage.metrics import structural_similarity as ssim
|
| 3 |
+
from sklearn.metrics import f1_score
|
| 4 |
+
from torchmetrics.image import MultiScaleStructuralSimilarityIndexMeasure
|
| 5 |
+
from torchmetrics.classification import BinaryF1Score
|
| 6 |
+
|
| 7 |
+
class SSIM:
|
| 8 |
+
def __init__(self, data_range=1.0):
|
| 9 |
+
ssim = MultiScaleStructuralSimilarityIndexMeasure(data_range=1.0)#.to(device)
|
| 10 |
+
self.total_ssim = 0.0
|
| 11 |
+
self.count = 0
|
| 12 |
+
def update(self, img1, img2):
|
| 13 |
+
ssim_value = ssim((img1/255).clip(0,1), (img2/255).clip(0,1), data_range=1.0)
|
| 14 |
+
self.total_ssim += ssim_value
|
| 15 |
+
self.count += 1
|
| 16 |
+
|
| 17 |
+
def calculate(self):
|
| 18 |
+
if self.count == 0:
|
| 19 |
+
raise ValueError("No images have been added.")
|
| 20 |
+
return self.total_ssim / self.count
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class F1score:
|
| 25 |
+
def __init__(self, threshold=128):
|
| 26 |
+
self.threshold = threshold
|
| 27 |
+
self.total_f1 = 0
|
| 28 |
+
self.count = 0
|
| 29 |
+
|
| 30 |
+
def update(self, img1, img2):
|
| 31 |
+
|
| 32 |
+
assert img1.size == img2.size, "The images must be the same size."
|
| 33 |
+
|
| 34 |
+
binary_image1 = (img1 > self.threshold).astype(int)
|
| 35 |
+
binary_image2 = (img2 > self.threshold).astype(int)
|
| 36 |
+
|
| 37 |
+
y_true = binary_image1.flatten()
|
| 38 |
+
y_pred = binary_image2.flatten()
|
| 39 |
+
|
| 40 |
+
f1 = f1_score(y_true, y_pred)
|
| 41 |
+
|
| 42 |
+
self.total_f1 += f1
|
| 43 |
+
self.count += 1
|
| 44 |
+
|
| 45 |
+
def calculate(self):
|
| 46 |
+
average_f1 = self.total_f1 / self.count
|
| 47 |
+
return average_f1
|
| 48 |
+
|
| 49 |
+
class RMSE:
|
| 50 |
+
def __init__(self):
|
| 51 |
+
self.total_rmse = 0
|
| 52 |
+
self.count = 0
|
| 53 |
+
|
| 54 |
+
def update(self, img1, img2):
|
| 55 |
+
|
| 56 |
+
assert img1.size == img2.size, "The images must be the same size."
|
| 57 |
+
diff = img1 - img2
|
| 58 |
+
diff_squared = np.square(diff)
|
| 59 |
+
mse = np.mean(diff_squared)
|
| 60 |
+
rmse = np.sqrt(mse)
|
| 61 |
+
self.total_rmse += rmse
|
| 62 |
+
self.count += 1
|
| 63 |
+
|
| 64 |
+
def calculate(self):
|
| 65 |
+
average_f1 = self.total_rmse / self.count
|
| 66 |
+
return average_f1
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
if __name__ == "__main__":
|
| 73 |
+
img1_1 = np.random.randn(256,256)
|
| 74 |
+
img1_1 = img1_1 - img1_1.min()
|
| 75 |
+
img1_1 = 255*img1_1/img1_1.max()
|
| 76 |
+
img1_1 = img1_1.astype(np.uint8)
|
| 77 |
+
img1_2 = np.random.randn(256,256)
|
| 78 |
+
img1_2 = img1_2 - img1_2.min()
|
| 79 |
+
img1_2 = 255*img1_2/img1_2.max()
|
| 80 |
+
img1_2 = img1_2.astype(np.uint8)
|
| 81 |
+
img2_1 = np.random.randn(256,256)
|
| 82 |
+
img2_1 = img2_1 - img2_1.min()
|
| 83 |
+
img2_1 = 255*img2_1/img2_1.max()
|
| 84 |
+
img2_1 = img2_1.astype(np.uint8)
|
| 85 |
+
img2_2 = np.random.randn(256,256)
|
| 86 |
+
img2_2 = img2_2 - img2_2.min()
|
| 87 |
+
img2_2 = 255*img2_2/img2_2.max()
|
| 88 |
+
img2_2 = img2_2.astype(np.uint8)
|
| 89 |
+
img_pairs = [(img1_1, img2_1), (img1_2, img2_2)]
|
| 90 |
+
|
| 91 |
+
calculator = AverageSSIMCalculator()
|
| 92 |
+
|
| 93 |
+
for img1, img2 in img_pairs:
|
| 94 |
+
calculator.add_images(img1, img2)
|
| 95 |
+
|
| 96 |
+
avg_ssim = calculator.calculate_average_ssim()
|
| 97 |
+
print(f'Average SSIM: {avg_ssim}')
|
autoregressive/test/test_c2i.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/sample.py
|
| 3 |
+
import torch
|
| 4 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 5 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 6 |
+
torch.set_float32_matmul_precision('high')
|
| 7 |
+
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None)
|
| 8 |
+
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None)
|
| 9 |
+
from torchvision.utils import save_image
|
| 10 |
+
import os
|
| 11 |
+
import sys
|
| 12 |
+
current_directory = os.getcwd()
|
| 13 |
+
sys.path.append(current_directory)
|
| 14 |
+
import time
|
| 15 |
+
import argparse
|
| 16 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 17 |
+
from autoregressive.models.gpt import GPT_models
|
| 18 |
+
from autoregressive.models.generate import generate
|
| 19 |
+
from condition.hed import HEDdetector, nms
|
| 20 |
+
from condition.canny import CannyDetector
|
| 21 |
+
from condition.midas.depth import MidasDetector
|
| 22 |
+
from autoregressive.test.metric import SSIM, F1score, RMSE
|
| 23 |
+
import torch.distributed as dist
|
| 24 |
+
from dataset.augmentation import center_crop_arr
|
| 25 |
+
from dataset.build import build_dataset
|
| 26 |
+
from torch.utils.data import DataLoader
|
| 27 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 28 |
+
from torchvision import transforms
|
| 29 |
+
from PIL import Image
|
| 30 |
+
import os
|
| 31 |
+
import numpy as np
|
| 32 |
+
import cv2
|
| 33 |
+
from tqdm import tqdm
|
| 34 |
+
from functools import partial
|
| 35 |
+
from skimage.transform import resize
|
| 36 |
+
from torch.nn.functional import interpolate
|
| 37 |
+
def create_npz_from_sample_folder(sample_dir, num=50_000):
|
| 38 |
+
"""
|
| 39 |
+
Builds a single .npz file from a folder of .png samples.
|
| 40 |
+
"""
|
| 41 |
+
samples = []
|
| 42 |
+
for i in tqdm(range(num), desc="Building .npz file from samples"):
|
| 43 |
+
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
|
| 44 |
+
sample_np = np.asarray(sample_pil).astype(np.uint8)
|
| 45 |
+
samples.append(sample_np)
|
| 46 |
+
samples = np.stack(samples)
|
| 47 |
+
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
|
| 48 |
+
npz_path = f"{sample_dir}.npz"
|
| 49 |
+
np.savez(npz_path, arr_0=samples)
|
| 50 |
+
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
|
| 51 |
+
return npz_path
|
| 52 |
+
|
| 53 |
+
def main(args):
|
| 54 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 55 |
+
torch.set_grad_enabled(False)
|
| 56 |
+
# Setup DDP:
|
| 57 |
+
dist.init_process_group("nccl")
|
| 58 |
+
rank = dist.get_rank()
|
| 59 |
+
device = rank % torch.cuda.device_count()
|
| 60 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 61 |
+
torch.manual_seed(seed)
|
| 62 |
+
torch.cuda.set_device(device)
|
| 63 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 64 |
+
|
| 65 |
+
# create and load model
|
| 66 |
+
vq_model = VQ_models[args.vq_model](
|
| 67 |
+
codebook_size=args.codebook_size,
|
| 68 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 69 |
+
vq_model.to(device)
|
| 70 |
+
vq_model.eval()
|
| 71 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 72 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 73 |
+
del checkpoint
|
| 74 |
+
print(f"image tokenizer is loaded")
|
| 75 |
+
|
| 76 |
+
# create and load gpt model
|
| 77 |
+
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
|
| 78 |
+
latent_size = args.image_size // args.downsample_size
|
| 79 |
+
gpt_model = GPT_models[args.gpt_model](
|
| 80 |
+
vocab_size=args.codebook_size,
|
| 81 |
+
block_size=latent_size ** 2,
|
| 82 |
+
num_classes=args.num_classes,
|
| 83 |
+
cls_token_num=args.cls_token_num,
|
| 84 |
+
model_type=args.gpt_type,
|
| 85 |
+
condition_token_num=args.condition_token_nums,
|
| 86 |
+
# image_size=args.image_size
|
| 87 |
+
).to(device=device, dtype=precision)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
_, file_extension = os.path.splitext(args.gpt_ckpt)
|
| 91 |
+
if file_extension.lower() == '.safetensors':
|
| 92 |
+
from safetensors.torch import load_file
|
| 93 |
+
model_weight = load_file(args.gpt_ckpt)
|
| 94 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 95 |
+
gpt_model.eval()
|
| 96 |
+
else:
|
| 97 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 98 |
+
if "model" in checkpoint: # ddp
|
| 99 |
+
model_weight = checkpoint["model"]
|
| 100 |
+
elif "module" in checkpoint: # deepspeed
|
| 101 |
+
model_weight = checkpoint["module"]
|
| 102 |
+
elif "state_dict" in checkpoint:
|
| 103 |
+
model_weight = checkpoint["state_dict"]
|
| 104 |
+
else:
|
| 105 |
+
raise Exception("please check model weight")
|
| 106 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 107 |
+
gpt_model.eval()
|
| 108 |
+
del checkpoint
|
| 109 |
+
print(f"gpt model is loaded")
|
| 110 |
+
|
| 111 |
+
if args.condition_type == 'hed':
|
| 112 |
+
get_condition = HEDdetector(device=device)
|
| 113 |
+
get_metric = SSIM()
|
| 114 |
+
elif args.condition_type == 'canny':
|
| 115 |
+
get_condition = CannyDetector()
|
| 116 |
+
get_metric = F1score()
|
| 117 |
+
elif args.condition_type == 'depth':
|
| 118 |
+
get_condition = MidasDetector(device=device)
|
| 119 |
+
get_metric = RMSE()
|
| 120 |
+
# Setup data:
|
| 121 |
+
transform = transforms.Compose([
|
| 122 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
|
| 123 |
+
transforms.ToTensor(),
|
| 124 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 125 |
+
])
|
| 126 |
+
|
| 127 |
+
if args.dataset == 'imagenet':
|
| 128 |
+
dataset = build_dataset(args, transform=transform)
|
| 129 |
+
elif args.dataset == 'coco':
|
| 130 |
+
dataset = build_dataset(args, transform=transform)
|
| 131 |
+
elif args.dataset == 'imagenet_code':
|
| 132 |
+
dataset = build_dataset(args)
|
| 133 |
+
else:
|
| 134 |
+
raise Exception("please check dataset")
|
| 135 |
+
|
| 136 |
+
sampler = DistributedSampler(
|
| 137 |
+
dataset,
|
| 138 |
+
num_replicas=dist.get_world_size(),
|
| 139 |
+
rank=rank,
|
| 140 |
+
shuffle=False,
|
| 141 |
+
seed=args.global_seed
|
| 142 |
+
)
|
| 143 |
+
loader = DataLoader(
|
| 144 |
+
dataset,
|
| 145 |
+
batch_size=args.per_proc_batch_size,
|
| 146 |
+
shuffle=False,
|
| 147 |
+
sampler=sampler,
|
| 148 |
+
num_workers=args.num_workers,
|
| 149 |
+
pin_memory=True,
|
| 150 |
+
drop_last=False
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
if args.compile:
|
| 155 |
+
print(f"compiling the model...")
|
| 156 |
+
gpt_model = torch.compile(
|
| 157 |
+
gpt_model,
|
| 158 |
+
mode="reduce-overhead",
|
| 159 |
+
fullgraph=True
|
| 160 |
+
) # requires PyTorch 2.0 (optional)
|
| 161 |
+
else:
|
| 162 |
+
pass
|
| 163 |
+
# print(f"no need to compile model in demo")
|
| 164 |
+
|
| 165 |
+
# Create folder to save samples:
|
| 166 |
+
model_string_name = args.gpt_model.replace("/", "-")
|
| 167 |
+
if args.from_fsdp:
|
| 168 |
+
ckpt_string_name = args.gpt_ckpt.split('/')[-2]
|
| 169 |
+
else:
|
| 170 |
+
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "")
|
| 171 |
+
|
| 172 |
+
date = os.path.split(os.path.dirname(os.path.dirname(os.path.dirname(args.gpt_ckpt))))[-1]
|
| 173 |
+
|
| 174 |
+
sample_folder_dir = f"{args.sample_dir}/imagenet/{args.condition_type}"
|
| 175 |
+
if rank == 0:
|
| 176 |
+
if args.save_image:
|
| 177 |
+
os.makedirs(sample_folder_dir, exist_ok=True)
|
| 178 |
+
print(f"Saving .png samples at {sample_folder_dir}")
|
| 179 |
+
n = args.per_proc_batch_size
|
| 180 |
+
global_batch_size = n * dist.get_world_size()
|
| 181 |
+
total = 0
|
| 182 |
+
|
| 183 |
+
condition_null = None
|
| 184 |
+
num = 0
|
| 185 |
+
for batch in tqdm(loader):
|
| 186 |
+
num += 1
|
| 187 |
+
# if num > 40:
|
| 188 |
+
# break
|
| 189 |
+
class_labels = batch["labels"].to(device).squeeze(1)
|
| 190 |
+
condition_image = batch["condition_img"].to(device)
|
| 191 |
+
condition_imgs = batch["condition_imgs"].to(device)
|
| 192 |
+
|
| 193 |
+
batch_size = class_labels.shape[0]
|
| 194 |
+
|
| 195 |
+
c_indices = class_labels
|
| 196 |
+
qzshape = [len(class_labels), args.codebook_embed_dim, latent_size, latent_size]
|
| 197 |
+
|
| 198 |
+
index_sample = generate(
|
| 199 |
+
gpt_model, c_indices, latent_size ** 2, condition=condition_imgs.repeat(1,3,1,1).to(precision), condition_null=condition_null, condition_token_nums=args.condition_token_nums,
|
| 200 |
+
cfg_scale=args.cfg_scale, cfg_interval=args.cfg_interval,
|
| 201 |
+
temperature=args.temperature, top_k=args.top_k,
|
| 202 |
+
top_p=args.top_p, sample_logits=True,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
|
| 206 |
+
samples = 255*(samples*0.5 + 0.5)
|
| 207 |
+
if samples.shape[2] != 256:
|
| 208 |
+
samples = interpolate(samples, size=(256, 256), mode='bilinear', align_corners=False)
|
| 209 |
+
|
| 210 |
+
condition_imgs = 255*(condition_imgs*0.5 + 0.5)
|
| 211 |
+
if condition_imgs.shape[2] != 256:
|
| 212 |
+
condition_imgs = interpolate(condition_imgs, size=(256, 256), mode='bilinear', align_corners=False)
|
| 213 |
+
for i in range(len(samples)):
|
| 214 |
+
|
| 215 |
+
sample = samples[i].to(torch.uint8).permute(1,2,0)
|
| 216 |
+
sample_condition = get_condition(sample)
|
| 217 |
+
if torch.is_tensor(sample_condition):
|
| 218 |
+
sample_condition = sample_condition.cpu().numpy()
|
| 219 |
+
condition_img = condition_imgs[i,0].cpu().detach().numpy()
|
| 220 |
+
|
| 221 |
+
get_metric.update(condition_img, sample_condition)
|
| 222 |
+
|
| 223 |
+
index = i * dist.get_world_size() + rank + total
|
| 224 |
+
if args.save_image:
|
| 225 |
+
save_image(2*(samples[i]/255 - 0.5), f"{sample_folder_dir}/{index:06d}.png", nrow=1, normalize=True, value_range=(-1, 1))
|
| 226 |
+
|
| 227 |
+
total += global_batch_size
|
| 228 |
+
|
| 229 |
+
metric = get_metric.calculate()
|
| 230 |
+
print(f'count: {get_metric.count}')
|
| 231 |
+
print(f'{args.condition_type}: {metric}')
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
if __name__ == "__main__":
|
| 235 |
+
parser = argparse.ArgumentParser()
|
| 236 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 237 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None)
|
| 238 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
|
| 239 |
+
parser.add_argument("--from-fsdp", action='store_true')
|
| 240 |
+
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
|
| 241 |
+
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 242 |
+
parser.add_argument("--compile", action='store_true', default=False)
|
| 243 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 244 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 245 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 246 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 247 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=256)
|
| 248 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 249 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 250 |
+
parser.add_argument("--cfg-scale", type=float, default=4.0)
|
| 251 |
+
parser.add_argument("--cfg-interval", type=float, default=-1)
|
| 252 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 253 |
+
parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with")
|
| 254 |
+
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
|
| 255 |
+
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
|
| 256 |
+
parser.add_argument("--condition-token-nums", type=int, default=0)
|
| 257 |
+
parser.add_argument("--condition-type", type=str, default='canny', choices=['canny', 'depth'])
|
| 258 |
+
parser.add_argument("--per-proc-batch-size", type=int, default=32)
|
| 259 |
+
parser.add_argument("--get-condition-img", type=bool, default=False)
|
| 260 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 261 |
+
parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco', 'imagenet_code'], default='imagenet_code')
|
| 262 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 263 |
+
parser.add_argument("--num-workers", type=int, default=16)
|
| 264 |
+
parser.add_argument("--sample-dir", type=str, default="samples")
|
| 265 |
+
parser.add_argument("--save-image", type=bool, default=False)
|
| 266 |
+
args = parser.parse_args()
|
| 267 |
+
main(args)
|
autoregressive/test/test_ssim.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
from torchmetrics.image import MultiScaleStructuralSimilarityIndexMeasure
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
img1 = Image.open('autoregressive/test/label.png').convert('L') #
|
| 8 |
+
img2 = Image.open('autoregressive/test/pred.png').convert('L')
|
| 9 |
+
|
| 10 |
+
to_tensor = transforms.ToTensor()
|
| 11 |
+
img1_tensor = to_tensor(img1).unsqueeze(0) # (C, H, W) -> (1, C, H, W)
|
| 12 |
+
img2_tensor = to_tensor(img2).unsqueeze(0)
|
| 13 |
+
|
| 14 |
+
img1_tensor = img1_tensor.float()
|
| 15 |
+
img2_tensor = img2_tensor.float()
|
| 16 |
+
|
| 17 |
+
ms_ssim = MultiScaleStructuralSimilarityIndexMeasure(data_range=1.0)
|
| 18 |
+
|
| 19 |
+
ms_ssim_score = ms_ssim(img1_tensor, img2_tensor)
|
| 20 |
+
|
| 21 |
+
print("MS-SSIM:", ms_ssim_score.item())
|
autoregressive/test/test_t2i.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/sample.py
|
| 3 |
+
import warnings
|
| 4 |
+
warnings.filterwarnings('ignore')
|
| 5 |
+
import torch
|
| 6 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 7 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 8 |
+
torch.set_float32_matmul_precision('high')
|
| 9 |
+
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None)
|
| 10 |
+
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None)
|
| 11 |
+
from torchvision.utils import save_image
|
| 12 |
+
import os
|
| 13 |
+
import sys
|
| 14 |
+
current_directory = os.getcwd()
|
| 15 |
+
sys.path.append(current_directory)
|
| 16 |
+
import time
|
| 17 |
+
import argparse
|
| 18 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 19 |
+
from autoregressive.models.gpt_t2i import GPT_models
|
| 20 |
+
from autoregressive.models.generate import generate
|
| 21 |
+
from condition.hed import HEDdetector, nms
|
| 22 |
+
from condition.canny import CannyDetector
|
| 23 |
+
from autoregressive.test.metric import SSIM, F1score, RMSE
|
| 24 |
+
from condition.midas.depth import MidasDetector
|
| 25 |
+
import torch.distributed as dist
|
| 26 |
+
from dataset.augmentation import center_crop_arr
|
| 27 |
+
from dataset.build import build_dataset
|
| 28 |
+
from torch.utils.data import DataLoader
|
| 29 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 30 |
+
from torchvision import transforms
|
| 31 |
+
from PIL import Image
|
| 32 |
+
import os
|
| 33 |
+
import numpy as np
|
| 34 |
+
import cv2
|
| 35 |
+
from tqdm import tqdm
|
| 36 |
+
from functools import partial
|
| 37 |
+
from dataset.t2i_control import build_t2i_control_code
|
| 38 |
+
from language.t5 import T5Embedder
|
| 39 |
+
from torchmetrics.image import MultiScaleStructuralSimilarityIndexMeasure
|
| 40 |
+
from condition.lineart import LineArt
|
| 41 |
+
import torch.nn.functional as F
|
| 42 |
+
|
| 43 |
+
def main(args):
|
| 44 |
+
# # Setup PyTorch:
|
| 45 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 46 |
+
torch.set_grad_enabled(False)
|
| 47 |
+
# Setup DDP:
|
| 48 |
+
dist.init_process_group("nccl")
|
| 49 |
+
rank = dist.get_rank()
|
| 50 |
+
device = rank % torch.cuda.device_count()
|
| 51 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 52 |
+
torch.manual_seed(seed)
|
| 53 |
+
torch.cuda.set_device(device)
|
| 54 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 55 |
+
|
| 56 |
+
# create and load model
|
| 57 |
+
vq_model = VQ_models[args.vq_model](
|
| 58 |
+
codebook_size=args.codebook_size,
|
| 59 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 60 |
+
vq_model.to(device)
|
| 61 |
+
vq_model.eval()
|
| 62 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 63 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 64 |
+
del checkpoint
|
| 65 |
+
print(f"image tokenizer is loaded")
|
| 66 |
+
|
| 67 |
+
# create and load gpt model
|
| 68 |
+
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
|
| 69 |
+
latent_size = args.image_size // args.downsample_size
|
| 70 |
+
gpt_model = GPT_models[args.gpt_model](
|
| 71 |
+
vocab_size=args.codebook_size,
|
| 72 |
+
block_size=latent_size ** 2,
|
| 73 |
+
num_classes=args.num_classes,
|
| 74 |
+
cls_token_num=args.cls_token_num,
|
| 75 |
+
model_type=args.gpt_type,
|
| 76 |
+
adapter_size=args.adapter_size,
|
| 77 |
+
condition_type=args.condition_type,
|
| 78 |
+
).to(device=device, dtype=precision)
|
| 79 |
+
|
| 80 |
+
_, file_extension = os.path.splitext(args.gpt_ckpt)
|
| 81 |
+
if file_extension.lower() == '.safetensors':
|
| 82 |
+
from safetensors.torch import load_file
|
| 83 |
+
model_weight = load_file(args.gpt_ckpt)
|
| 84 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 85 |
+
gpt_model.eval()
|
| 86 |
+
else:
|
| 87 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 88 |
+
if "model" in checkpoint: # ddp
|
| 89 |
+
model_weight = checkpoint["model"]
|
| 90 |
+
elif "module" in checkpoint: # deepspeed
|
| 91 |
+
model_weight = checkpoint["module"]
|
| 92 |
+
elif "state_dict" in checkpoint:
|
| 93 |
+
model_weight = checkpoint["state_dict"]
|
| 94 |
+
else:
|
| 95 |
+
raise Exception("please check model weight")
|
| 96 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 97 |
+
gpt_model.eval()
|
| 98 |
+
del checkpoint
|
| 99 |
+
print(f"gpt model is loaded")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
t5_model = T5Embedder(
|
| 103 |
+
device=device,
|
| 104 |
+
local_cache=True,
|
| 105 |
+
cache_dir=args.t5_path,
|
| 106 |
+
dir_or_name=args.t5_model_type,
|
| 107 |
+
torch_dtype=precision,
|
| 108 |
+
model_max_length=args.t5_feature_max_len,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Setup data:
|
| 112 |
+
transform = transforms.Compose([
|
| 113 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
|
| 114 |
+
transforms.ToTensor(),
|
| 115 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 116 |
+
])
|
| 117 |
+
|
| 118 |
+
dataset = build_t2i_control_code(args)
|
| 119 |
+
|
| 120 |
+
sampler = DistributedSampler(
|
| 121 |
+
dataset,
|
| 122 |
+
num_replicas=dist.get_world_size(),
|
| 123 |
+
rank=rank,
|
| 124 |
+
shuffle=False,
|
| 125 |
+
seed=args.global_seed
|
| 126 |
+
)
|
| 127 |
+
loader = DataLoader(
|
| 128 |
+
dataset,
|
| 129 |
+
batch_size=args.per_proc_batch_size,
|
| 130 |
+
shuffle=False,
|
| 131 |
+
sampler=sampler,
|
| 132 |
+
num_workers=args.num_workers,
|
| 133 |
+
pin_memory=True,
|
| 134 |
+
drop_last=False,
|
| 135 |
+
collate_fn=dataset.collate_fn,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
if args.compile:
|
| 140 |
+
print(f"compiling the model...")
|
| 141 |
+
gpt_model = torch.compile(
|
| 142 |
+
gpt_model,
|
| 143 |
+
mode="reduce-overhead",
|
| 144 |
+
fullgraph=True
|
| 145 |
+
) # requires PyTorch 2.0 (optional)
|
| 146 |
+
else:
|
| 147 |
+
pass
|
| 148 |
+
# print(f"no need to compile model in demo")
|
| 149 |
+
|
| 150 |
+
# Create folder to save samples:
|
| 151 |
+
model_string_name = args.gpt_model.replace("/", "-")
|
| 152 |
+
if args.from_fsdp:
|
| 153 |
+
ckpt_string_name = args.gpt_ckpt.split('/')[-2]
|
| 154 |
+
else:
|
| 155 |
+
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "")
|
| 156 |
+
# import pdb;pdb.set_trace()
|
| 157 |
+
date = os.path.split(os.path.dirname(os.path.dirname(os.path.dirname(args.gpt_ckpt))))[-1]
|
| 158 |
+
folder_name = f"{model_string_name}-{date}-{ckpt_string_name}-size-{args.image_size}-{args.vq_model}-" \
|
| 159 |
+
f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \
|
| 160 |
+
f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
|
| 161 |
+
sample_folder_dir = f"{args.sample_dir}"
|
| 162 |
+
if rank == 0:
|
| 163 |
+
if args.save_image:
|
| 164 |
+
os.makedirs(sample_folder_dir, exist_ok=True)
|
| 165 |
+
os.makedirs(f"{args.sample_dir}/visualization", exist_ok=True)
|
| 166 |
+
os.makedirs(f"{args.sample_dir}/annotations", exist_ok=True)
|
| 167 |
+
print(f"Saving .png samples at {sample_folder_dir}")
|
| 168 |
+
n = args.per_proc_batch_size
|
| 169 |
+
global_batch_size = n * dist.get_world_size()
|
| 170 |
+
total = 0
|
| 171 |
+
|
| 172 |
+
if args.condition_type == 'hed':
|
| 173 |
+
get_condition = HEDdetector().to(device).eval()
|
| 174 |
+
elif args.condition_type == 'canny':
|
| 175 |
+
get_condition = CannyDetector()
|
| 176 |
+
elif args.condition_type == 'lineart':
|
| 177 |
+
get_condition = LineArt()
|
| 178 |
+
get_condition.load_state_dict(torch.load('condition/ckpts/model.pth', map_location=torch.device('cpu')))
|
| 179 |
+
get_condition.to(device)
|
| 180 |
+
|
| 181 |
+
condition_null = None
|
| 182 |
+
num = 0
|
| 183 |
+
print(len(loader))
|
| 184 |
+
for batch in tqdm(loader):
|
| 185 |
+
num += 1
|
| 186 |
+
# if num>2:
|
| 187 |
+
# break
|
| 188 |
+
prompts = batch['prompt']
|
| 189 |
+
condition_imgs = batch['control'].to(device)
|
| 190 |
+
|
| 191 |
+
if args.condition_type in ['hed', 'lineart']:
|
| 192 |
+
with torch.no_grad():
|
| 193 |
+
condition_imgs = get_condition(condition_imgs.float())
|
| 194 |
+
if args.condition_type == 'hed':
|
| 195 |
+
condition_imgs = condition_imgs.unsqueeze(1)/255
|
| 196 |
+
# if args.condition_type == 'lineart':
|
| 197 |
+
# condition_imgs = 1 - condition_imgs
|
| 198 |
+
condition_imgs = condition_imgs.repeat(1,3,1,1)
|
| 199 |
+
condition_imgs = 2*(condition_imgs - 0.5)
|
| 200 |
+
# condition_origin = condition_imgs.clone()
|
| 201 |
+
|
| 202 |
+
if args.condition_type == 'seg':
|
| 203 |
+
labels = batch['label']
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
caption_embs, emb_masks = t5_model.get_text_embeddings(prompts)
|
| 207 |
+
|
| 208 |
+
new_emb_masks = torch.flip(emb_masks, dims=[-1])
|
| 209 |
+
new_caption_embs = []
|
| 210 |
+
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)):
|
| 211 |
+
valid_num = int(emb_mask.sum().item())
|
| 212 |
+
new_caption_emb = torch.cat([caption_emb[valid_num:],caption_emb[:valid_num]])
|
| 213 |
+
new_caption_embs.append(new_caption_emb)
|
| 214 |
+
new_caption_embs = torch.stack(new_caption_embs)
|
| 215 |
+
c_indices = new_caption_embs * new_emb_masks[:,:, None]
|
| 216 |
+
c_emb_masks = new_emb_masks
|
| 217 |
+
|
| 218 |
+
qzshape = [len(c_indices), args.codebook_embed_dim, args.image_H//args.downsample_size, args.image_W//args.downsample_size]
|
| 219 |
+
|
| 220 |
+
index_sample = generate(
|
| 221 |
+
gpt_model, c_indices, (args.image_H//args.downsample_size)*(args.image_W//args.downsample_size), c_emb_masks, condition=condition_imgs.to(precision),
|
| 222 |
+
cfg_scale=args.cfg_scale, cfg_interval=args.cfg_interval,
|
| 223 |
+
temperature=args.temperature, top_k=args.top_k,
|
| 224 |
+
top_p=args.top_p, sample_logits=True,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
|
| 228 |
+
|
| 229 |
+
for i in range(len(samples)):
|
| 230 |
+
# # Save samples to disk as individual .png files
|
| 231 |
+
index = i * dist.get_world_size() + rank + total
|
| 232 |
+
if args.save_image:
|
| 233 |
+
save_image(samples[i], f"{args.sample_dir}/visualization/{index:06d}.png", nrow=1, normalize=True, value_range=(-1, 1))
|
| 234 |
+
save_image(condition_imgs[i,0], f"{args.sample_dir}/annotations/{index:06d}.png", nrow=1, normalize=True, value_range=(-1, 1))
|
| 235 |
+
if args.condition_type == 'seg':
|
| 236 |
+
Image.fromarray(labels[i].numpy().astype('uint8'), mode='L').save(f"{args.sample_dir}/annotations/{index:06d}.png")
|
| 237 |
+
total += global_batch_size
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
if __name__ == "__main__":
|
| 242 |
+
parser = argparse.ArgumentParser()
|
| 243 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 244 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None)
|
| 245 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class-conditional or text-conditional")
|
| 246 |
+
parser.add_argument("--from-fsdp", action='store_true')
|
| 247 |
+
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
|
| 248 |
+
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 249 |
+
parser.add_argument("--compile", action='store_true', default=False)
|
| 250 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 251 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 252 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 253 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 254 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 512, 768], default=512)
|
| 255 |
+
parser.add_argument("--image-H", type=int, choices=[256, 320, 384, 400, 448, 512, 576, 640, 704, 768, 832, 960, 1024], default=512)
|
| 256 |
+
parser.add_argument("--image-W", type=int, choices=[256, 320, 384, 400, 448, 512, 576, 640, 704, 768, 832, 960, 1024], default=512)
|
| 257 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 258 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 259 |
+
parser.add_argument("--cfg-scale", type=float, default=4)
|
| 260 |
+
parser.add_argument("--cfg-interval", type=float, default=-1)
|
| 261 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 262 |
+
parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with")
|
| 263 |
+
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
|
| 264 |
+
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
|
| 265 |
+
parser.add_argument("--condition", type=str, default='hed', choices=['canny', 'hed'])
|
| 266 |
+
parser.add_argument("--per-proc-batch-size", type=int, default=25)
|
| 267 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 268 |
+
parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco', 'imagenet_code'], default='imagenet_code')
|
| 269 |
+
parser.add_argument("--num-workers", type=int, default=16)
|
| 270 |
+
parser.add_argument("--sample-dir", type=str, default="samples")
|
| 271 |
+
parser.add_argument("--num-fid-samples", type=int, default=2000)
|
| 272 |
+
parser.add_argument("--save-image", type=bool, default=True)
|
| 273 |
+
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
|
| 274 |
+
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
|
| 275 |
+
parser.add_argument("--t5-feature-max-len", type=int, default=120)
|
| 276 |
+
parser.add_argument("--t5-feature-dim", type=int, default=2048)
|
| 277 |
+
parser.add_argument("--code-path", type=str, default="code")
|
| 278 |
+
parser.add_argument("--code-path2", type=str, default=None)
|
| 279 |
+
parser.add_argument("--get-image", type=bool, default=False)
|
| 280 |
+
parser.add_argument("--get-prompt", type=bool, default=True)
|
| 281 |
+
parser.add_argument("--get-label", type=bool, default=False)
|
| 282 |
+
parser.add_argument("--condition-type", type=str, choices=['seg', 'canny', 'hed', 'lineart', 'depth'], default="canny")
|
| 283 |
+
parser.add_argument("--adapter-size", type=str, default="small")
|
| 284 |
+
args = parser.parse_args()
|
| 285 |
+
main(args)
|
autoregressive/train/extract_codes_c2i.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
|
| 3 |
+
# import os
|
| 4 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
|
| 5 |
+
import torch
|
| 6 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 7 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 11 |
+
from torchvision import transforms
|
| 12 |
+
import numpy as np
|
| 13 |
+
import argparse
|
| 14 |
+
import os
|
| 15 |
+
|
| 16 |
+
from utils.distributed import init_distributed_mode
|
| 17 |
+
from dataset.augmentation import center_crop_arr
|
| 18 |
+
from dataset.build import build_dataset
|
| 19 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
#################################################################################
|
| 23 |
+
# Training Loop #
|
| 24 |
+
#################################################################################
|
| 25 |
+
def main(args):
|
| 26 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 27 |
+
# Setup DDP:
|
| 28 |
+
if not args.debug:
|
| 29 |
+
init_distributed_mode(args)
|
| 30 |
+
rank = dist.get_rank()
|
| 31 |
+
device = rank % torch.cuda.device_count()
|
| 32 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 33 |
+
torch.manual_seed(seed)
|
| 34 |
+
torch.cuda.set_device(device)
|
| 35 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 36 |
+
else:
|
| 37 |
+
device = 'cuda'
|
| 38 |
+
rank = 0
|
| 39 |
+
|
| 40 |
+
# Setup a feature folder:
|
| 41 |
+
if args.debug or rank == 0:
|
| 42 |
+
os.makedirs(args.code_path, exist_ok=True)
|
| 43 |
+
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_codes'), exist_ok=True)
|
| 44 |
+
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_labels'), exist_ok=True)
|
| 45 |
+
|
| 46 |
+
# create and load model
|
| 47 |
+
vq_model = VQ_models[args.vq_model](
|
| 48 |
+
codebook_size=args.codebook_size,
|
| 49 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 50 |
+
vq_model.to(device)
|
| 51 |
+
vq_model.eval()
|
| 52 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 53 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 54 |
+
del checkpoint
|
| 55 |
+
|
| 56 |
+
# Setup data:
|
| 57 |
+
if args.ten_crop:
|
| 58 |
+
crop_size = int(args.image_size * args.crop_range)
|
| 59 |
+
transform = transforms.Compose([
|
| 60 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 61 |
+
transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
|
| 62 |
+
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
|
| 63 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 64 |
+
])
|
| 65 |
+
else:
|
| 66 |
+
crop_size = args.image_size
|
| 67 |
+
transform = transforms.Compose([
|
| 68 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 69 |
+
transforms.ToTensor(),
|
| 70 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 71 |
+
])
|
| 72 |
+
dataset = build_dataset(args, transform=transform)
|
| 73 |
+
if not args.debug:
|
| 74 |
+
sampler = DistributedSampler(
|
| 75 |
+
dataset,
|
| 76 |
+
num_replicas=dist.get_world_size(),
|
| 77 |
+
rank=rank,
|
| 78 |
+
shuffle=False,
|
| 79 |
+
seed=args.global_seed
|
| 80 |
+
)
|
| 81 |
+
else:
|
| 82 |
+
sampler = None
|
| 83 |
+
loader = DataLoader(
|
| 84 |
+
dataset,
|
| 85 |
+
batch_size=1, # important!
|
| 86 |
+
shuffle=False,
|
| 87 |
+
sampler=sampler,
|
| 88 |
+
num_workers=args.num_workers,
|
| 89 |
+
pin_memory=True,
|
| 90 |
+
drop_last=False
|
| 91 |
+
)
|
| 92 |
+
from tqdm import tqdm
|
| 93 |
+
total = 0
|
| 94 |
+
for x, y in tqdm(loader):
|
| 95 |
+
x = x.to(device)
|
| 96 |
+
if args.ten_crop:
|
| 97 |
+
x_all = x.flatten(0, 1)
|
| 98 |
+
num_aug = 10
|
| 99 |
+
else:
|
| 100 |
+
x_flip = torch.flip(x, dims=[-1])
|
| 101 |
+
x_all = torch.cat([x, x_flip])
|
| 102 |
+
num_aug = 2
|
| 103 |
+
y = y.to(device)
|
| 104 |
+
with torch.no_grad():
|
| 105 |
+
_, _, [_, _, indices] = vq_model.encode(x_all)
|
| 106 |
+
codes = indices.reshape(x.shape[0], num_aug, -1)
|
| 107 |
+
|
| 108 |
+
x = codes.detach().cpu().numpy() # (1, num_aug, args.image_size//16 * args.image_size//16)
|
| 109 |
+
train_steps = rank + total
|
| 110 |
+
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_codes/{train_steps}.npy', x)
|
| 111 |
+
|
| 112 |
+
y = y.detach().cpu().numpy() # (1,)
|
| 113 |
+
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_labels/{train_steps}.npy', y)
|
| 114 |
+
if not args.debug:
|
| 115 |
+
total += dist.get_world_size()
|
| 116 |
+
else:
|
| 117 |
+
total += 1
|
| 118 |
+
#print(total)
|
| 119 |
+
|
| 120 |
+
dist.destroy_process_group()
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
parser = argparse.ArgumentParser()
|
| 125 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 126 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 127 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 128 |
+
parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
|
| 129 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 130 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 131 |
+
parser.add_argument("--dataset", type=str, default='imagenet')
|
| 132 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 133 |
+
parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
|
| 134 |
+
parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
|
| 135 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 136 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 137 |
+
parser.add_argument("--debug", action='store_true')
|
| 138 |
+
args = parser.parse_args()
|
| 139 |
+
main(args)
|
autoregressive/train/extract_codes_t2i.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
|
| 3 |
+
import torch
|
| 4 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 5 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 6 |
+
import torch.distributed as dist
|
| 7 |
+
from torch.utils.data import Dataset, DataLoader
|
| 8 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 9 |
+
from torchvision import transforms
|
| 10 |
+
import numpy as np
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import glob
|
| 13 |
+
import argparse
|
| 14 |
+
import os
|
| 15 |
+
import json
|
| 16 |
+
|
| 17 |
+
from utils.distributed import init_distributed_mode
|
| 18 |
+
from dataset.augmentation import center_crop_arr
|
| 19 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
#################################################################################
|
| 23 |
+
# Training Helper Functions #
|
| 24 |
+
#################################################################################
|
| 25 |
+
class CustomDataset(Dataset):
|
| 26 |
+
def __init__(self, lst_dir, start, end, transform):
|
| 27 |
+
img_path_list = []
|
| 28 |
+
for lst_name in sorted(os.listdir(lst_dir))[start: end+1]:
|
| 29 |
+
if not lst_name.endswith('.jsonl'):
|
| 30 |
+
continue
|
| 31 |
+
file_path = os.path.join(lst_dir, lst_name)
|
| 32 |
+
with open(file_path, 'r') as file:
|
| 33 |
+
for line_idx, line in enumerate(file):
|
| 34 |
+
data = json.loads(line)
|
| 35 |
+
img_path = data['image_path']
|
| 36 |
+
code_dir = file_path.split('/')[-1].split('.')[0]
|
| 37 |
+
img_path_list.append((img_path, code_dir, line_idx))
|
| 38 |
+
self.img_path_list = img_path_list
|
| 39 |
+
self.transform = transform
|
| 40 |
+
|
| 41 |
+
def __len__(self):
|
| 42 |
+
return len(self.img_path_list)
|
| 43 |
+
|
| 44 |
+
def __getitem__(self, index):
|
| 45 |
+
img_path, code_dir, code_name = self.img_path_list[index]
|
| 46 |
+
img = Image.open(img_path).convert("RGB")
|
| 47 |
+
if self.transform is not None:
|
| 48 |
+
img = self.transform(img)
|
| 49 |
+
return img, code_dir, code_name
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
#################################################################################
|
| 54 |
+
# Training Loop #
|
| 55 |
+
#################################################################################
|
| 56 |
+
def main(args):
|
| 57 |
+
"""
|
| 58 |
+
Trains a new DiT model.
|
| 59 |
+
"""
|
| 60 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 61 |
+
|
| 62 |
+
# Setup DDP:
|
| 63 |
+
# dist.init_process_group("nccl")
|
| 64 |
+
init_distributed_mode(args)
|
| 65 |
+
rank = dist.get_rank()
|
| 66 |
+
device = rank % torch.cuda.device_count()
|
| 67 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 68 |
+
torch.manual_seed(seed)
|
| 69 |
+
torch.cuda.set_device(device)
|
| 70 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 71 |
+
|
| 72 |
+
# Setup a feature folder:
|
| 73 |
+
if rank == 0:
|
| 74 |
+
os.makedirs(args.code_path, exist_ok=True)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# create and load model
|
| 78 |
+
vq_model = VQ_models[args.vq_model](
|
| 79 |
+
codebook_size=args.codebook_size,
|
| 80 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 81 |
+
vq_model.to(device)
|
| 82 |
+
vq_model.eval()
|
| 83 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 84 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 85 |
+
del checkpoint
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# Setup data:
|
| 89 |
+
transform = transforms.Compose([
|
| 90 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
|
| 91 |
+
transforms.ToTensor(),
|
| 92 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 93 |
+
])
|
| 94 |
+
print(f"Dataset is preparing...")
|
| 95 |
+
dataset = CustomDataset(args.data_path, args.data_start, args.data_end, transform=transform)
|
| 96 |
+
sampler = DistributedSampler(
|
| 97 |
+
dataset,
|
| 98 |
+
num_replicas=dist.get_world_size(),
|
| 99 |
+
rank=rank,
|
| 100 |
+
shuffle=False,
|
| 101 |
+
seed=args.global_seed
|
| 102 |
+
)
|
| 103 |
+
loader = DataLoader(
|
| 104 |
+
dataset,
|
| 105 |
+
batch_size=1, # important!
|
| 106 |
+
shuffle=False,
|
| 107 |
+
sampler=sampler,
|
| 108 |
+
num_workers=args.num_workers,
|
| 109 |
+
pin_memory=True,
|
| 110 |
+
drop_last=False
|
| 111 |
+
)
|
| 112 |
+
print(f"Dataset contains {len(dataset):,} images")
|
| 113 |
+
|
| 114 |
+
# total = 0
|
| 115 |
+
for img, code_dir, code_name in loader:
|
| 116 |
+
img = img.to(device)
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
_, _, [_, _, indices] = vq_model.encode(img)
|
| 119 |
+
codes = indices.reshape(img.shape[0], -1)
|
| 120 |
+
x = codes.detach().cpu().numpy() # (1, args.image_size//16 * args.image_size//16)
|
| 121 |
+
os.makedirs(os.path.join(args.code_path, code_dir[0]), exist_ok=True)
|
| 122 |
+
np.save(os.path.join(args.code_path, code_dir[0], '{}.npy'.format(code_name.item())), x)
|
| 123 |
+
|
| 124 |
+
# total += dist.get_world_size()
|
| 125 |
+
print(code_name.item())
|
| 126 |
+
|
| 127 |
+
dist.destroy_process_group()
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
if __name__ == "__main__":
|
| 131 |
+
parser = argparse.ArgumentParser()
|
| 132 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 133 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 134 |
+
parser.add_argument("--data-start", type=int, required=True)
|
| 135 |
+
parser.add_argument("--data-end", type=int, required=True)
|
| 136 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 137 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 138 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 139 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 140 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=512)
|
| 141 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 142 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 143 |
+
args = parser.parse_args()
|
| 144 |
+
main(args)
|
autoregressive/train/extract_file_ade.py
ADDED
|
@@ -0,0 +1,511 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
|
| 3 |
+
import os
|
| 4 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
|
| 5 |
+
import torch
|
| 6 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 7 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 11 |
+
from torchvision import transforms
|
| 12 |
+
import numpy as np
|
| 13 |
+
import argparse
|
| 14 |
+
import os
|
| 15 |
+
import sys
|
| 16 |
+
current_directory = os.getcwd()
|
| 17 |
+
sys.path.append(current_directory)
|
| 18 |
+
from utils.distributed import init_distributed_mode
|
| 19 |
+
from dataset.augmentation import center_crop_arr
|
| 20 |
+
from dataset.build import build_dataset
|
| 21 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 22 |
+
from condition.hed import HEDdetector, ControlNetHED_Apache2
|
| 23 |
+
import cv2
|
| 24 |
+
from torch.nn.parallel import DataParallel
|
| 25 |
+
from einops import rearrange
|
| 26 |
+
from datasets import load_dataset
|
| 27 |
+
from torchvision import transforms
|
| 28 |
+
from PIL import Image
|
| 29 |
+
from language.t5 import T5Embedder
|
| 30 |
+
#################################################################################
|
| 31 |
+
# Training Loop #
|
| 32 |
+
#################################################################################
|
| 33 |
+
resolution = (512, 512)
|
| 34 |
+
image_transforms = transforms.Compose(
|
| 35 |
+
[
|
| 36 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 37 |
+
transforms.ToTensor(),
|
| 38 |
+
transforms.Normalize([0.5], [0.5]),
|
| 39 |
+
]
|
| 40 |
+
)
|
| 41 |
+
conditioning_image_transforms = transforms.Compose(
|
| 42 |
+
[
|
| 43 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 44 |
+
transforms.ToTensor(),
|
| 45 |
+
]
|
| 46 |
+
)
|
| 47 |
+
label_image_transforms = transforms.Compose(
|
| 48 |
+
[
|
| 49 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.NEAREST, antialias=True),
|
| 50 |
+
]
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def collate_fn(examples):
|
| 54 |
+
|
| 55 |
+
pil_images = [example['image'].convert("RGB") for example in examples]
|
| 56 |
+
images = [image_transforms(image) for image in pil_images]
|
| 57 |
+
images = torch.stack(images)
|
| 58 |
+
|
| 59 |
+
conditioning_images = [example['control_seg'].convert("RGB") for example in examples]
|
| 60 |
+
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
|
| 61 |
+
conditioning_images = torch.stack(conditioning_images)
|
| 62 |
+
|
| 63 |
+
captions = [example['prompt'] for example in examples]
|
| 64 |
+
|
| 65 |
+
dtype = torch.long
|
| 66 |
+
# labels = [torch.from_numpy(np.array(example['panoptic_seg_map'])).unsqueeze(0) for example in examples] # seg_map panoptic_seg_map
|
| 67 |
+
# labels = [label_image_transforms(label) for label in labels]
|
| 68 |
+
# labels = torch.stack(labels)
|
| 69 |
+
labels = [example['seg_map'] for example in examples]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
return {
|
| 73 |
+
"images": images, # -1~1
|
| 74 |
+
"conditioning_images": conditioning_images, # 0~1
|
| 75 |
+
"captions": captions,
|
| 76 |
+
"labels": labels
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
def main(args):
|
| 80 |
+
|
| 81 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 82 |
+
# Setup DDP:
|
| 83 |
+
if not args.debug:
|
| 84 |
+
init_distributed_mode(args)
|
| 85 |
+
rank = dist.get_rank()
|
| 86 |
+
device = rank % torch.cuda.device_count()
|
| 87 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 88 |
+
torch.manual_seed(seed)
|
| 89 |
+
torch.cuda.set_device(device)
|
| 90 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 91 |
+
else:
|
| 92 |
+
device = 'cuda'
|
| 93 |
+
rank = 0
|
| 94 |
+
|
| 95 |
+
# Setup a feature folder:
|
| 96 |
+
if args.debug or rank == 0:
|
| 97 |
+
os.makedirs(args.code_path, exist_ok=True)
|
| 98 |
+
os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
|
| 99 |
+
os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
|
| 100 |
+
os.makedirs(os.path.join(args.code_path, f'control'), exist_ok=True)
|
| 101 |
+
os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)
|
| 102 |
+
if args.split == 'validation':
|
| 103 |
+
os.makedirs(os.path.join(args.code_path, f'label'), exist_ok=True)
|
| 104 |
+
# create and load model
|
| 105 |
+
vq_model = VQ_models[args.vq_model](
|
| 106 |
+
codebook_size=args.codebook_size,
|
| 107 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 108 |
+
vq_model.to(device)
|
| 109 |
+
vq_model.eval()
|
| 110 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 111 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 112 |
+
del checkpoint
|
| 113 |
+
|
| 114 |
+
t5_model = T5Embedder(
|
| 115 |
+
device=device,
|
| 116 |
+
local_cache=True,
|
| 117 |
+
cache_dir=args.t5_path,
|
| 118 |
+
dir_or_name=args.t5_model_type,
|
| 119 |
+
model_max_length=args.t5_feature_max_len,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Setup data:
|
| 123 |
+
if args.ten_crop:
|
| 124 |
+
crop_size = int(args.image_size * args.crop_range)
|
| 125 |
+
transform = transforms.Compose([
|
| 126 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 127 |
+
transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
|
| 128 |
+
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
|
| 129 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 130 |
+
])
|
| 131 |
+
else:
|
| 132 |
+
crop_size = args.image_size
|
| 133 |
+
transform = transforms.Compose([
|
| 134 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 135 |
+
transforms.ToTensor(),
|
| 136 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 137 |
+
])
|
| 138 |
+
# dataset = build_dataset(args, transform=transform)
|
| 139 |
+
# dataset = load_dataset(
|
| 140 |
+
# args.data_path,
|
| 141 |
+
# cache_dir=None,
|
| 142 |
+
# )
|
| 143 |
+
dataset = load_dataset(args.data_path, split=args.split, # "train" or "validation"
|
| 144 |
+
cache_dir=None,)
|
| 145 |
+
print(dataset)
|
| 146 |
+
|
| 147 |
+
if not args.debug:
|
| 148 |
+
sampler = DistributedSampler(
|
| 149 |
+
# dataset[args.split],
|
| 150 |
+
dataset,
|
| 151 |
+
num_replicas=dist.get_world_size(),
|
| 152 |
+
rank=rank,
|
| 153 |
+
shuffle=False,
|
| 154 |
+
seed=args.global_seed
|
| 155 |
+
)
|
| 156 |
+
else:
|
| 157 |
+
sampler = None
|
| 158 |
+
loader = DataLoader(
|
| 159 |
+
# dataset[args.split],
|
| 160 |
+
dataset,
|
| 161 |
+
batch_size=1, # important!
|
| 162 |
+
shuffle=False,
|
| 163 |
+
sampler=sampler,
|
| 164 |
+
num_workers=args.num_workers,
|
| 165 |
+
collate_fn=collate_fn,
|
| 166 |
+
pin_memory=True,
|
| 167 |
+
drop_last=False
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
from tqdm import tqdm
|
| 171 |
+
total = 0
|
| 172 |
+
code_len = 1024
|
| 173 |
+
t5_feature_max_len = 120
|
| 174 |
+
t5_feature_dim = 2048
|
| 175 |
+
max_seq_length = t5_feature_max_len + code_len
|
| 176 |
+
for batch in tqdm(loader):
|
| 177 |
+
|
| 178 |
+
captions = batch['captions']
|
| 179 |
+
|
| 180 |
+
train_steps = rank + total
|
| 181 |
+
img_save_path = f'{args.code_path}/image/{train_steps}.png'
|
| 182 |
+
cond_save_path = f'{args.code_path}/control/{train_steps}.png'
|
| 183 |
+
label_save_path = f'{args.code_path}/label/{train_steps}.png'
|
| 184 |
+
Image.fromarray((255*(batch['images'][0].numpy().transpose(1,2,0)*0.5+0.5)).astype('uint8'), mode='RGB').save(img_save_path)
|
| 185 |
+
Image.fromarray((255*batch['conditioning_images'][0].numpy().transpose(1,2,0)).astype('uint8'), mode='RGB').save(cond_save_path)
|
| 186 |
+
|
| 187 |
+
label = Image.fromarray(np.array(batch['labels'][0]).astype('uint8'))
|
| 188 |
+
label.resize((512,512), Image.Resampling.NEAREST).save(label_save_path)
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
_, _, [_, _, indices] = vq_model.encode(batch['images'].to(device))
|
| 191 |
+
|
| 192 |
+
caption_emb, emb_mask = t5_model.get_text_embeddings(captions)
|
| 193 |
+
valid_num = int(emb_mask.sum().item())
|
| 194 |
+
caption_emb = caption_emb[:, :valid_num]
|
| 195 |
+
|
| 196 |
+
codes = indices.reshape(1, 1, -1)
|
| 197 |
+
x = codes.detach().cpu().numpy() # (1, num_aug, args.image_size//16 * args.image_size//16)
|
| 198 |
+
np.save(f'{args.code_path}/code/{train_steps}.npy', x)
|
| 199 |
+
|
| 200 |
+
caption_emb = caption_emb.to(torch.float32).detach().cpu().numpy()
|
| 201 |
+
caption_dict = {}
|
| 202 |
+
caption_dict['prompt'] = captions
|
| 203 |
+
caption_dict['caption_emb'] = caption_emb
|
| 204 |
+
np.savez(f'{args.code_path}/caption_emb/{train_steps}.npz', **caption_dict)
|
| 205 |
+
|
| 206 |
+
# 👇 新增:保存 prompt 为 .txt 文件,方便外部评估
|
| 207 |
+
with open(f'{args.code_path}/prompt/{train_steps}.txt', 'w', encoding='utf-8') as f:
|
| 208 |
+
f.write(captions[0]) # 假设 batch_size = 1
|
| 209 |
+
|
| 210 |
+
if not args.debug:
|
| 211 |
+
total += dist.get_world_size()
|
| 212 |
+
else:
|
| 213 |
+
total += 1
|
| 214 |
+
|
| 215 |
+
dist.destroy_process_group()
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
if __name__ == "__main__":
|
| 219 |
+
parser = argparse.ArgumentParser()
|
| 220 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 221 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 222 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 223 |
+
parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
|
| 224 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 225 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 226 |
+
parser.add_argument("--dataset", type=str, default='imagenet')
|
| 227 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 228 |
+
parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
|
| 229 |
+
parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
|
| 230 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 231 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 232 |
+
parser.add_argument("--debug", action='store_true')
|
| 233 |
+
parser.add_argument("--min-threshold", type=int, default=200)
|
| 234 |
+
parser.add_argument("--max-threshold", type=int, default=400)
|
| 235 |
+
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
|
| 236 |
+
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
|
| 237 |
+
parser.add_argument("--t5-feature-max-len", type=int, default=120)
|
| 238 |
+
parser.add_argument("--split", type=str, default='train',help="train or validation")
|
| 239 |
+
args = parser.parse_args()
|
| 240 |
+
main(args)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
# # Modified from:
|
| 245 |
+
# # fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
|
| 246 |
+
# import os
|
| 247 |
+
# # os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
|
| 248 |
+
# import torch
|
| 249 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
| 250 |
+
# torch.backends.cudnn.allow_tf32 = True
|
| 251 |
+
# import torch.distributed as dist
|
| 252 |
+
# from torch.utils.data import DataLoader
|
| 253 |
+
# from torch.utils.data.distributed import DistributedSampler
|
| 254 |
+
# from torchvision import transforms
|
| 255 |
+
# import numpy as np
|
| 256 |
+
# import argparse
|
| 257 |
+
# import os
|
| 258 |
+
# import sys
|
| 259 |
+
# current_directory = os.getcwd()
|
| 260 |
+
# sys.path.append(current_directory)
|
| 261 |
+
# from utils.distributed import init_distributed_mode
|
| 262 |
+
# from dataset.augmentation import center_crop_arr
|
| 263 |
+
# from dataset.build import build_dataset
|
| 264 |
+
# from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 265 |
+
# # from condition.hed import HEDdetector, ControlNetHED_Apache2
|
| 266 |
+
# import cv2
|
| 267 |
+
# from torch.nn.parallel import DataParallel
|
| 268 |
+
# from einops import rearrange
|
| 269 |
+
# from datasets import load_dataset
|
| 270 |
+
# from torchvision import transforms
|
| 271 |
+
# from PIL import Image
|
| 272 |
+
# from language.t5 import T5Embedder
|
| 273 |
+
# #################################################################################
|
| 274 |
+
# # Training Loop #
|
| 275 |
+
# #################################################################################
|
| 276 |
+
# resolution = (512, 512)
|
| 277 |
+
# image_transforms = transforms.Compose(
|
| 278 |
+
# [
|
| 279 |
+
# transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 280 |
+
# transforms.ToTensor(),
|
| 281 |
+
# transforms.Normalize([0.5], [0.5]),
|
| 282 |
+
# ]
|
| 283 |
+
# )
|
| 284 |
+
# conditioning_image_transforms = transforms.Compose(
|
| 285 |
+
# [
|
| 286 |
+
# transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 287 |
+
# transforms.ToTensor(),
|
| 288 |
+
# ]
|
| 289 |
+
# )
|
| 290 |
+
# label_image_transforms = transforms.Compose(
|
| 291 |
+
# [
|
| 292 |
+
# transforms.Resize(resolution, interpolation=transforms.InterpolationMode.NEAREST, antialias=True),
|
| 293 |
+
# ]
|
| 294 |
+
# )
|
| 295 |
+
# def collate_fn(examples):
|
| 296 |
+
# print("Examples:", examples) # 打印原始数据结构
|
| 297 |
+
# print("Available keys:", examples[0].keys()) # 打印数据集中包含的键
|
| 298 |
+
# exit() # 直接终止,查看输出
|
| 299 |
+
|
| 300 |
+
# def collate_fn(examples):
|
| 301 |
+
|
| 302 |
+
# pil_images = [example['image'].convert("RGB") for example in examples]
|
| 303 |
+
# images = [image_transforms(image) for image in pil_images]
|
| 304 |
+
# images = torch.stack(images)
|
| 305 |
+
|
| 306 |
+
# conditioning_images = [example['control_seg'].convert("RGB") for example in examples]
|
| 307 |
+
# conditioning_images = [example["control_seg"][0].convert("RGB") for example in examples]
|
| 308 |
+
# conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
|
| 309 |
+
# conditioning_images = torch.stack(conditioning_images)
|
| 310 |
+
|
| 311 |
+
# # captions = [example['prompt'] for example in examples]
|
| 312 |
+
|
| 313 |
+
# # dtype = torch.long
|
| 314 |
+
# # # labels = [torch.from_numpy(np.array(example['panoptic_seg_map'])).unsqueeze(0) for example in examples] # seg_map panoptic_seg_map
|
| 315 |
+
# # # labels = [label_image_transforms(label) for label in labels]
|
| 316 |
+
# # # labels = torch.stack(labels)
|
| 317 |
+
# # labels = [example['seg_map'] for example in examples]
|
| 318 |
+
# # **修改 captions 逻辑**
|
| 319 |
+
# captions = [" ".join(example["scene"]) if "scene" in example else "unknown" for example in examples]
|
| 320 |
+
|
| 321 |
+
# labels = [example["control_seg"][0] for example in examples]
|
| 322 |
+
|
| 323 |
+
# return {
|
| 324 |
+
# "images": images, # -1~1
|
| 325 |
+
# "conditioning_images": conditioning_images, # 0~1
|
| 326 |
+
# "captions": captions,
|
| 327 |
+
# "labels": labels
|
| 328 |
+
# }
|
| 329 |
+
|
| 330 |
+
# def main(args):
|
| 331 |
+
|
| 332 |
+
# assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 333 |
+
# # Setup DDP:
|
| 334 |
+
# # if not args.debug:
|
| 335 |
+
# # init_distributed_mode(args)
|
| 336 |
+
# # rank = dist.get_rank()
|
| 337 |
+
# # device = rank % torch.cuda.device_count()
|
| 338 |
+
# # seed = args.global_seed * dist.get_world_size() + rank
|
| 339 |
+
# # torch.manual_seed(seed)
|
| 340 |
+
# # torch.cuda.set_device(device)
|
| 341 |
+
# # print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 342 |
+
# # else:
|
| 343 |
+
# # device = 'cuda'
|
| 344 |
+
# # rank = 0
|
| 345 |
+
# device = torch.device("cuda")
|
| 346 |
+
# # Setup a feature folder:
|
| 347 |
+
# # if args.debug or rank == 0:
|
| 348 |
+
# # os.makedirs(args.code_path, exist_ok=True)
|
| 349 |
+
# # os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
|
| 350 |
+
# # os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
|
| 351 |
+
# # os.makedirs(os.path.join(args.code_path, f'control'), exist_ok=True)
|
| 352 |
+
# # os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)
|
| 353 |
+
# # if args.split == 'validation':
|
| 354 |
+
# # os.makedirs(os.path.join(args.code_path, f'label'), exist_ok=True)
|
| 355 |
+
# os.makedirs(args.code_path, exist_ok=True)
|
| 356 |
+
# os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
|
| 357 |
+
# os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
|
| 358 |
+
# os.makedirs(os.path.join(args.code_path, f'control'), exist_ok=True)
|
| 359 |
+
# os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)
|
| 360 |
+
# if args.split == 'validation':
|
| 361 |
+
# os.makedirs(os.path.join(args.code_path, f'label'), exist_ok=True)
|
| 362 |
+
|
| 363 |
+
# # create and load model加载 VQ 模型
|
| 364 |
+
# vq_model = VQ_models[args.vq_model](
|
| 365 |
+
# codebook_size=args.codebook_size,
|
| 366 |
+
# codebook_embed_dim=args.codebook_embed_dim)
|
| 367 |
+
# vq_model.to(device)
|
| 368 |
+
# vq_model.eval()
|
| 369 |
+
# # 加载模型权重
|
| 370 |
+
# checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 371 |
+
# vq_model.load_state_dict(checkpoint["model"])
|
| 372 |
+
# del checkpoint
|
| 373 |
+
# # 加载 T5 文本嵌入模型
|
| 374 |
+
# t5_model = T5Embedder(
|
| 375 |
+
# device=device,
|
| 376 |
+
# local_cache=True,
|
| 377 |
+
# cache_dir=args.t5_path,
|
| 378 |
+
# dir_or_name=args.t5_model_type,
|
| 379 |
+
# model_max_length=args.t5_feature_max_len,
|
| 380 |
+
# )
|
| 381 |
+
# # 以下注释
|
| 382 |
+
# # Setup data:
|
| 383 |
+
# if args.ten_crop:
|
| 384 |
+
# crop_size = int(args.image_size * args.crop_range)
|
| 385 |
+
# transform = transforms.Compose([
|
| 386 |
+
# transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 387 |
+
# transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
|
| 388 |
+
# transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
|
| 389 |
+
# transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 390 |
+
# ])
|
| 391 |
+
# else:
|
| 392 |
+
# crop_size = args.image_size
|
| 393 |
+
# transform = transforms.Compose([
|
| 394 |
+
# transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 395 |
+
# transforms.ToTensor(),
|
| 396 |
+
# transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 397 |
+
# ])
|
| 398 |
+
# # dataset = build_dataset(args, transform=transform)
|
| 399 |
+
# dataset = load_dataset(
|
| 400 |
+
# args.data_path,
|
| 401 |
+
# cache_dir=None,
|
| 402 |
+
# ) # 读取数据集
|
| 403 |
+
# if not args.debug:
|
| 404 |
+
# sampler = DistributedSampler(
|
| 405 |
+
# dataset[args.split],
|
| 406 |
+
# num_replicas=dist.get_world_size(),
|
| 407 |
+
# rank=rank,
|
| 408 |
+
# shuffle=False,
|
| 409 |
+
# seed=args.global_seed
|
| 410 |
+
# )
|
| 411 |
+
# else:
|
| 412 |
+
# sampler = None
|
| 413 |
+
# loader = DataLoader(
|
| 414 |
+
# dataset[args.split],
|
| 415 |
+
# batch_size=1, # important!
|
| 416 |
+
# shuffle=False,
|
| 417 |
+
# sampler=sampler,
|
| 418 |
+
# num_workers=args.num_workers,
|
| 419 |
+
# collate_fn=collate_fn,
|
| 420 |
+
# pin_memory=True,
|
| 421 |
+
# drop_last=False
|
| 422 |
+
# )
|
| 423 |
+
# # 以上注释并添加下边的数据预处理
|
| 424 |
+
# # # 设置数据预处理
|
| 425 |
+
# # crop_size = int(args.image_size * args.crop_range) if args.ten_crop else args.image_size
|
| 426 |
+
# # transform = transforms.Compose([
|
| 427 |
+
# # transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 428 |
+
# # transforms.ToTensor(),
|
| 429 |
+
# # transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 430 |
+
# # ])
|
| 431 |
+
|
| 432 |
+
# # # 加载数据集
|
| 433 |
+
# # dataset = load_dataset(args.data_path, cache_dir=None)
|
| 434 |
+
|
| 435 |
+
# # # **修改 DataLoader**
|
| 436 |
+
# # loader = DataLoader(
|
| 437 |
+
# # dataset[args.split],
|
| 438 |
+
# # batch_size=1, # 重要!
|
| 439 |
+
# # shuffle=True, # **单 GPU 训练时使用 shuffle**
|
| 440 |
+
# # num_workers=args.num_workers,
|
| 441 |
+
# # collate_fn=collate_fn,
|
| 442 |
+
# # pin_memory=True,
|
| 443 |
+
# # drop_last=False
|
| 444 |
+
# # )
|
| 445 |
+
|
| 446 |
+
# from tqdm import tqdm
|
| 447 |
+
# total = 0
|
| 448 |
+
# code_len = 1024
|
| 449 |
+
# t5_feature_max_len = 120
|
| 450 |
+
# t5_feature_dim = 2048
|
| 451 |
+
# max_seq_length = t5_feature_max_len + code_len
|
| 452 |
+
# for batch in tqdm(loader):
|
| 453 |
+
|
| 454 |
+
# captions = batch['captions']
|
| 455 |
+
|
| 456 |
+
# # train_steps = rank + total
|
| 457 |
+
# img_save_path = f'{args.code_path}/image/{total}.png'
|
| 458 |
+
# cond_save_path = f'{args.code_path}/control/{total}.png'
|
| 459 |
+
# label_save_path = f'{args.code_path}/label/{total}.png'
|
| 460 |
+
# Image.fromarray((255*(batch['images'][0].numpy().transpose(1,2,0)*0.5+0.5)).astype('uint8'), mode='RGB').save(img_save_path)
|
| 461 |
+
# Image.fromarray((255*batch['conditioning_images'][0].numpy().transpose(1,2,0)).astype('uint8'), mode='RGB').save(cond_save_path)
|
| 462 |
+
|
| 463 |
+
# label = Image.fromarray(np.array(batch['labels'][0]).astype('uint8'))
|
| 464 |
+
# label.resize((512,512), Image.Resampling.NEAREST).save(label_save_path)
|
| 465 |
+
# with torch.no_grad():
|
| 466 |
+
# _, _, [_, _, indices] = vq_model.encode(batch['images'].to(device))
|
| 467 |
+
|
| 468 |
+
# caption_emb, emb_mask = t5_model.get_text_embeddings(captions)
|
| 469 |
+
# valid_num = int(emb_mask.sum().item())
|
| 470 |
+
# caption_emb = caption_emb[:, :valid_num]
|
| 471 |
+
|
| 472 |
+
# codes = indices.reshape(1, 1, -1)
|
| 473 |
+
# x = codes.detach().cpu().numpy() # (1, num_aug, args.image_size//16 * args.image_size//16)
|
| 474 |
+
# np.save(f'{args.code_path}/code/{total}.npy', x) # 保存将图像编码成的离散Token
|
| 475 |
+
|
| 476 |
+
# caption_emb = caption_emb.to(torch.float32).detach().cpu().numpy()
|
| 477 |
+
# caption_dict = {}
|
| 478 |
+
# caption_dict['prompt'] = captions
|
| 479 |
+
# caption_dict['caption_emb'] = caption_emb
|
| 480 |
+
# np.savez(f'{args.code_path}/caption_emb/{total}.npz', **caption_dict) # 保存文本的 T5 Embeddings
|
| 481 |
+
# # if not args.debug:
|
| 482 |
+
# # total += dist.get_world_size()
|
| 483 |
+
# # else:
|
| 484 |
+
# # total += 1
|
| 485 |
+
# total += 1
|
| 486 |
+
# dist.destroy_process_group()
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
# if __name__ == "__main__":
|
| 490 |
+
# parser = argparse.ArgumentParser()
|
| 491 |
+
# parser.add_argument("--code-path", type=str, required=True)
|
| 492 |
+
# parser.add_argument("--data-path", type=str, required=True)
|
| 493 |
+
# parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 494 |
+
# parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
|
| 495 |
+
# parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 496 |
+
# parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 497 |
+
# parser.add_argument("--dataset", type=str, default='imagenet')
|
| 498 |
+
# parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 499 |
+
# parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
|
| 500 |
+
# parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
|
| 501 |
+
# parser.add_argument("--global-seed", type=int, default=0)
|
| 502 |
+
# parser.add_argument("--num-workers", type=int, default=24)
|
| 503 |
+
# parser.add_argument("--debug", action='store_true')
|
| 504 |
+
# parser.add_argument("--min-threshold", type=int, default=200)
|
| 505 |
+
# parser.add_argument("--max-threshold", type=int, default=400)
|
| 506 |
+
# parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
|
| 507 |
+
# parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
|
| 508 |
+
# parser.add_argument("--t5-feature-max-len", type=int, default=120)
|
| 509 |
+
# parser.add_argument("--split", type=str, default='train')
|
| 510 |
+
# args = parser.parse_args()
|
| 511 |
+
# main(args)
|
autoregressive/train/extract_file_cocostuff.py
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
|
| 3 |
+
import os
|
| 4 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
|
| 5 |
+
import torch
|
| 6 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 7 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 11 |
+
from torchvision import transforms
|
| 12 |
+
import numpy as np
|
| 13 |
+
import argparse
|
| 14 |
+
import os
|
| 15 |
+
import sys
|
| 16 |
+
current_directory = os.getcwd()
|
| 17 |
+
sys.path.append(current_directory)
|
| 18 |
+
from utils.distributed import init_distributed_mode
|
| 19 |
+
from dataset.augmentation import center_crop_arr
|
| 20 |
+
from dataset.build import build_dataset
|
| 21 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 22 |
+
from condition.hed import HEDdetector, ControlNetHED_Apache2
|
| 23 |
+
import cv2
|
| 24 |
+
from torch.nn.parallel import DataParallel
|
| 25 |
+
from einops import rearrange
|
| 26 |
+
from datasets import load_dataset
|
| 27 |
+
from torchvision import transforms
|
| 28 |
+
from PIL import Image
|
| 29 |
+
from language.t5 import T5Embedder
|
| 30 |
+
#################################################################################
|
| 31 |
+
# Training Loop #
|
| 32 |
+
#################################################################################
|
| 33 |
+
resolution = (512, 512)
|
| 34 |
+
image_transforms = transforms.Compose(
|
| 35 |
+
[
|
| 36 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 37 |
+
transforms.ToTensor(),
|
| 38 |
+
transforms.Normalize([0.5], [0.5]),
|
| 39 |
+
]
|
| 40 |
+
)
|
| 41 |
+
conditioning_image_transforms = transforms.Compose(
|
| 42 |
+
[
|
| 43 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 44 |
+
transforms.ToTensor(),
|
| 45 |
+
]
|
| 46 |
+
)
|
| 47 |
+
label_image_transforms = transforms.Compose(
|
| 48 |
+
[
|
| 49 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.NEAREST, antialias=True),
|
| 50 |
+
]
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def collate_fn(examples):
|
| 54 |
+
|
| 55 |
+
pil_images = [example['image'].convert("RGB") for example in examples]
|
| 56 |
+
images = [image_transforms(image) for image in pil_images]
|
| 57 |
+
images = torch.stack(images)
|
| 58 |
+
|
| 59 |
+
conditioning_images = [example['control_seg'].convert("RGB") for example in examples]
|
| 60 |
+
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
|
| 61 |
+
conditioning_images = torch.stack(conditioning_images)
|
| 62 |
+
|
| 63 |
+
captions = [example['prompt'] for example in examples]
|
| 64 |
+
|
| 65 |
+
dtype = torch.long
|
| 66 |
+
# labels = [torch.from_numpy(np.array(example['panoptic_seg_map'])).unsqueeze(0) for example in examples] # seg_map panoptic_seg_map
|
| 67 |
+
# labels = [label_image_transforms(label) for label in labels]
|
| 68 |
+
# labels = torch.stack(labels)
|
| 69 |
+
labels = [example['panoptic_seg_map'] for example in examples]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
return {
|
| 73 |
+
"images": images, # -1~1
|
| 74 |
+
"conditioning_images": conditioning_images, # 0~1
|
| 75 |
+
"captions": captions,
|
| 76 |
+
"labels": labels
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
def main(args):
|
| 80 |
+
|
| 81 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 82 |
+
# Setup DDP:
|
| 83 |
+
if not args.debug:
|
| 84 |
+
init_distributed_mode(args)
|
| 85 |
+
rank = dist.get_rank()
|
| 86 |
+
device = rank % torch.cuda.device_count()
|
| 87 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 88 |
+
torch.manual_seed(seed)
|
| 89 |
+
torch.cuda.set_device(device)
|
| 90 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 91 |
+
else:
|
| 92 |
+
device = 'cuda'
|
| 93 |
+
rank = 0
|
| 94 |
+
|
| 95 |
+
# Setup a feature folder:
|
| 96 |
+
if args.debug or rank == 0:
|
| 97 |
+
os.makedirs(args.code_path, exist_ok=True)
|
| 98 |
+
os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
|
| 99 |
+
os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
|
| 100 |
+
os.makedirs(os.path.join(args.code_path, f'control'), exist_ok=True)
|
| 101 |
+
os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)
|
| 102 |
+
if args.split == 'validation':
|
| 103 |
+
os.makedirs(os.path.join(args.code_path, f'label'), exist_ok=True)
|
| 104 |
+
# create and load model
|
| 105 |
+
vq_model = VQ_models[args.vq_model](
|
| 106 |
+
codebook_size=args.codebook_size,
|
| 107 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 108 |
+
vq_model.to(device)
|
| 109 |
+
vq_model.eval()
|
| 110 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 111 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 112 |
+
del checkpoint
|
| 113 |
+
|
| 114 |
+
t5_model = T5Embedder(
|
| 115 |
+
device=device,
|
| 116 |
+
local_cache=True,
|
| 117 |
+
cache_dir=args.t5_path,
|
| 118 |
+
dir_or_name=args.t5_model_type,
|
| 119 |
+
model_max_length=args.t5_feature_max_len,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Setup data:
|
| 123 |
+
if args.ten_crop:
|
| 124 |
+
crop_size = int(args.image_size * args.crop_range)
|
| 125 |
+
transform = transforms.Compose([
|
| 126 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 127 |
+
transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
|
| 128 |
+
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
|
| 129 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 130 |
+
])
|
| 131 |
+
else:
|
| 132 |
+
crop_size = args.image_size
|
| 133 |
+
transform = transforms.Compose([
|
| 134 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 135 |
+
transforms.ToTensor(),
|
| 136 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 137 |
+
])
|
| 138 |
+
dataset = load_dataset(
|
| 139 |
+
args.data_path,
|
| 140 |
+
cache_dir=None,
|
| 141 |
+
)
|
| 142 |
+
if not args.debug:
|
| 143 |
+
sampler = DistributedSampler(
|
| 144 |
+
dataset[args.split],
|
| 145 |
+
num_replicas=dist.get_world_size(),
|
| 146 |
+
rank=rank,
|
| 147 |
+
shuffle=False,
|
| 148 |
+
seed=args.global_seed
|
| 149 |
+
)
|
| 150 |
+
else:
|
| 151 |
+
sampler = None
|
| 152 |
+
loader = DataLoader(
|
| 153 |
+
dataset[args.split],
|
| 154 |
+
batch_size=1, # important!
|
| 155 |
+
shuffle=False,
|
| 156 |
+
sampler=sampler,
|
| 157 |
+
num_workers=args.num_workers,
|
| 158 |
+
collate_fn=collate_fn,
|
| 159 |
+
pin_memory=True,
|
| 160 |
+
drop_last=False
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
from tqdm import tqdm
|
| 164 |
+
total = 0
|
| 165 |
+
code_len = 1024
|
| 166 |
+
t5_feature_max_len = 120
|
| 167 |
+
t5_feature_dim = 2048
|
| 168 |
+
max_seq_length = t5_feature_max_len + code_len
|
| 169 |
+
for batch in tqdm(loader):
|
| 170 |
+
|
| 171 |
+
captions = batch['captions']
|
| 172 |
+
|
| 173 |
+
train_steps = rank + total
|
| 174 |
+
img_save_path = f'{args.code_path}/image/{train_steps}.png'
|
| 175 |
+
cond_save_path = f'{args.code_path}/control/{train_steps}.png'
|
| 176 |
+
label_save_path = f'{args.code_path}/label/{train_steps}.png'
|
| 177 |
+
Image.fromarray((255*(batch['images'][0].numpy().transpose(1,2,0)*0.5+0.5)).astype('uint8'), mode='RGB').save(img_save_path)
|
| 178 |
+
Image.fromarray((255*batch['conditioning_images'][0].numpy().transpose(1,2,0)).astype('uint8'), mode='RGB').save(cond_save_path)
|
| 179 |
+
|
| 180 |
+
label = Image.fromarray(np.array(batch['labels'][0]).astype('uint8'))
|
| 181 |
+
label.resize((512,512), Image.Resampling.NEAREST).save(label_save_path)
|
| 182 |
+
with torch.no_grad():
|
| 183 |
+
_, _, [_, _, indices] = vq_model.encode(batch['images'].to(device))
|
| 184 |
+
|
| 185 |
+
caption_emb, emb_mask = t5_model.get_text_embeddings(captions)
|
| 186 |
+
valid_num = int(emb_mask.sum().item())
|
| 187 |
+
caption_emb = caption_emb[:, :valid_num]
|
| 188 |
+
|
| 189 |
+
codes = indices.reshape(1, 1, -1)
|
| 190 |
+
x = codes.detach().cpu().numpy() # (1, num_aug, args.image_size//16 * args.image_size//16)
|
| 191 |
+
np.save(f'{args.code_path}/code/{train_steps}.npy', x)
|
| 192 |
+
|
| 193 |
+
caption_emb = caption_emb.to(torch.float32).detach().cpu().numpy()
|
| 194 |
+
caption_dict = {}
|
| 195 |
+
caption_dict['prompt'] = captions
|
| 196 |
+
caption_dict['caption_emb'] = caption_emb
|
| 197 |
+
np.savez(f'{args.code_path}/caption_emb/{train_steps}.npz', **caption_dict)
|
| 198 |
+
if not args.debug:
|
| 199 |
+
total += dist.get_world_size()
|
| 200 |
+
else:
|
| 201 |
+
total += 1
|
| 202 |
+
|
| 203 |
+
dist.destroy_process_group()
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
if __name__ == "__main__":
|
| 207 |
+
parser = argparse.ArgumentParser()
|
| 208 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 209 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 210 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 211 |
+
parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
|
| 212 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 213 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 214 |
+
parser.add_argument("--dataset", type=str, default='imagenet')
|
| 215 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 216 |
+
parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
|
| 217 |
+
parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
|
| 218 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 219 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 220 |
+
parser.add_argument("--debug", action='store_true')
|
| 221 |
+
parser.add_argument("--min-threshold", type=int, default=200)
|
| 222 |
+
parser.add_argument("--max-threshold", type=int, default=400)
|
| 223 |
+
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
|
| 224 |
+
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
|
| 225 |
+
parser.add_argument("--t5-feature-max-len", type=int, default=120)
|
| 226 |
+
parser.add_argument("--split", type=str, default='train')
|
| 227 |
+
args = parser.parse_args()
|
| 228 |
+
main(args)
|
autoregressive/train/extract_file_imagenet.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
|
| 3 |
+
import os
|
| 4 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
|
| 5 |
+
import torch
|
| 6 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 7 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 11 |
+
from torchvision import transforms
|
| 12 |
+
import numpy as np
|
| 13 |
+
import argparse
|
| 14 |
+
import os
|
| 15 |
+
import sys
|
| 16 |
+
current_directory = os.getcwd()
|
| 17 |
+
sys.path.append(current_directory)
|
| 18 |
+
from utils.distributed import init_distributed_mode
|
| 19 |
+
from dataset.augmentation import center_crop_arr
|
| 20 |
+
from dataset.build import build_dataset
|
| 21 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 22 |
+
from condition.canny import CannyDetector
|
| 23 |
+
import cv2
|
| 24 |
+
from condition.midas.depth import MidasDetector
|
| 25 |
+
|
| 26 |
+
#################################################################################
|
| 27 |
+
# Training Loop #
|
| 28 |
+
#################################################################################
|
| 29 |
+
def main(args):
|
| 30 |
+
|
| 31 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 32 |
+
# Setup DDP:
|
| 33 |
+
if not args.debug:
|
| 34 |
+
init_distributed_mode(args)
|
| 35 |
+
rank = dist.get_rank()
|
| 36 |
+
device = rank % torch.cuda.device_count()
|
| 37 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 38 |
+
torch.manual_seed(seed)
|
| 39 |
+
torch.cuda.set_device(device)
|
| 40 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 41 |
+
else:
|
| 42 |
+
device = 'cuda'
|
| 43 |
+
rank = 0
|
| 44 |
+
|
| 45 |
+
# Setup a feature folder:
|
| 46 |
+
if args.debug or rank == 0:
|
| 47 |
+
os.makedirs(args.code_path, exist_ok=True)
|
| 48 |
+
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_codes'), exist_ok=True)
|
| 49 |
+
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_labels'), exist_ok=True)
|
| 50 |
+
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_canny_imagesnpy'), exist_ok=True)
|
| 51 |
+
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_canny_images'), exist_ok=True)
|
| 52 |
+
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_depth_imagesnpy'), exist_ok=True)
|
| 53 |
+
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_depth_images'), exist_ok=True)
|
| 54 |
+
# create and load model
|
| 55 |
+
vq_model = VQ_models[args.vq_model](
|
| 56 |
+
codebook_size=args.codebook_size,
|
| 57 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 58 |
+
vq_model.to(device)
|
| 59 |
+
vq_model.eval()
|
| 60 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 61 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 62 |
+
del checkpoint
|
| 63 |
+
|
| 64 |
+
# Setup data:
|
| 65 |
+
if args.ten_crop:
|
| 66 |
+
crop_size = int(args.image_size * args.crop_range)
|
| 67 |
+
transform = transforms.Compose([
|
| 68 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 69 |
+
transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
|
| 70 |
+
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
|
| 71 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 72 |
+
])
|
| 73 |
+
else:
|
| 74 |
+
crop_size = args.image_size
|
| 75 |
+
transform = transforms.Compose([
|
| 76 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 77 |
+
transforms.ToTensor(),
|
| 78 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 79 |
+
])
|
| 80 |
+
dataset = build_dataset(args, transform=transform)
|
| 81 |
+
if not args.debug:
|
| 82 |
+
sampler = DistributedSampler(
|
| 83 |
+
dataset,
|
| 84 |
+
num_replicas=dist.get_world_size(),
|
| 85 |
+
rank=rank,
|
| 86 |
+
shuffle=False,
|
| 87 |
+
seed=args.global_seed
|
| 88 |
+
)
|
| 89 |
+
else:
|
| 90 |
+
sampler = None
|
| 91 |
+
loader = DataLoader(
|
| 92 |
+
dataset,
|
| 93 |
+
batch_size=1, # important!
|
| 94 |
+
shuffle=False,
|
| 95 |
+
sampler=sampler,
|
| 96 |
+
num_workers=args.num_workers,
|
| 97 |
+
pin_memory=True,
|
| 98 |
+
drop_last=False
|
| 99 |
+
)
|
| 100 |
+
apply_canny = CannyDetector()
|
| 101 |
+
depth_model = MidasDetector(device=device)
|
| 102 |
+
|
| 103 |
+
from tqdm import tqdm
|
| 104 |
+
total = 0
|
| 105 |
+
for x, y in tqdm(loader):
|
| 106 |
+
x = x.to(device)
|
| 107 |
+
batch_size_per_gpu = x.shape[0]
|
| 108 |
+
if args.ten_crop:
|
| 109 |
+
x_all = x.flatten(0, 1)
|
| 110 |
+
num_aug = 10
|
| 111 |
+
else:
|
| 112 |
+
x_flip = torch.flip(x, dims=[-1])
|
| 113 |
+
x_all = torch.cat([x, x_flip])
|
| 114 |
+
num_aug = 2
|
| 115 |
+
y = y.to(device)
|
| 116 |
+
|
| 117 |
+
canny = []
|
| 118 |
+
depths = []
|
| 119 |
+
for i in range(x_all.shape[0]):
|
| 120 |
+
canny.append(apply_canny((255*(x_all[i]*0.5 + 0.5)).cpu().numpy().transpose(1,2,0).astype(np.uint8),low_threshold=args.min_threshold, high_threshold=args.max_threshold)[None,None,...])
|
| 121 |
+
img = (255*(x_all[i]*0.5 + 0.5)).permute(1,2,0)
|
| 122 |
+
depth = depth_model(img)
|
| 123 |
+
depths.append(depth[None,None,...])
|
| 124 |
+
depths = np.concatenate(depths, axis=0)
|
| 125 |
+
cannys = np.concatenate(canny, axis=0)
|
| 126 |
+
train_steps = rank + total
|
| 127 |
+
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_canny_imagesnpy/{train_steps}.npy', cannys)
|
| 128 |
+
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_depth_imagesnpy/{train_steps}.npy', depths)
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
_, _, [_, _, indices] = vq_model.encode(x_all)
|
| 131 |
+
|
| 132 |
+
codes = indices.reshape(x.shape[0], num_aug, -1)
|
| 133 |
+
x = codes.detach().cpu().numpy() # (1, num_aug, args.image_size//16 * args.image_size//16)
|
| 134 |
+
y = y.detach().cpu().numpy() # (1,)
|
| 135 |
+
|
| 136 |
+
train_steps = rank + total
|
| 137 |
+
|
| 138 |
+
cv2.imwrite(f'{args.code_path}/{args.dataset}{args.image_size}_canny_images/{train_steps}.png', cannys[0,0])
|
| 139 |
+
cv2.imwrite(f'{args.code_path}/{args.dataset}{args.image_size}_depth_images/{train_steps}.png', depths[0,0])
|
| 140 |
+
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_codes/{train_steps}.npy', x)
|
| 141 |
+
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_labels/{train_steps}.npy', y)
|
| 142 |
+
if not args.debug:
|
| 143 |
+
total += dist.get_world_size()
|
| 144 |
+
else:
|
| 145 |
+
total += 1
|
| 146 |
+
|
| 147 |
+
dist.destroy_process_group()
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
if __name__ == "__main__":
|
| 151 |
+
parser = argparse.ArgumentParser()
|
| 152 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 153 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 154 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 155 |
+
parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
|
| 156 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 157 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 158 |
+
parser.add_argument("--dataset", type=str, default='imagenet')
|
| 159 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 160 |
+
parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
|
| 161 |
+
parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
|
| 162 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 163 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 164 |
+
parser.add_argument("--debug", action='store_true')
|
| 165 |
+
parser.add_argument("--min-threshold", type=int, default=100)
|
| 166 |
+
parser.add_argument("--max-threshold", type=int, default=200)
|
| 167 |
+
args = parser.parse_args()
|
| 168 |
+
main(args)
|
autoregressive/train/extract_file_multigen.py
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
|
| 3 |
+
|
| 4 |
+
import warnings
|
| 5 |
+
warnings.filterwarnings("ignore")
|
| 6 |
+
import os
|
| 7 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
|
| 8 |
+
import torch
|
| 9 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 10 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 11 |
+
import torch.distributed as dist
|
| 12 |
+
from torch.utils.data import DataLoader
|
| 13 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 14 |
+
from torchvision import transforms
|
| 15 |
+
import numpy as np
|
| 16 |
+
import argparse
|
| 17 |
+
import os
|
| 18 |
+
import sys
|
| 19 |
+
current_directory = os.getcwd()
|
| 20 |
+
sys.path.append(current_directory)
|
| 21 |
+
from utils.distributed import init_distributed_mode
|
| 22 |
+
from dataset.augmentation import center_crop_arr
|
| 23 |
+
from dataset.build import build_dataset
|
| 24 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 25 |
+
from condition.hed import HEDdetector, ControlNetHED_Apache2
|
| 26 |
+
import cv2
|
| 27 |
+
from torch.nn.parallel import DataParallel
|
| 28 |
+
from einops import rearrange
|
| 29 |
+
from datasets import load_dataset
|
| 30 |
+
from torchvision import transforms
|
| 31 |
+
from PIL import Image
|
| 32 |
+
from language.t5 import T5Embedder
|
| 33 |
+
from condition.canny import CannyDetector
|
| 34 |
+
from condition.hed import HEDdetector
|
| 35 |
+
from condition.lineart import LineArt
|
| 36 |
+
#################################################################################
|
| 37 |
+
# Training Loop #
|
| 38 |
+
#################################################################################
|
| 39 |
+
resolution = (512, 512)
|
| 40 |
+
image_transforms = transforms.Compose(
|
| 41 |
+
[
|
| 42 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 43 |
+
transforms.ToTensor(),
|
| 44 |
+
transforms.Normalize([0.5], [0.5]),
|
| 45 |
+
]
|
| 46 |
+
)
|
| 47 |
+
conditioning_image_transforms = transforms.Compose(
|
| 48 |
+
[
|
| 49 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
|
| 50 |
+
transforms.ToTensor(),
|
| 51 |
+
]
|
| 52 |
+
)
|
| 53 |
+
label_image_transforms = transforms.Compose(
|
| 54 |
+
[
|
| 55 |
+
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.NEAREST, antialias=True),
|
| 56 |
+
]
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
def collate_fn(examples):
|
| 60 |
+
|
| 61 |
+
pil_images = [example['image'].convert("RGB") for example in examples]
|
| 62 |
+
images = [image_transforms(image) for image in pil_images]
|
| 63 |
+
images = torch.stack(images)
|
| 64 |
+
|
| 65 |
+
conditioning_images = [example['control_depth'].convert("RGB") for example in examples]
|
| 66 |
+
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
|
| 67 |
+
conditioning_images = torch.stack(conditioning_images)
|
| 68 |
+
captions = [example['text'] for example in examples]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
return {
|
| 73 |
+
"images": images, # -1~1
|
| 74 |
+
"conditioning_images": conditioning_images, # 0~1
|
| 75 |
+
"captions": captions,
|
| 76 |
+
# "labels": labels
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
def main(args):
|
| 80 |
+
|
| 81 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 82 |
+
# Setup DDP:
|
| 83 |
+
if not args.debug:
|
| 84 |
+
init_distributed_mode(args)
|
| 85 |
+
rank = dist.get_rank()
|
| 86 |
+
device = rank % torch.cuda.device_count()
|
| 87 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 88 |
+
torch.manual_seed(seed)
|
| 89 |
+
torch.cuda.set_device(device)
|
| 90 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 91 |
+
else:
|
| 92 |
+
device = 'cuda'
|
| 93 |
+
rank = 0
|
| 94 |
+
|
| 95 |
+
# Setup a feature folder:
|
| 96 |
+
if args.debug or rank == 0:
|
| 97 |
+
os.makedirs(args.code_path, exist_ok=True)
|
| 98 |
+
os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
|
| 99 |
+
os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
|
| 100 |
+
os.makedirs(os.path.join(args.code_path, f'control_depth'), exist_ok=True)
|
| 101 |
+
os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)
|
| 102 |
+
|
| 103 |
+
# create and load model
|
| 104 |
+
vq_model = VQ_models[args.vq_model](
|
| 105 |
+
codebook_size=args.codebook_size,
|
| 106 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 107 |
+
vq_model.to(device)
|
| 108 |
+
vq_model.eval()
|
| 109 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 110 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 111 |
+
del checkpoint
|
| 112 |
+
|
| 113 |
+
t5_model = T5Embedder(
|
| 114 |
+
device=device,
|
| 115 |
+
local_cache=True,
|
| 116 |
+
cache_dir=args.t5_path,
|
| 117 |
+
dir_or_name=args.t5_model_type,
|
| 118 |
+
model_max_length=args.t5_feature_max_len,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# Setup data:
|
| 122 |
+
if args.ten_crop:
|
| 123 |
+
crop_size = int(args.image_size * args.crop_range)
|
| 124 |
+
transform = transforms.Compose([
|
| 125 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 126 |
+
transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
|
| 127 |
+
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
|
| 128 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 129 |
+
])
|
| 130 |
+
else:
|
| 131 |
+
crop_size = args.image_size
|
| 132 |
+
transform = transforms.Compose([
|
| 133 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
|
| 134 |
+
transforms.ToTensor(),
|
| 135 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 136 |
+
])
|
| 137 |
+
dataset = load_dataset(
|
| 138 |
+
args.data_path,
|
| 139 |
+
cache_dir=None,
|
| 140 |
+
)
|
| 141 |
+
try:
|
| 142 |
+
if not args.debug:
|
| 143 |
+
sampler = DistributedSampler(
|
| 144 |
+
dataset[args.split],
|
| 145 |
+
num_replicas=dist.get_world_size(),
|
| 146 |
+
rank=rank,
|
| 147 |
+
shuffle=False,
|
| 148 |
+
seed=args.global_seed
|
| 149 |
+
)
|
| 150 |
+
else:
|
| 151 |
+
sampler = None
|
| 152 |
+
loader = DataLoader(
|
| 153 |
+
dataset[args.split],
|
| 154 |
+
batch_size=1, # important!
|
| 155 |
+
shuffle=False,
|
| 156 |
+
sampler=sampler,
|
| 157 |
+
num_workers=args.num_workers,
|
| 158 |
+
collate_fn=collate_fn,
|
| 159 |
+
pin_memory=True,
|
| 160 |
+
drop_last=False
|
| 161 |
+
)
|
| 162 |
+
except Exception as e:
|
| 163 |
+
pass
|
| 164 |
+
|
| 165 |
+
from tqdm import tqdm
|
| 166 |
+
total = 0
|
| 167 |
+
code_len = 1024
|
| 168 |
+
t5_feature_max_len = 120
|
| 169 |
+
t5_feature_dim = 2048
|
| 170 |
+
max_seq_length = t5_feature_max_len + code_len
|
| 171 |
+
for batch in tqdm(loader):
|
| 172 |
+
|
| 173 |
+
captions = batch['captions']
|
| 174 |
+
|
| 175 |
+
train_steps = rank + total
|
| 176 |
+
img_save_path = f'{args.code_path}/image/{train_steps}.png'
|
| 177 |
+
depth_save_path = f'{args.code_path}/control_depth/{train_steps}.png'
|
| 178 |
+
|
| 179 |
+
Image.fromarray((255*(batch['images'][0].numpy().transpose(1,2,0)*0.5+0.5)).astype('uint8'), mode='RGB').save(img_save_path)
|
| 180 |
+
Image.fromarray((255*batch['conditioning_images'][0].numpy().transpose(1,2,0)).astype('uint8'), mode='RGB').save(depth_save_path)
|
| 181 |
+
|
| 182 |
+
with torch.no_grad():
|
| 183 |
+
_, _, [_, _, indices] = vq_model.encode(batch['images'].to(device))
|
| 184 |
+
|
| 185 |
+
caption_emb, emb_mask = t5_model.get_text_embeddings(captions)
|
| 186 |
+
valid_num = int(emb_mask.sum().item())
|
| 187 |
+
caption_emb = caption_emb[:, :valid_num]
|
| 188 |
+
|
| 189 |
+
codes = indices.reshape(1, 1, -1)
|
| 190 |
+
x = codes.detach().cpu().numpy() # (1, num_aug, args.image_size//16 * args.image_size//16)
|
| 191 |
+
np.save(f'{args.code_path}/code/{train_steps}.npy', x)
|
| 192 |
+
|
| 193 |
+
caption_emb = caption_emb.to(torch.float32).detach().cpu().numpy()
|
| 194 |
+
caption_dict = {}
|
| 195 |
+
caption_dict['prompt'] = captions
|
| 196 |
+
caption_dict['caption_emb'] = caption_emb
|
| 197 |
+
np.savez(f'{args.code_path}/caption_emb/{train_steps}.npz', **caption_dict)
|
| 198 |
+
if not args.debug:
|
| 199 |
+
total += dist.get_world_size()
|
| 200 |
+
else:
|
| 201 |
+
total += 1
|
| 202 |
+
|
| 203 |
+
dist.destroy_process_group()
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
if __name__ == "__main__":
|
| 207 |
+
parser = argparse.ArgumentParser()
|
| 208 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 209 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 210 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 211 |
+
parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
|
| 212 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 213 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 214 |
+
parser.add_argument("--dataset", type=str, default='imagenet')
|
| 215 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 216 |
+
parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
|
| 217 |
+
parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
|
| 218 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 219 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 220 |
+
parser.add_argument("--debug", action='store_true')
|
| 221 |
+
parser.add_argument("--min-threshold", type=int, default=200)
|
| 222 |
+
parser.add_argument("--max-threshold", type=int, default=400)
|
| 223 |
+
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
|
| 224 |
+
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
|
| 225 |
+
parser.add_argument("--t5-feature-max-len", type=int, default=120)
|
| 226 |
+
parser.add_argument("--split", type=str, default='train')
|
| 227 |
+
args = parser.parse_args()
|
| 228 |
+
main(args)
|
autoregressive/train/train_c2i.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/train.py
|
| 3 |
+
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
|
| 4 |
+
import torch
|
| 5 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 6 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 7 |
+
import torch.distributed as dist
|
| 8 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 11 |
+
from glob import glob
|
| 12 |
+
from copy import deepcopy
|
| 13 |
+
import os
|
| 14 |
+
import time
|
| 15 |
+
import inspect
|
| 16 |
+
import argparse
|
| 17 |
+
|
| 18 |
+
from utils.logger import create_logger
|
| 19 |
+
from utils.distributed import init_distributed_mode
|
| 20 |
+
from utils.ema import update_ema, requires_grad
|
| 21 |
+
from dataset.build import build_dataset
|
| 22 |
+
from autoregressive.models.gpt import GPT_models
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
#################################################################################
|
| 26 |
+
# Training Helper Functions #
|
| 27 |
+
#################################################################################
|
| 28 |
+
def creat_optimizer(model, weight_decay, learning_rate, betas, logger):
|
| 29 |
+
# start with all of the candidate parameters
|
| 30 |
+
param_dict = {pn: p for pn, p in model.named_parameters()}
|
| 31 |
+
# filter out those that do not require grad
|
| 32 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
| 33 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
| 34 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
| 35 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
| 36 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
| 37 |
+
optim_groups = [
|
| 38 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
| 39 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
| 40 |
+
]
|
| 41 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
| 42 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
| 43 |
+
logger.info(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
| 44 |
+
logger.info(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
| 45 |
+
# Create AdamW optimizer and use the fused version if it is available
|
| 46 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
| 47 |
+
extra_args = dict(fused=True) if fused_available else dict()
|
| 48 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
| 49 |
+
logger.info(f"using fused AdamW: {fused_available}")
|
| 50 |
+
return optimizer
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
#################################################################################
|
| 55 |
+
# Training Loop #
|
| 56 |
+
#################################################################################
|
| 57 |
+
def main(args):
|
| 58 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 59 |
+
|
| 60 |
+
# Setup DDP:
|
| 61 |
+
init_distributed_mode(args)
|
| 62 |
+
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
|
| 63 |
+
rank = dist.get_rank()
|
| 64 |
+
device = rank % torch.cuda.device_count()
|
| 65 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 66 |
+
torch.manual_seed(seed)
|
| 67 |
+
torch.cuda.set_device(device)
|
| 68 |
+
|
| 69 |
+
# Setup an experiment folder:
|
| 70 |
+
if rank == 0:
|
| 71 |
+
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
|
| 72 |
+
experiment_index = len(glob(f"{args.results_dir}/*"))
|
| 73 |
+
model_string_name = args.gpt_model.replace("/", "-") # e.g., GPT-XL/2 --> GPT-XL-2 (for naming folders)
|
| 74 |
+
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}" # Create an experiment folder
|
| 75 |
+
checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
|
| 76 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 77 |
+
logger = create_logger(experiment_dir)
|
| 78 |
+
logger.info(f"Experiment directory created at {experiment_dir}")
|
| 79 |
+
|
| 80 |
+
time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
| 81 |
+
cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
|
| 82 |
+
cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
|
| 83 |
+
os.makedirs(cloud_checkpoint_dir, exist_ok=True)
|
| 84 |
+
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
|
| 85 |
+
|
| 86 |
+
else:
|
| 87 |
+
logger = create_logger(None)
|
| 88 |
+
|
| 89 |
+
# training args
|
| 90 |
+
logger.info(f"{args}")
|
| 91 |
+
|
| 92 |
+
# training env
|
| 93 |
+
logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# Setup model
|
| 97 |
+
if args.drop_path_rate > 0.0:
|
| 98 |
+
dropout_p = 0.0
|
| 99 |
+
else:
|
| 100 |
+
dropout_p = args.dropout_p
|
| 101 |
+
latent_size = args.image_size // args.downsample_size
|
| 102 |
+
model = GPT_models[args.gpt_model](
|
| 103 |
+
vocab_size=args.vocab_size,
|
| 104 |
+
block_size=latent_size ** 2,
|
| 105 |
+
num_classes=args.num_classes,
|
| 106 |
+
cls_token_num=args.cls_token_num,
|
| 107 |
+
model_type=args.gpt_type,
|
| 108 |
+
resid_dropout_p=dropout_p,
|
| 109 |
+
ffn_dropout_p=dropout_p,
|
| 110 |
+
drop_path_rate=args.drop_path_rate,
|
| 111 |
+
token_dropout_p=args.token_dropout_p,
|
| 112 |
+
).to(device)
|
| 113 |
+
logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}")
|
| 114 |
+
|
| 115 |
+
if args.ema:
|
| 116 |
+
ema = deepcopy(model).to(device) # Create an EMA of the model for use after training
|
| 117 |
+
requires_grad(ema, False)
|
| 118 |
+
logger.info(f"EMA Parameters: {sum(p.numel() for p in ema.parameters()):,}")
|
| 119 |
+
|
| 120 |
+
# Setup optimizer
|
| 121 |
+
optimizer = creat_optimizer(model, args.weight_decay, args.lr, (args.beta1, args.beta2), logger)
|
| 122 |
+
|
| 123 |
+
# Setup data:
|
| 124 |
+
dataset = build_dataset(args)
|
| 125 |
+
sampler = DistributedSampler(
|
| 126 |
+
dataset,
|
| 127 |
+
num_replicas=dist.get_world_size(),
|
| 128 |
+
rank=rank,
|
| 129 |
+
shuffle=True,
|
| 130 |
+
seed=args.global_seed
|
| 131 |
+
)
|
| 132 |
+
loader = DataLoader(
|
| 133 |
+
dataset,
|
| 134 |
+
batch_size=int(args.global_batch_size // dist.get_world_size()),
|
| 135 |
+
shuffle=False,
|
| 136 |
+
sampler=sampler,
|
| 137 |
+
num_workers=args.num_workers,
|
| 138 |
+
pin_memory=True,
|
| 139 |
+
drop_last=True
|
| 140 |
+
)
|
| 141 |
+
flip_info = 'with' if dataset.flip else 'without'
|
| 142 |
+
aug_info = 10 if 'ten_crop' in dataset.feature_dir else 1
|
| 143 |
+
aug_info = 2 * aug_info if dataset.aug_feature_dir is not None else aug_info
|
| 144 |
+
logger.info(f"Dataset contains {len(dataset):,} images ({args.code_path}) "
|
| 145 |
+
f"{flip_info} flip augmentation and {aug_info} crop augmentation")
|
| 146 |
+
|
| 147 |
+
# Prepare models for training:
|
| 148 |
+
if args.gpt_ckpt:
|
| 149 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 150 |
+
model.load_state_dict(checkpoint["model"])
|
| 151 |
+
if args.ema:
|
| 152 |
+
ema.load_state_dict(checkpoint["ema"] if "ema" in checkpoint else checkpoint["model"])
|
| 153 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
| 154 |
+
train_steps = checkpoint["steps"] if "steps" in checkpoint else int(args.gpt_ckpt.split('/')[-1].split('.')[0])
|
| 155 |
+
start_epoch = int(train_steps / int(len(dataset) / args.global_batch_size))
|
| 156 |
+
train_steps = int(start_epoch * int(len(dataset) / args.global_batch_size))
|
| 157 |
+
del checkpoint
|
| 158 |
+
logger.info(f"Resume training from checkpoint: {args.gpt_ckpt}")
|
| 159 |
+
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
|
| 160 |
+
else:
|
| 161 |
+
train_steps = 0
|
| 162 |
+
start_epoch = 0
|
| 163 |
+
if args.ema:
|
| 164 |
+
update_ema(ema, model, decay=0) # Ensure EMA is initialized with synced weights
|
| 165 |
+
|
| 166 |
+
if not args.no_compile:
|
| 167 |
+
logger.info("compiling the model... (may take several minutes)")
|
| 168 |
+
model = torch.compile(model) # requires PyTorch 2.0
|
| 169 |
+
|
| 170 |
+
model = DDP(model.to(device), device_ids=[args.gpu])
|
| 171 |
+
model.train() # important! This enables embedding dropout for classifier-free guidance
|
| 172 |
+
if args.ema:
|
| 173 |
+
ema.eval() # EMA model should always be in eval mode
|
| 174 |
+
|
| 175 |
+
ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]
|
| 176 |
+
# initialize a GradScaler. If enabled=False scaler is a no-op
|
| 177 |
+
scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
|
| 178 |
+
# Variables for monitoring/logging purposes:
|
| 179 |
+
log_steps = 0
|
| 180 |
+
running_loss = 0
|
| 181 |
+
start_time = time.time()
|
| 182 |
+
|
| 183 |
+
logger.info(f"Training for {args.epochs} epochs...")
|
| 184 |
+
for epoch in range(start_epoch, args.epochs):
|
| 185 |
+
sampler.set_epoch(epoch)
|
| 186 |
+
logger.info(f"Beginning epoch {epoch}...")
|
| 187 |
+
for x, y in loader:
|
| 188 |
+
x = x.to(device, non_blocking=True)
|
| 189 |
+
y = y.to(device, non_blocking=True)
|
| 190 |
+
z_indices = x.reshape(x.shape[0], -1)
|
| 191 |
+
c_indices = y.reshape(-1)
|
| 192 |
+
assert z_indices.shape[0] == c_indices.shape[0]
|
| 193 |
+
with torch.cuda.amp.autocast(dtype=ptdtype):
|
| 194 |
+
_, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices)
|
| 195 |
+
# backward pass, with gradient scaling if training in fp16
|
| 196 |
+
scaler.scale(loss).backward()
|
| 197 |
+
if args.max_grad_norm != 0.0:
|
| 198 |
+
scaler.unscale_(optimizer)
|
| 199 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 200 |
+
# step the optimizer and scaler if training in fp16
|
| 201 |
+
scaler.step(optimizer)
|
| 202 |
+
scaler.update()
|
| 203 |
+
# flush the gradients as soon as we can, no need for this memory anymore
|
| 204 |
+
optimizer.zero_grad(set_to_none=True)
|
| 205 |
+
if args.ema:
|
| 206 |
+
update_ema(ema, model.module._orig_mod if not args.no_compile else model.module)
|
| 207 |
+
|
| 208 |
+
# Log loss values:
|
| 209 |
+
running_loss += loss.item()
|
| 210 |
+
log_steps += 1
|
| 211 |
+
train_steps += 1
|
| 212 |
+
if train_steps % args.log_every == 0:
|
| 213 |
+
# Measure training speed:
|
| 214 |
+
torch.cuda.synchronize()
|
| 215 |
+
end_time = time.time()
|
| 216 |
+
steps_per_sec = log_steps / (end_time - start_time)
|
| 217 |
+
# Reduce loss history over all processes:
|
| 218 |
+
avg_loss = torch.tensor(running_loss / log_steps, device=device)
|
| 219 |
+
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
|
| 220 |
+
avg_loss = avg_loss.item() / dist.get_world_size()
|
| 221 |
+
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
|
| 222 |
+
# Reset monitoring variables:
|
| 223 |
+
running_loss = 0
|
| 224 |
+
log_steps = 0
|
| 225 |
+
start_time = time.time()
|
| 226 |
+
|
| 227 |
+
# Save checkpoint:
|
| 228 |
+
if train_steps % args.ckpt_every == 0 and train_steps > 0:
|
| 229 |
+
if rank == 0:
|
| 230 |
+
if not args.no_compile:
|
| 231 |
+
model_weight = model.module._orig_mod.state_dict()
|
| 232 |
+
else:
|
| 233 |
+
model_weight = model.module.state_dict()
|
| 234 |
+
checkpoint = {
|
| 235 |
+
"model": model_weight,
|
| 236 |
+
"optimizer": optimizer.state_dict(),
|
| 237 |
+
"steps": train_steps,
|
| 238 |
+
"args": args
|
| 239 |
+
}
|
| 240 |
+
if args.ema:
|
| 241 |
+
checkpoint["ema"] = ema.state_dict()
|
| 242 |
+
if not args.no_local_save:
|
| 243 |
+
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
|
| 244 |
+
torch.save(checkpoint, checkpoint_path)
|
| 245 |
+
logger.info(f"Saved checkpoint to {checkpoint_path}")
|
| 246 |
+
|
| 247 |
+
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
|
| 248 |
+
torch.save(checkpoint, cloud_checkpoint_path)
|
| 249 |
+
logger.info(f"Saved checkpoint in cloud to {cloud_checkpoint_path}")
|
| 250 |
+
dist.barrier()
|
| 251 |
+
|
| 252 |
+
model.eval() # important! This disables randomized embedding dropout
|
| 253 |
+
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
|
| 254 |
+
|
| 255 |
+
logger.info("Done!")
|
| 256 |
+
dist.destroy_process_group()
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
if __name__ == "__main__":
|
| 261 |
+
parser = argparse.ArgumentParser()
|
| 262 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 263 |
+
parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path')
|
| 264 |
+
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
|
| 265 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 266 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None, help="ckpt path for resume training")
|
| 267 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
|
| 268 |
+
parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer")
|
| 269 |
+
parser.add_argument("--ema", action='store_true', help="whether using ema training")
|
| 270 |
+
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
|
| 271 |
+
parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p")
|
| 272 |
+
parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p")
|
| 273 |
+
parser.add_argument("--drop-path-rate", type=float, default=0.0, help="using stochastic depth decay")
|
| 274 |
+
parser.add_argument("--no-compile", action='store_true')
|
| 275 |
+
parser.add_argument("--results-dir", type=str, default="results")
|
| 276 |
+
parser.add_argument("--dataset", type=str, default='imagenet_code')
|
| 277 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 278 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 279 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 280 |
+
parser.add_argument("--epochs", type=int, default=300)
|
| 281 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 282 |
+
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use")
|
| 283 |
+
parser.add_argument("--beta1", type=float, default=0.9, help="beta1 parameter for the Adam optimizer")
|
| 284 |
+
parser.add_argument("--beta2", type=float, default=0.95, help="beta2 parameter for the Adam optimizer")
|
| 285 |
+
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
|
| 286 |
+
parser.add_argument("--global-batch-size", type=int, default=256)
|
| 287 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 288 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 289 |
+
parser.add_argument("--log-every", type=int, default=100)
|
| 290 |
+
parser.add_argument("--ckpt-every", type=int, default=5000)
|
| 291 |
+
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
|
| 292 |
+
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 293 |
+
args = parser.parse_args()
|
| 294 |
+
main(args)
|
autoregressive/train/train_c2i_canny.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/train.py
|
| 3 |
+
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
|
| 4 |
+
import torch
|
| 5 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 6 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 7 |
+
import torch.distributed as dist
|
| 8 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 11 |
+
from glob import glob
|
| 12 |
+
from copy import deepcopy
|
| 13 |
+
import os
|
| 14 |
+
import time
|
| 15 |
+
import inspect
|
| 16 |
+
import argparse
|
| 17 |
+
import sys
|
| 18 |
+
current_directory = os.getcwd()
|
| 19 |
+
sys.path.append(current_directory)
|
| 20 |
+
from utils.logger import create_logger
|
| 21 |
+
from utils.distributed import init_distributed_mode
|
| 22 |
+
from utils.ema import update_ema, requires_grad
|
| 23 |
+
from dataset.build import build_dataset
|
| 24 |
+
from autoregressive.models.gpt import GPT_models
|
| 25 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
#################################################################################
|
| 29 |
+
# Training Helper Functions #
|
| 30 |
+
#################################################################################
|
| 31 |
+
def creat_optimizer(model, weight_decay, learning_rate, betas, logger):
|
| 32 |
+
# start with all of the candidate parameters
|
| 33 |
+
param_dict = {pn: p for pn, p in model.named_parameters()}
|
| 34 |
+
# filter out those that do not require grad
|
| 35 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
| 36 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
| 37 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
| 38 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
| 39 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
| 40 |
+
optim_groups = [
|
| 41 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
| 42 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
| 43 |
+
]
|
| 44 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
| 45 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
| 46 |
+
logger.info(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
| 47 |
+
logger.info(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
| 48 |
+
# Create AdamW optimizer and use the fused version if it is available
|
| 49 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
| 50 |
+
extra_args = dict(fused=True) if fused_available else dict()
|
| 51 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
| 52 |
+
logger.info(f"using fused AdamW: {fused_available}")
|
| 53 |
+
return optimizer
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
#################################################################################
|
| 57 |
+
# Training Loop #
|
| 58 |
+
#################################################################################
|
| 59 |
+
def main(args):
|
| 60 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 61 |
+
|
| 62 |
+
# Setup DDP:
|
| 63 |
+
init_distributed_mode(args)
|
| 64 |
+
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
|
| 65 |
+
rank = dist.get_rank()
|
| 66 |
+
device = rank % torch.cuda.device_count()
|
| 67 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 68 |
+
torch.manual_seed(seed)
|
| 69 |
+
torch.cuda.set_device(device)
|
| 70 |
+
|
| 71 |
+
# Setup an experiment folder:
|
| 72 |
+
if rank == 0:
|
| 73 |
+
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
|
| 74 |
+
experiment_index = len(glob(f"{args.results_dir}/*"))
|
| 75 |
+
model_string_name = args.gpt_model.replace("/", "-") # e.g., GPT-XL/2 --> GPT-XL-2 (for naming folders)
|
| 76 |
+
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}" # Create an experiment folder
|
| 77 |
+
checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
|
| 78 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 79 |
+
logger = create_logger(experiment_dir)
|
| 80 |
+
logger.info(f"Experiment directory created at {experiment_dir}")
|
| 81 |
+
|
| 82 |
+
time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
| 83 |
+
cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
|
| 84 |
+
cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
|
| 85 |
+
os.makedirs(cloud_checkpoint_dir, exist_ok=True)
|
| 86 |
+
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
|
| 87 |
+
|
| 88 |
+
else:
|
| 89 |
+
logger = create_logger(None)
|
| 90 |
+
|
| 91 |
+
# training args
|
| 92 |
+
logger.info(f"{args}")
|
| 93 |
+
|
| 94 |
+
# training env
|
| 95 |
+
logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 96 |
+
|
| 97 |
+
# Setup model
|
| 98 |
+
if args.drop_path_rate > 0.0:
|
| 99 |
+
dropout_p = 0.0
|
| 100 |
+
else:
|
| 101 |
+
dropout_p = args.dropout_p
|
| 102 |
+
latent_size = args.image_size // args.downsample_size
|
| 103 |
+
model = GPT_models[args.gpt_model](
|
| 104 |
+
vocab_size=args.vocab_size,
|
| 105 |
+
block_size=latent_size ** 2,
|
| 106 |
+
num_classes=args.num_classes,
|
| 107 |
+
cls_token_num=args.cls_token_num,
|
| 108 |
+
model_type=args.gpt_type,
|
| 109 |
+
resid_dropout_p=dropout_p,
|
| 110 |
+
ffn_dropout_p=dropout_p,
|
| 111 |
+
drop_path_rate=args.drop_path_rate,
|
| 112 |
+
token_dropout_p=args.token_dropout_p,
|
| 113 |
+
condition_token_num=args.condition_token_num,
|
| 114 |
+
).to(device)
|
| 115 |
+
logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}")
|
| 116 |
+
|
| 117 |
+
if args.ema:
|
| 118 |
+
ema = deepcopy(model).to(device) # Create an EMA of the model for use after training
|
| 119 |
+
requires_grad(ema, False)
|
| 120 |
+
logger.info(f"EMA Parameters: {sum(p.numel() for p in ema.parameters()):,}")
|
| 121 |
+
|
| 122 |
+
# Setup optimizer
|
| 123 |
+
optimizer = creat_optimizer(model, args.weight_decay, args.lr, (args.beta1, args.beta2), logger)
|
| 124 |
+
|
| 125 |
+
# Setup data:
|
| 126 |
+
dataset = build_dataset(args)
|
| 127 |
+
sampler = DistributedSampler(
|
| 128 |
+
dataset,
|
| 129 |
+
num_replicas=dist.get_world_size(),
|
| 130 |
+
rank=rank,
|
| 131 |
+
shuffle=True,
|
| 132 |
+
seed=args.global_seed
|
| 133 |
+
)
|
| 134 |
+
loader = DataLoader(
|
| 135 |
+
dataset,
|
| 136 |
+
batch_size=int(args.global_batch_size // dist.get_world_size()),
|
| 137 |
+
shuffle=False,
|
| 138 |
+
sampler=sampler,
|
| 139 |
+
num_workers=args.num_workers,
|
| 140 |
+
pin_memory=True,
|
| 141 |
+
drop_last=True
|
| 142 |
+
)
|
| 143 |
+
flip_info = 'with' if dataset.flip else 'without'
|
| 144 |
+
aug_info = 10 if 'ten_crop' in dataset.feature_dir else 1
|
| 145 |
+
aug_info = 2 * aug_info if dataset.aug_feature_dir is not None else aug_info
|
| 146 |
+
logger.info(f"Dataset contains {len(dataset):,} images ({args.code_path}) "
|
| 147 |
+
f"{flip_info} flip augmentation and {aug_info} crop augmentation")
|
| 148 |
+
|
| 149 |
+
# Prepare models for training:
|
| 150 |
+
if args.gpt_ckpt:
|
| 151 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 152 |
+
model.load_state_dict(checkpoint["model"],strict=False)
|
| 153 |
+
if args.ema:
|
| 154 |
+
ema.load_state_dict(checkpoint["ema"] if "ema" in checkpoint else checkpoint["model"])
|
| 155 |
+
#optimizer.load_state_dict(checkpoint["optimizer"])
|
| 156 |
+
train_steps = 0#checkpoint["steps"] if "steps" in checkpoint else int(args.gpt_ckpt.split('/')[-1].split('.')[0])
|
| 157 |
+
start_epoch = 0#int(train_steps / int(len(dataset) / args.global_batch_size))
|
| 158 |
+
train_steps = 0#int(start_epoch * int(len(dataset) / args.global_batch_size))
|
| 159 |
+
del checkpoint
|
| 160 |
+
logger.info(f"Resume training from checkpoint: {args.gpt_ckpt}")
|
| 161 |
+
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
|
| 162 |
+
else:
|
| 163 |
+
train_steps = 0
|
| 164 |
+
start_epoch = 0
|
| 165 |
+
if args.ema:
|
| 166 |
+
update_ema(ema, model, decay=0) # Ensure EMA is initialized with synced weights
|
| 167 |
+
|
| 168 |
+
if not args.no_compile:
|
| 169 |
+
logger.info("compiling the model... (may take several minutes)")
|
| 170 |
+
vq_model = torch.compile(vq_model) # requires PyTorch 2.0
|
| 171 |
+
model = torch.compile(model) # requires PyTorch 2.0
|
| 172 |
+
|
| 173 |
+
model = DDP(model.to(device), device_ids=[args.gpu],find_unused_parameters=True)
|
| 174 |
+
model.train() # important! This enables embedding dropout for classifier-free guidance
|
| 175 |
+
if args.ema:
|
| 176 |
+
ema.eval() # EMA model should always be in eval mode
|
| 177 |
+
|
| 178 |
+
ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]
|
| 179 |
+
# initialize a GradScaler. If enabled=False scaler is a no-op
|
| 180 |
+
scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
|
| 181 |
+
# Variables for monitoring/logging purposes:
|
| 182 |
+
log_steps = 0
|
| 183 |
+
running_loss = 0
|
| 184 |
+
start_time = time.time()
|
| 185 |
+
|
| 186 |
+
logger.info(f"Training for {args.epochs} epochs...")
|
| 187 |
+
for epoch in range(start_epoch, args.epochs):
|
| 188 |
+
sampler.set_epoch(epoch)
|
| 189 |
+
logger.info(f"Beginning epoch {epoch}...")
|
| 190 |
+
for batch in loader:
|
| 191 |
+
x = batch['img_code']
|
| 192 |
+
y = batch['labels']
|
| 193 |
+
condition_img = batch['condition_imgs']
|
| 194 |
+
x = x.to(device, non_blocking=True)
|
| 195 |
+
y = y.to(device, non_blocking=True)
|
| 196 |
+
condition_img = condition_img.to(device, non_blocking=True)
|
| 197 |
+
z_indices = x.reshape(x.shape[0], -1)
|
| 198 |
+
c_indices = y.reshape(-1)
|
| 199 |
+
assert z_indices.shape[0] == c_indices.shape[0]
|
| 200 |
+
with torch.cuda.amp.autocast(dtype=ptdtype):
|
| 201 |
+
_, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices, condition=condition_img.repeat(1,3,1,1).to(ptdtype))
|
| 202 |
+
# backward pass, with gradient scaling if training in fp16
|
| 203 |
+
scaler.scale(loss).backward()
|
| 204 |
+
if args.max_grad_norm != 0.0:
|
| 205 |
+
scaler.unscale_(optimizer)
|
| 206 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 207 |
+
# step the optimizer and scaler if training in fp16
|
| 208 |
+
scaler.step(optimizer)
|
| 209 |
+
scaler.update()
|
| 210 |
+
# flush the gradients as soon as we can, no need for this memory anymore
|
| 211 |
+
optimizer.zero_grad(set_to_none=True)
|
| 212 |
+
if args.ema:
|
| 213 |
+
update_ema(ema, model.module._orig_mod if not args.no_compile else model.module)
|
| 214 |
+
|
| 215 |
+
# Log loss values:
|
| 216 |
+
running_loss += loss.item()
|
| 217 |
+
log_steps += 1
|
| 218 |
+
train_steps += 1
|
| 219 |
+
if train_steps % args.log_every == 0:
|
| 220 |
+
# Measure training speed:
|
| 221 |
+
torch.cuda.synchronize()
|
| 222 |
+
end_time = time.time()
|
| 223 |
+
steps_per_sec = log_steps / (end_time - start_time)
|
| 224 |
+
# Reduce loss history over all processes:
|
| 225 |
+
avg_loss = torch.tensor(running_loss / log_steps, device=device)
|
| 226 |
+
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
|
| 227 |
+
avg_loss = avg_loss.item() / dist.get_world_size()
|
| 228 |
+
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
|
| 229 |
+
# Reset monitoring variables:
|
| 230 |
+
running_loss = 0
|
| 231 |
+
log_steps = 0
|
| 232 |
+
start_time = time.time()
|
| 233 |
+
|
| 234 |
+
# Save checkpoint:
|
| 235 |
+
if train_steps % args.ckpt_every == 0 and train_steps > 0:
|
| 236 |
+
if rank == 0:
|
| 237 |
+
if not args.no_compile:
|
| 238 |
+
model_weight = model.module._orig_mod.state_dict()
|
| 239 |
+
else:
|
| 240 |
+
model_weight = model.module.state_dict()
|
| 241 |
+
checkpoint = {
|
| 242 |
+
"model": model_weight,
|
| 243 |
+
"steps": train_steps,
|
| 244 |
+
"args": args
|
| 245 |
+
}
|
| 246 |
+
if args.ema:
|
| 247 |
+
checkpoint["ema"] = ema.state_dict()
|
| 248 |
+
# if not args.no_local_save:
|
| 249 |
+
# checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
|
| 250 |
+
# torch.save(checkpoint, checkpoint_path)
|
| 251 |
+
# logger.info(f"Saved checkpoint to {checkpoint_path}")
|
| 252 |
+
|
| 253 |
+
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
|
| 254 |
+
torch.save(checkpoint, cloud_checkpoint_path)
|
| 255 |
+
logger.info(f"Saved checkpoint to {cloud_checkpoint_path}")
|
| 256 |
+
dist.barrier()
|
| 257 |
+
model.eval() # important! This disables randomized embedding dropout
|
| 258 |
+
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
|
| 259 |
+
|
| 260 |
+
logger.info("Done!")
|
| 261 |
+
dist.destroy_process_group()
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
parser = argparse.ArgumentParser()
|
| 267 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 268 |
+
parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path')
|
| 269 |
+
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
|
| 270 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 271 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None, help="ckpt path for resume training")
|
| 272 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
|
| 273 |
+
parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer")
|
| 274 |
+
parser.add_argument("--ema", action='store_true', help="whether using ema training")
|
| 275 |
+
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
|
| 276 |
+
parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p")
|
| 277 |
+
parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p")
|
| 278 |
+
parser.add_argument("--drop-path-rate", type=float, default=0.0, help="using stochastic depth decay")
|
| 279 |
+
parser.add_argument("--no-compile", action='store_true', default=True)
|
| 280 |
+
parser.add_argument("--results-dir", type=str, default="results")
|
| 281 |
+
parser.add_argument("--dataset", type=str, default='imagenet_code')
|
| 282 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 283 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 284 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 285 |
+
parser.add_argument("--epochs", type=int, default=20)
|
| 286 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 287 |
+
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use")
|
| 288 |
+
parser.add_argument("--beta1", type=float, default=0.9, help="beta1 parameter for the Adam optimizer")
|
| 289 |
+
parser.add_argument("--beta2", type=float, default=0.95, help="beta2 parameter for the Adam optimizer")
|
| 290 |
+
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
|
| 291 |
+
parser.add_argument("--global-batch-size", type=int, default=256)
|
| 292 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 293 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 294 |
+
parser.add_argument("--log-every", type=int, default=100)
|
| 295 |
+
parser.add_argument("--ckpt-every", type=int, default=25000)
|
| 296 |
+
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
|
| 297 |
+
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 298 |
+
parser.add_argument("--condition-type", type=str, default='canny', choices=["depth", "canny"])
|
| 299 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 300 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 301 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 302 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for resume training")
|
| 303 |
+
parser.add_argument("--condition-token-num", type=int, default=0)
|
| 304 |
+
parser.add_argument("--get-condition-img", type=bool, default=False)
|
| 305 |
+
args = parser.parse_args()
|
| 306 |
+
main(args)
|
autoregressive/train/train_c2i_depth.py
ADDED
|
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/train.py
|
| 3 |
+
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
|
| 4 |
+
import torch
|
| 5 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 6 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 7 |
+
import torch.distributed as dist
|
| 8 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 11 |
+
from glob import glob
|
| 12 |
+
from copy import deepcopy
|
| 13 |
+
import os
|
| 14 |
+
import time
|
| 15 |
+
import inspect
|
| 16 |
+
import argparse
|
| 17 |
+
import sys
|
| 18 |
+
current_directory = os.getcwd()
|
| 19 |
+
sys.path.append(current_directory)
|
| 20 |
+
from utils.logger import create_logger
|
| 21 |
+
from utils.distributed import init_distributed_mode
|
| 22 |
+
from utils.ema import update_ema, requires_grad
|
| 23 |
+
from dataset.build import build_dataset
|
| 24 |
+
from autoregressive.models.gpt import GPT_models
|
| 25 |
+
# from autoregressive.models.gpt_cross import GPT_models
|
| 26 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 27 |
+
from autoregressive.models.generate import sample
|
| 28 |
+
from condition.hed import HEDdetector
|
| 29 |
+
import torch.nn.functional as F
|
| 30 |
+
#################################################################################
|
| 31 |
+
# Training Helper Functions #
|
| 32 |
+
#################################################################################
|
| 33 |
+
def creat_optimizer(model, weight_decay, learning_rate, betas, logger):
|
| 34 |
+
# start with all of the candidate parameters
|
| 35 |
+
param_dict = {pn: p for pn, p in model.named_parameters()}
|
| 36 |
+
# filter out those that do not require grad
|
| 37 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
| 38 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
| 39 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
| 40 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
| 41 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
| 42 |
+
optim_groups = [
|
| 43 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
| 44 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
| 45 |
+
]
|
| 46 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
| 47 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
| 48 |
+
logger.info(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
| 49 |
+
logger.info(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
| 50 |
+
# Create AdamW optimizer and use the fused version if it is available
|
| 51 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
| 52 |
+
extra_args = dict(fused=True) if fused_available else dict()
|
| 53 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
| 54 |
+
logger.info(f"using fused AdamW: {fused_available}")
|
| 55 |
+
return optimizer
|
| 56 |
+
|
| 57 |
+
#################################################################################
|
| 58 |
+
# Training Loop #
|
| 59 |
+
#################################################################################
|
| 60 |
+
def main(args):
|
| 61 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 62 |
+
|
| 63 |
+
# Setup DDP:
|
| 64 |
+
init_distributed_mode(args)
|
| 65 |
+
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
|
| 66 |
+
rank = dist.get_rank()
|
| 67 |
+
device = rank % torch.cuda.device_count()
|
| 68 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 69 |
+
torch.manual_seed(seed)
|
| 70 |
+
torch.cuda.set_device(device)
|
| 71 |
+
|
| 72 |
+
# Setup an experiment folder:
|
| 73 |
+
if rank == 0:
|
| 74 |
+
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
|
| 75 |
+
experiment_index = len(glob(f"{args.results_dir}/*"))
|
| 76 |
+
model_string_name = args.gpt_model.replace("/", "-") # e.g., GPT-XL/2 --> GPT-XL-2 (for naming folders)
|
| 77 |
+
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}" # Create an experiment folder
|
| 78 |
+
checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
|
| 79 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 80 |
+
logger = create_logger(experiment_dir)
|
| 81 |
+
logger.info(f"Experiment directory created at {experiment_dir}")
|
| 82 |
+
|
| 83 |
+
time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
| 84 |
+
cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
|
| 85 |
+
cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
|
| 86 |
+
os.makedirs(cloud_checkpoint_dir, exist_ok=True)
|
| 87 |
+
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
|
| 88 |
+
|
| 89 |
+
else:
|
| 90 |
+
logger = create_logger(None)
|
| 91 |
+
|
| 92 |
+
# training args
|
| 93 |
+
logger.info(f"{args}")
|
| 94 |
+
|
| 95 |
+
# training env
|
| 96 |
+
logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# Setup model
|
| 100 |
+
if args.drop_path_rate > 0.0:
|
| 101 |
+
dropout_p = 0.0
|
| 102 |
+
else:
|
| 103 |
+
dropout_p = args.dropout_p
|
| 104 |
+
latent_size = args.image_size // args.downsample_size
|
| 105 |
+
model = GPT_models[args.gpt_model](
|
| 106 |
+
vocab_size=args.vocab_size,
|
| 107 |
+
block_size=latent_size ** 2,
|
| 108 |
+
num_classes=args.num_classes,
|
| 109 |
+
cls_token_num=args.cls_token_num,
|
| 110 |
+
model_type=args.gpt_type,
|
| 111 |
+
resid_dropout_p=dropout_p,
|
| 112 |
+
ffn_dropout_p=dropout_p,
|
| 113 |
+
drop_path_rate=args.drop_path_rate,
|
| 114 |
+
token_dropout_p=args.token_dropout_p,
|
| 115 |
+
condition_token_num=args.condition_token_num,
|
| 116 |
+
image_size=args.image_size,
|
| 117 |
+
).to(device)
|
| 118 |
+
logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}")
|
| 119 |
+
|
| 120 |
+
if args.ema:
|
| 121 |
+
ema = deepcopy(model).to(device) # Create an EMA of the model for use after training
|
| 122 |
+
requires_grad(ema, False)
|
| 123 |
+
logger.info(f"EMA Parameters: {sum(p.numel() for p in ema.parameters()):,}")
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# Setup optimizer
|
| 127 |
+
optimizer = creat_optimizer(model, args.weight_decay, args.lr, (args.beta1, args.beta2), logger)
|
| 128 |
+
|
| 129 |
+
# Setup data:
|
| 130 |
+
dataset = build_dataset(args)
|
| 131 |
+
sampler = DistributedSampler(
|
| 132 |
+
dataset,
|
| 133 |
+
num_replicas=dist.get_world_size(),
|
| 134 |
+
rank=rank,
|
| 135 |
+
shuffle=True,
|
| 136 |
+
seed=args.global_seed
|
| 137 |
+
)
|
| 138 |
+
loader = DataLoader(
|
| 139 |
+
dataset,
|
| 140 |
+
batch_size=int(args.global_batch_size // dist.get_world_size()),
|
| 141 |
+
shuffle=False,
|
| 142 |
+
sampler=sampler,
|
| 143 |
+
num_workers=args.num_workers,
|
| 144 |
+
pin_memory=True,
|
| 145 |
+
drop_last=True
|
| 146 |
+
)
|
| 147 |
+
flip_info = 'with' if dataset.flip else 'without'
|
| 148 |
+
aug_info = 10 if 'ten_crop' in dataset.feature_dir else 1
|
| 149 |
+
aug_info = 2 * aug_info if dataset.aug_feature_dir is not None else aug_info
|
| 150 |
+
logger.info(f"Dataset contains {len(dataset):,} images ({args.code_path}) "
|
| 151 |
+
f"{flip_info} flip augmentation and {aug_info} crop augmentation")
|
| 152 |
+
|
| 153 |
+
# Prepare models for training:
|
| 154 |
+
if args.gpt_ckpt:
|
| 155 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 156 |
+
model.load_state_dict(checkpoint["model"],strict=False)
|
| 157 |
+
if args.ema:
|
| 158 |
+
ema.load_state_dict(checkpoint["ema"] if "ema" in checkpoint else checkpoint["model"])
|
| 159 |
+
train_steps = 0#checkpoint["steps"] if "steps" in checkpoint else int(args.gpt_ckpt.split('/')[-1].split('.')[0])
|
| 160 |
+
start_epoch = 0#int(train_steps / int(len(dataset) / args.global_batch_size))
|
| 161 |
+
train_steps = 0#int(start_epoch * int(len(dataset) / args.global_batch_size))
|
| 162 |
+
del checkpoint
|
| 163 |
+
logger.info(f"Resume training from checkpoint: {args.gpt_ckpt}")
|
| 164 |
+
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
|
| 165 |
+
else:
|
| 166 |
+
train_steps = 0
|
| 167 |
+
start_epoch = 0
|
| 168 |
+
if args.ema:
|
| 169 |
+
update_ema(ema, model, decay=0) # Ensure EMA is initialized with synced weights
|
| 170 |
+
|
| 171 |
+
if not args.no_compile:
|
| 172 |
+
logger.info("compiling the model... (may take several minutes)")
|
| 173 |
+
model = torch.compile(model) # requires PyTorch 2.0
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
model = DDP(model.to(device), device_ids=[args.gpu],find_unused_parameters=True)
|
| 178 |
+
model.train() # important! This enables embedding dropout for classifier-free guidance
|
| 179 |
+
if args.ema:
|
| 180 |
+
ema.eval() # EMA model should always be in eval mode
|
| 181 |
+
|
| 182 |
+
ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]
|
| 183 |
+
# initialize a GradScaler. If enabled=False scaler is a no-op
|
| 184 |
+
scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
|
| 185 |
+
# Variables for monitoring/logging purposes:
|
| 186 |
+
log_steps = 0
|
| 187 |
+
running_loss = 0
|
| 188 |
+
start_time = time.time()
|
| 189 |
+
initial_params = copy.deepcopy(model.module.condition_embeddings.weight)
|
| 190 |
+
logger.info(f"Training for {args.epochs} epochs...")
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
for epoch in range(start_epoch, args.epochs):
|
| 194 |
+
sampler.set_epoch(epoch)
|
| 195 |
+
logger.info(f"Beginning epoch {epoch}...")
|
| 196 |
+
for batch in loader:
|
| 197 |
+
x = batch['img_code']
|
| 198 |
+
y = batch['labels']
|
| 199 |
+
condition_img = batch['condition_imgs']
|
| 200 |
+
x = x.to(device, non_blocking=True)
|
| 201 |
+
y = y.to(device, non_blocking=True)
|
| 202 |
+
condition_img = condition_img.to(device, non_blocking=True).repeat(1,3,1,1)
|
| 203 |
+
z_indices = x.reshape(x.shape[0], -1)
|
| 204 |
+
c_indices = y.reshape(-1)
|
| 205 |
+
batchsize = y.shape[0]
|
| 206 |
+
assert z_indices.shape[0] == c_indices.shape[0]
|
| 207 |
+
with torch.cuda.amp.autocast(dtype=ptdtype):
|
| 208 |
+
pred, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices, condition=condition_img.to(ptdtype))
|
| 209 |
+
|
| 210 |
+
# backward pass, with gradient scaling if training in fp16
|
| 211 |
+
scaler.scale(loss).backward()
|
| 212 |
+
if args.max_grad_norm != 0.0:
|
| 213 |
+
scaler.unscale_(optimizer)
|
| 214 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 215 |
+
# step the optimizer and scaler if training in fp16
|
| 216 |
+
scaler.step(optimizer)
|
| 217 |
+
scaler.update()
|
| 218 |
+
# flush the gradients as soon as we can, no need for this memory anymore
|
| 219 |
+
optimizer.zero_grad(set_to_none=True)
|
| 220 |
+
if args.ema:
|
| 221 |
+
update_ema(ema, model.module._orig_mod if not args.no_compile else model.module)
|
| 222 |
+
|
| 223 |
+
# Log loss values:
|
| 224 |
+
running_loss += loss.item()
|
| 225 |
+
log_steps += 1
|
| 226 |
+
train_steps += 1
|
| 227 |
+
if train_steps % args.log_every == 0:
|
| 228 |
+
# Measure training speed:
|
| 229 |
+
torch.cuda.synchronize()
|
| 230 |
+
end_time = time.time()
|
| 231 |
+
steps_per_sec = log_steps / (end_time - start_time)
|
| 232 |
+
# Reduce loss history over all processes:
|
| 233 |
+
avg_loss = torch.tensor(running_loss / log_steps, device=device)
|
| 234 |
+
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
|
| 235 |
+
avg_loss = avg_loss.item() / dist.get_world_size()
|
| 236 |
+
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
|
| 237 |
+
# Reset monitoring variables:
|
| 238 |
+
running_loss = 0
|
| 239 |
+
log_steps = 0
|
| 240 |
+
start_time = time.time()
|
| 241 |
+
|
| 242 |
+
# Save checkpoint:
|
| 243 |
+
if train_steps % args.ckpt_every == 0 and train_steps > 0:
|
| 244 |
+
if rank == 0:
|
| 245 |
+
if not args.no_compile:
|
| 246 |
+
model_weight = model.module._orig_mod.state_dict()
|
| 247 |
+
else:
|
| 248 |
+
model_weight = model.module.state_dict()
|
| 249 |
+
checkpoint = {
|
| 250 |
+
"model": model_weight,
|
| 251 |
+
"steps": train_steps,
|
| 252 |
+
"args": args
|
| 253 |
+
}
|
| 254 |
+
if args.ema:
|
| 255 |
+
checkpoint["ema"] = ema.state_dict()
|
| 256 |
+
# if not args.no_local_save:
|
| 257 |
+
# checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
|
| 258 |
+
# torch.save(checkpoint, checkpoint_path)
|
| 259 |
+
# logger.info(f"Saved checkpoint to {checkpoint_path}")
|
| 260 |
+
|
| 261 |
+
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
|
| 262 |
+
torch.save(checkpoint, cloud_checkpoint_path)
|
| 263 |
+
logger.info(f"Saved checkpoint to {cloud_checkpoint_path}")
|
| 264 |
+
dist.barrier()
|
| 265 |
+
model.eval() # important! This disables randomized embedding dropout
|
| 266 |
+
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
|
| 267 |
+
|
| 268 |
+
logger.info("Done!")
|
| 269 |
+
dist.destroy_process_group()
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
if __name__ == "__main__":
|
| 274 |
+
parser = argparse.ArgumentParser()
|
| 275 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 276 |
+
parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path')
|
| 277 |
+
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
|
| 278 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 279 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None, help="ckpt path for resume training")
|
| 280 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
|
| 281 |
+
parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer")
|
| 282 |
+
parser.add_argument("--ema", action='store_true', help="whether using ema training")
|
| 283 |
+
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
|
| 284 |
+
parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p")
|
| 285 |
+
parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p")
|
| 286 |
+
parser.add_argument("--drop-path-rate", type=float, default=0.0, help="using stochastic depth decay")
|
| 287 |
+
parser.add_argument("--no-compile", action='store_true', default=True)
|
| 288 |
+
parser.add_argument("--results-dir", type=str, default="results")
|
| 289 |
+
parser.add_argument("--dataset", type=str, default='imagenet_code')
|
| 290 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 291 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 292 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 293 |
+
parser.add_argument("--epochs", type=int, default=15)
|
| 294 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 295 |
+
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use")
|
| 296 |
+
parser.add_argument("--beta1", type=float, default=0.9, help="beta1 parameter for the Adam optimizer")
|
| 297 |
+
parser.add_argument("--beta2", type=float, default=0.95, help="beta2 parameter for the Adam optimizer")
|
| 298 |
+
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
|
| 299 |
+
parser.add_argument("--global-batch-size", type=int, default=256)
|
| 300 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 301 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 302 |
+
parser.add_argument("--log-every", type=int, default=100)
|
| 303 |
+
parser.add_argument("--ckpt-every", type=int, default=25000)
|
| 304 |
+
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
|
| 305 |
+
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 306 |
+
parser.add_argument("--condition-type", type=str, default='depth', choices=["canny", "depth"])
|
| 307 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 308 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 309 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 310 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for resume training")
|
| 311 |
+
parser.add_argument("--condition-token-num", type=int, default=0)
|
| 312 |
+
parser.add_argument("--get-condition-img", type=bool, default=False)
|
| 313 |
+
args = parser.parse_args()
|
| 314 |
+
main(args)
|
autoregressive/train/train_c2i_fsdp.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# Large-DiT: https://github.com/Alpha-VLLM/LLaMA2-Accessory/blob/main/Large-DiT-ImageNet/train.py
|
| 3 |
+
import torch
|
| 4 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 5 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.distributed as dist
|
| 8 |
+
from torch.utils.data import DataLoader
|
| 9 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 10 |
+
from torch.distributed.fsdp import (
|
| 11 |
+
FullyShardedDataParallel as FSDP,
|
| 12 |
+
ShardingStrategy, MixedPrecision, StateDictType, FullStateDictConfig
|
| 13 |
+
)
|
| 14 |
+
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy, size_based_auto_wrap_policy
|
| 15 |
+
|
| 16 |
+
import os
|
| 17 |
+
import time
|
| 18 |
+
import inspect
|
| 19 |
+
import functools
|
| 20 |
+
import argparse
|
| 21 |
+
import contextlib
|
| 22 |
+
from glob import glob
|
| 23 |
+
import wandb
|
| 24 |
+
|
| 25 |
+
from utils.logger import create_logger
|
| 26 |
+
from dataset.build import build_dataset
|
| 27 |
+
from autoregressive.models.gpt import GPT_models
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def setup_fsdp_sync(model: nn.Module, args: argparse.Namespace, device) -> FSDP:
|
| 32 |
+
model = FSDP(
|
| 33 |
+
model,
|
| 34 |
+
auto_wrap_policy=functools.partial(
|
| 35 |
+
lambda_auto_wrap_policy,
|
| 36 |
+
lambda_fn=lambda m: m in model.get_fsdp_wrap_module_list(),
|
| 37 |
+
),
|
| 38 |
+
# auto_wrap_policy=size_based_auto_wrap_policy,
|
| 39 |
+
# process_group=fs_init.get_data_parallel_group(),
|
| 40 |
+
device_id=device,
|
| 41 |
+
sharding_strategy={
|
| 42 |
+
"fsdp": ShardingStrategy.FULL_SHARD,
|
| 43 |
+
"sdp": ShardingStrategy.SHARD_GRAD_OP,
|
| 44 |
+
"hsdp": ShardingStrategy.HYBRID_SHARD,
|
| 45 |
+
}[args.data_parallel],
|
| 46 |
+
mixed_precision=MixedPrecision(
|
| 47 |
+
param_dtype={
|
| 48 |
+
"fp32": torch.float, "tf32": torch.float,
|
| 49 |
+
"bf16": torch.bfloat16, "fp16": torch.float16,
|
| 50 |
+
}[args.mixed_precision],
|
| 51 |
+
reduce_dtype={
|
| 52 |
+
"fp32": torch.float, "tf32": torch.float,
|
| 53 |
+
"bf16": torch.bfloat16, "fp16": torch.float16,
|
| 54 |
+
}[args.grad_precision or args.mixed_precision],
|
| 55 |
+
),
|
| 56 |
+
sync_module_states=True,
|
| 57 |
+
limit_all_gathers=True,
|
| 58 |
+
use_orig_params=True,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
torch.cuda.synchronize()
|
| 62 |
+
|
| 63 |
+
return model
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def creat_optimizer_by_name(model, weight_decay, learning_rate, betas, global_rank, logger):
|
| 68 |
+
# start with all of the candidate parameters
|
| 69 |
+
all_param_dict = {pn: p for pn, p in model.named_parameters()}
|
| 70 |
+
# filter out those that do not require grad
|
| 71 |
+
param_dict = {pn: p for pn, p in all_param_dict.items() if p.requires_grad}
|
| 72 |
+
|
| 73 |
+
# create optim groups.
|
| 74 |
+
# Any parameters that is 2D will be weight decayed, otherwise no.
|
| 75 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
| 76 |
+
|
| 77 |
+
# decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
| 78 |
+
# nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
| 79 |
+
|
| 80 |
+
# model params are flatten by fsdp, we need to set the params by its name
|
| 81 |
+
decay_params = [p for n, p in param_dict.items() if 'norm' not in n]
|
| 82 |
+
nodecay_params = [p for n, p in param_dict.items() if 'norm' in n]
|
| 83 |
+
optim_groups = [
|
| 84 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
| 85 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
| 86 |
+
]
|
| 87 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
| 88 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
| 89 |
+
logger.info(f"(rank {global_rank}) num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
| 90 |
+
logger.info(f"(rank {global_rank}) num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
| 91 |
+
print(f"(rank {global_rank}) num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
| 92 |
+
print(f"(rank {global_rank}) num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
| 93 |
+
# Create AdamW optimizer and use the fused version if it is available
|
| 94 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
| 95 |
+
extra_args = dict(fused=True) if fused_available else dict()
|
| 96 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
| 97 |
+
logger.info(f"using fused AdamW: {fused_available}")
|
| 98 |
+
return optimizer
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def main(args):
|
| 103 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 104 |
+
assert args.gpt_type == 'c2i', "FSDP only supports c2i currently."
|
| 105 |
+
# =======================================
|
| 106 |
+
# Initialize Distributed Training
|
| 107 |
+
# =======================================
|
| 108 |
+
dist.init_process_group("nccl")
|
| 109 |
+
# init_distributed_mode(args)
|
| 110 |
+
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
|
| 111 |
+
global_rank = dist.get_rank()
|
| 112 |
+
device = global_rank % torch.cuda.device_count()
|
| 113 |
+
seed = args.global_seed * dist.get_world_size() + global_rank
|
| 114 |
+
torch.manual_seed(seed)
|
| 115 |
+
torch.cuda.set_device(device)
|
| 116 |
+
print(f"Starting rank={global_rank}, device={device}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# =======================================
|
| 120 |
+
# Initialize logger and wandb
|
| 121 |
+
# =======================================
|
| 122 |
+
timestamp = None
|
| 123 |
+
if global_rank == 0:
|
| 124 |
+
timestamp = time.localtime()
|
| 125 |
+
timestamp = int(time.strftime("%Y%m%d%H%M%S", timestamp))
|
| 126 |
+
# Convert timestamp to a tensor for broadcasting
|
| 127 |
+
timestamp_tensor = torch.tensor([timestamp] if timestamp is not None else [0.0], dtype=torch.double).to(device)
|
| 128 |
+
# Broadcast the timestamp to all processes
|
| 129 |
+
dist.broadcast(timestamp_tensor, src=0)
|
| 130 |
+
# All processes receive the timestamp
|
| 131 |
+
timestamp = int(timestamp_tensor.item())
|
| 132 |
+
model_string_name = args.gpt_model.replace("/", "-") # e.g., GPT/XL --> GPT-XL (for naming folders)
|
| 133 |
+
experiment_dir = f"{args.results_dir}/{timestamp}-{model_string_name}"
|
| 134 |
+
cloud_checkpoint_dir = f"{args.cloud_save_path}/{timestamp}-{model_string_name}"
|
| 135 |
+
if global_rank == 0:
|
| 136 |
+
os.makedirs(experiment_dir, exist_ok=True) # in each local machine
|
| 137 |
+
os.makedirs(cloud_checkpoint_dir, exist_ok=True) # in one shared file storage
|
| 138 |
+
logger = create_logger(experiment_dir)
|
| 139 |
+
else:
|
| 140 |
+
logger = create_logger(None)
|
| 141 |
+
logger.info(f"Experiment directory created at {experiment_dir}")
|
| 142 |
+
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
|
| 143 |
+
|
| 144 |
+
# training args
|
| 145 |
+
logger.info(f"{args}")
|
| 146 |
+
|
| 147 |
+
# wandb
|
| 148 |
+
if not args.no_wandb and global_rank == 0:
|
| 149 |
+
os.environ["WANDB_DIR"] = experiment_dir
|
| 150 |
+
wandb.init(
|
| 151 |
+
project=args.wandb_project,
|
| 152 |
+
name = f"{timestamp}-{model_string_name}",
|
| 153 |
+
config=vars(args)
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# ======================================================
|
| 158 |
+
# Initialize model and resume
|
| 159 |
+
# ======================================================
|
| 160 |
+
if args.drop_path_rate > 0.0:
|
| 161 |
+
dropout_p = 0.0
|
| 162 |
+
else:
|
| 163 |
+
dropout_p = args.dropout_p
|
| 164 |
+
latent_size = args.image_size // args.downsample_size
|
| 165 |
+
model = GPT_models[args.gpt_model](
|
| 166 |
+
vocab_size=args.vocab_size,
|
| 167 |
+
block_size=latent_size ** 2,
|
| 168 |
+
num_classes=args.num_classes,
|
| 169 |
+
cls_token_num=args.cls_token_num,
|
| 170 |
+
model_type=args.gpt_type,
|
| 171 |
+
resid_dropout_p=dropout_p,
|
| 172 |
+
ffn_dropout_p=dropout_p,
|
| 173 |
+
drop_path_rate=args.drop_path_rate,
|
| 174 |
+
token_dropout_p=args.token_dropout_p,
|
| 175 |
+
).to(device)
|
| 176 |
+
logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}")
|
| 177 |
+
|
| 178 |
+
if args.gpt_resume:
|
| 179 |
+
if global_rank == 0: # other ranks receive weights in setup_fsdp_sync
|
| 180 |
+
logger.info(f"Resuming model weights from: {args.gpt_resume}")
|
| 181 |
+
model.load_state_dict(torch.load(os.path.join(
|
| 182 |
+
args.gpt_resume, "consolidated.pth",
|
| 183 |
+
), map_location="cpu"), strict=True)
|
| 184 |
+
|
| 185 |
+
model = setup_fsdp_sync(model, args, device)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# ======================================================
|
| 189 |
+
# Initialize optimizer and resume
|
| 190 |
+
# ======================================================
|
| 191 |
+
optimizer = creat_optimizer_by_name(model, args.weight_decay, args.lr, (args.beta1, args.beta2), global_rank, logger)
|
| 192 |
+
if args.gpt_resume:
|
| 193 |
+
opt_state_world_size = len([
|
| 194 |
+
x for x in os.listdir(args.gpt_resume)
|
| 195 |
+
if x.startswith("optimizer.") and x.endswith(".pth")
|
| 196 |
+
])
|
| 197 |
+
assert opt_state_world_size == dist.get_world_size(), (
|
| 198 |
+
f"Resuming from a checkpoint with unmatched world size "
|
| 199 |
+
f"({dist.get_world_size()} vs. {opt_state_world_size}) "
|
| 200 |
+
f"is currently not supported."
|
| 201 |
+
)
|
| 202 |
+
logger.info(f"Resuming optimizer states from: {args.gpt_resume}")
|
| 203 |
+
optimizer.load_state_dict(torch.load(os.path.join(
|
| 204 |
+
args.gpt_resume,
|
| 205 |
+
f"optimizer.{dist.get_rank():05d}-of-"
|
| 206 |
+
f"{dist.get_world_size():05d}.pth",
|
| 207 |
+
), map_location="cpu"))
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# ======================================================
|
| 212 |
+
# Initialize Dataloader
|
| 213 |
+
# ======================================================
|
| 214 |
+
dataset = build_dataset(args)
|
| 215 |
+
sampler = DistributedSampler(
|
| 216 |
+
dataset,
|
| 217 |
+
num_replicas=dist.get_world_size(),
|
| 218 |
+
rank=global_rank,
|
| 219 |
+
shuffle=True,
|
| 220 |
+
seed=args.global_seed
|
| 221 |
+
)
|
| 222 |
+
loader = DataLoader(
|
| 223 |
+
dataset,
|
| 224 |
+
batch_size=int(args.global_batch_size // dist.get_world_size()),
|
| 225 |
+
shuffle=False,
|
| 226 |
+
sampler=sampler,
|
| 227 |
+
num_workers=args.num_workers,
|
| 228 |
+
pin_memory=True,
|
| 229 |
+
drop_last=True
|
| 230 |
+
)
|
| 231 |
+
flip_info = 'with' if dataset.flip else 'without'
|
| 232 |
+
aug_info = 10 if 'ten_crop' in dataset.feature_dir else 1
|
| 233 |
+
aug_info = 2 * aug_info if dataset.aug_feature_dir is not None else aug_info
|
| 234 |
+
logger.info(f"Dataset contains {len(dataset):,} images ({args.code_path}) "
|
| 235 |
+
f"{flip_info} flip augmentation and {aug_info} crop augmentation")
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
# ======================================================
|
| 240 |
+
# Start training !!!
|
| 241 |
+
# ======================================================
|
| 242 |
+
if args.gpt_resume:
|
| 243 |
+
with open(os.path.join(args.gpt_resume, "resume_step.txt")) as f:
|
| 244 |
+
train_steps = int(f.read().strip())
|
| 245 |
+
start_epoch = int(train_steps / int(len(dataset) / args.global_batch_size))
|
| 246 |
+
train_steps = int(start_epoch * int(len(dataset) / args.global_batch_size))
|
| 247 |
+
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
|
| 248 |
+
else:
|
| 249 |
+
train_steps = 0
|
| 250 |
+
start_epoch = 0
|
| 251 |
+
|
| 252 |
+
model.train() # important! This enables embedding dropout for classifier-free guidance
|
| 253 |
+
|
| 254 |
+
# Variables for monitoring/logging purposes:
|
| 255 |
+
log_steps = 0
|
| 256 |
+
running_loss = 0
|
| 257 |
+
start_time = time.time()
|
| 258 |
+
|
| 259 |
+
logger.info(f"Training for {args.epochs} epochs...")
|
| 260 |
+
for epoch in range(start_epoch, args.epochs):
|
| 261 |
+
sampler.set_epoch(epoch)
|
| 262 |
+
logger.info(f"Beginning epoch {epoch}...")
|
| 263 |
+
for x, y in loader:
|
| 264 |
+
x = x.to(device, non_blocking=True)
|
| 265 |
+
y = y.to(device, non_blocking=True)
|
| 266 |
+
z_indices = x.reshape(x.shape[0], -1)
|
| 267 |
+
c_indices = y.reshape(-1)
|
| 268 |
+
assert z_indices.shape[0] == c_indices.shape[0]
|
| 269 |
+
|
| 270 |
+
optimizer.zero_grad()
|
| 271 |
+
with {
|
| 272 |
+
"bf16": torch.cuda.amp.autocast(dtype=torch.bfloat16),
|
| 273 |
+
"fp16": torch.cuda.amp.autocast(dtype=torch.float16),
|
| 274 |
+
"fp32": contextlib.nullcontext(),
|
| 275 |
+
"tf32": contextlib.nullcontext(),
|
| 276 |
+
}[args.mixed_precision]:
|
| 277 |
+
_, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices)
|
| 278 |
+
loss.backward()
|
| 279 |
+
|
| 280 |
+
if args.max_grad_norm != 0.0:
|
| 281 |
+
# according to https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.FullyShardedDataParallel.clip_grad_norm_
|
| 282 |
+
# torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 283 |
+
model.clip_grad_norm_(args.max_grad_norm)
|
| 284 |
+
optimizer.step()
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# Log loss values:
|
| 288 |
+
running_loss += loss.item()
|
| 289 |
+
log_steps += 1
|
| 290 |
+
train_steps += 1
|
| 291 |
+
if train_steps % args.log_every == 0:
|
| 292 |
+
# Measure training speed:
|
| 293 |
+
torch.cuda.synchronize()
|
| 294 |
+
end_time = time.time()
|
| 295 |
+
steps_per_sec = log_steps / (end_time - start_time)
|
| 296 |
+
# Reduce loss history over all processes:
|
| 297 |
+
avg_loss = torch.tensor(running_loss / log_steps, device=device)
|
| 298 |
+
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
|
| 299 |
+
avg_loss = avg_loss.item() / dist.get_world_size()
|
| 300 |
+
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
|
| 301 |
+
if not args.no_wandb and global_rank == 0:
|
| 302 |
+
wandb.log({"train_loss": avg_loss}, step=train_steps)
|
| 303 |
+
|
| 304 |
+
# Reset monitoring variables:
|
| 305 |
+
running_loss = 0
|
| 306 |
+
log_steps = 0
|
| 307 |
+
start_time = time.time()
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
# Save checkpoint:
|
| 311 |
+
if train_steps % args.ckpt_every == 0 and train_steps > 0:
|
| 312 |
+
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}"
|
| 313 |
+
os.makedirs(cloud_checkpoint_path, exist_ok=True)
|
| 314 |
+
|
| 315 |
+
### saving model parameters
|
| 316 |
+
with FSDP.state_dict_type(
|
| 317 |
+
model,
|
| 318 |
+
StateDictType.FULL_STATE_DICT,
|
| 319 |
+
FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
|
| 320 |
+
):
|
| 321 |
+
consolidated_model_state_dict = model.state_dict()
|
| 322 |
+
if global_rank == 0:
|
| 323 |
+
consolidated_fn = "consolidated.pth"
|
| 324 |
+
torch.save(consolidated_model_state_dict,
|
| 325 |
+
os.path.join(cloud_checkpoint_path, consolidated_fn))
|
| 326 |
+
dist.barrier()
|
| 327 |
+
del consolidated_model_state_dict
|
| 328 |
+
logger.info(f"Saved consolidated to {cloud_checkpoint_path}")
|
| 329 |
+
|
| 330 |
+
### saving optimizer
|
| 331 |
+
opt_state_fn = (
|
| 332 |
+
f"optimizer.{dist.get_rank():05d}-of-"
|
| 333 |
+
f"{dist.get_world_size():05d}.pth"
|
| 334 |
+
)
|
| 335 |
+
torch.save(optimizer.state_dict(), os.path.join(cloud_checkpoint_path, opt_state_fn))
|
| 336 |
+
dist.barrier()
|
| 337 |
+
logger.info(f"Saved optimizer to {cloud_checkpoint_path}")
|
| 338 |
+
|
| 339 |
+
### saving training step
|
| 340 |
+
if global_rank == 0:
|
| 341 |
+
with open(os.path.join(cloud_checkpoint_path, "resume_step.txt"), "w") as f:
|
| 342 |
+
print(train_steps, file=f)
|
| 343 |
+
dist.barrier()
|
| 344 |
+
logger.info(f"Saved training step to {cloud_checkpoint_path}")
|
| 345 |
+
|
| 346 |
+
model.eval() # important! This disables randomized embedding dropout
|
| 347 |
+
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
|
| 348 |
+
|
| 349 |
+
logger.info("Done!")
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
if __name__ == "__main__":
|
| 354 |
+
parser = argparse.ArgumentParser()
|
| 355 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 356 |
+
parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path')
|
| 357 |
+
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
|
| 358 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 359 |
+
parser.add_argument("--gpt-resume", type=str, default=None, help="model, optimizer and argument path for resume training")
|
| 360 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
|
| 361 |
+
parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer")
|
| 362 |
+
parser.add_argument("--ema", action='store_true', help="whether using ema training")
|
| 363 |
+
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
|
| 364 |
+
parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p")
|
| 365 |
+
parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p")
|
| 366 |
+
parser.add_argument("--drop-path-rate", type=float, default=0.0, help="using stochastic depth decay")
|
| 367 |
+
parser.add_argument("--results-dir", type=str, default="results")
|
| 368 |
+
parser.add_argument("--dataset", type=str, default='imagenet_code')
|
| 369 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 370 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 371 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 372 |
+
parser.add_argument("--epochs", type=int, default=300)
|
| 373 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 374 |
+
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use")
|
| 375 |
+
parser.add_argument("--beta1", type=float, default=0.9, help="beta1 parameter for the Adam optimizer")
|
| 376 |
+
parser.add_argument("--beta2", type=float, default=0.95, help="beta2 parameter for the Adam optimizer")
|
| 377 |
+
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
|
| 378 |
+
parser.add_argument("--global-batch-size", type=int, default=256)
|
| 379 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 380 |
+
parser.add_argument("--num-workers", type=int, default=24)
|
| 381 |
+
parser.add_argument("--log-every", type=int, default=100)
|
| 382 |
+
parser.add_argument("--ckpt-every", type=int, default=5000)
|
| 383 |
+
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
|
| 384 |
+
parser.add_argument("--mixed-precision", type=str, choices=["fp32", "tf32", "fp16", "bf16"], default='bf16')
|
| 385 |
+
parser.add_argument("--data-parallel", type=str, choices=["sdp", "fsdp", "hsdp"], default="fsdp")
|
| 386 |
+
parser.add_argument("--grad-precision", type=str, choices=["fp32", "fp16", "bf16"])
|
| 387 |
+
parser.add_argument("--wandb-project", type=str, default='c2i_fsdp')
|
| 388 |
+
parser.add_argument("--no-wandb", action='store_true')
|
| 389 |
+
args = parser.parse_args()
|
| 390 |
+
main(args)
|
tokenizer/tokenizer_image/__pycache__/vq_model.cpython-310.pyc
ADDED
|
Binary file (12.4 kB). View file
|
|
|
tokenizer/tokenizer_image/cache/vgg.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a78928a0af1e5f0fcb1f3b9e8f8c3a2a5a3de244d830ad5c1feddc79b8432868
|
| 3 |
+
size 7289
|
tokenizer/tokenizer_image/vq_model_hf.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 2 |
+
|
| 3 |
+
from tokenizer.tokenizer_image.vq_model import ModelArgs, VQModel
|
| 4 |
+
|
| 5 |
+
class VQModelHF(VQModel, PyTorchModelHubMixin, repo_url="https://github.com/FoundationVision/LlamaGen", license="mit", tags=["llamagen", "text-to-image"]):
|
| 6 |
+
pass
|
| 7 |
+
|
| 8 |
+
#################################################################################
|
| 9 |
+
# VQ Model Configs #
|
| 10 |
+
#################################################################################
|
| 11 |
+
def VQ_8(**kwargs):
|
| 12 |
+
return VQModelHF(ModelArgs(encoder_ch_mult=[1, 2, 2, 4], decoder_ch_mult=[1, 2, 2, 4], **kwargs))
|
| 13 |
+
|
| 14 |
+
def VQ_16(**kwargs):
|
| 15 |
+
return VQModelHF(ModelArgs(encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs))
|
| 16 |
+
|
| 17 |
+
VQ_models_HF = {'VQ-16': VQ_16, 'VQ-8': VQ_8}
|
tokenizer/tokenizer_image/vq_train.py
ADDED
|
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/train.py
|
| 3 |
+
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
|
| 4 |
+
import torch
|
| 5 |
+
# the first flag below was False when we tested this script but True makes A100 training a lot faster:
|
| 6 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 7 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 10 |
+
from torch.utils.data import Dataset, DataLoader
|
| 11 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 12 |
+
from torchvision.datasets import ImageFolder
|
| 13 |
+
from torchvision import transforms
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
import time
|
| 17 |
+
import argparse
|
| 18 |
+
from glob import glob
|
| 19 |
+
from copy import deepcopy
|
| 20 |
+
# import sys
|
| 21 |
+
# sys.path.append('/data/vjuicefs_sz_cv_v2/11171709/ControlAR')
|
| 22 |
+
from utils.logger import create_logger
|
| 23 |
+
from utils.distributed import init_distributed_mode
|
| 24 |
+
from utils.ema import update_ema, requires_grad
|
| 25 |
+
from dataset.augmentation import random_crop_arr
|
| 26 |
+
from dataset.build import build_dataset
|
| 27 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 28 |
+
from tokenizer.tokenizer_image.vq_loss import VQLoss
|
| 29 |
+
|
| 30 |
+
import warnings
|
| 31 |
+
warnings.filterwarnings('ignore')
|
| 32 |
+
|
| 33 |
+
#################################################################################
|
| 34 |
+
# Training Loop #
|
| 35 |
+
#################################################################################
|
| 36 |
+
|
| 37 |
+
def main(args):
|
| 38 |
+
"""
|
| 39 |
+
Trains a new model.
|
| 40 |
+
"""
|
| 41 |
+
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
|
| 42 |
+
|
| 43 |
+
# Setup DDP:
|
| 44 |
+
init_distributed_mode(args)
|
| 45 |
+
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
|
| 46 |
+
rank = dist.get_rank()
|
| 47 |
+
device = rank % torch.cuda.device_count()
|
| 48 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 49 |
+
torch.manual_seed(seed)
|
| 50 |
+
torch.cuda.set_device(device)
|
| 51 |
+
|
| 52 |
+
# Setup an experiment folder:
|
| 53 |
+
if rank == 0:
|
| 54 |
+
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
|
| 55 |
+
experiment_index = len(glob(f"{args.results_dir}/*"))
|
| 56 |
+
model_string_name = args.vq_model.replace("/", "-")
|
| 57 |
+
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}" # Create an experiment folder
|
| 58 |
+
checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
|
| 59 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 60 |
+
logger = create_logger(experiment_dir)
|
| 61 |
+
logger.info(f"Experiment directory created at {experiment_dir}")
|
| 62 |
+
|
| 63 |
+
time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
| 64 |
+
cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
|
| 65 |
+
cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
|
| 66 |
+
os.makedirs(cloud_checkpoint_dir, exist_ok=True)
|
| 67 |
+
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
|
| 68 |
+
|
| 69 |
+
else:
|
| 70 |
+
logger = create_logger(None)
|
| 71 |
+
|
| 72 |
+
# training args
|
| 73 |
+
logger.info(f"{args}")
|
| 74 |
+
|
| 75 |
+
# training env
|
| 76 |
+
logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 77 |
+
|
| 78 |
+
# create and load model
|
| 79 |
+
vq_model = VQ_models[args.vq_model](
|
| 80 |
+
codebook_size=args.codebook_size,
|
| 81 |
+
codebook_embed_dim=args.codebook_embed_dim,
|
| 82 |
+
commit_loss_beta=args.commit_loss_beta,
|
| 83 |
+
entropy_loss_ratio=args.entropy_loss_ratio,
|
| 84 |
+
dropout_p=args.dropout_p,
|
| 85 |
+
)
|
| 86 |
+
logger.info(f"VQ Model Parameters: {sum(p.numel() for p in vq_model.parameters()):,}")
|
| 87 |
+
if args.ema:
|
| 88 |
+
ema = deepcopy(vq_model).to(device) # Create an EMA of the model for use after training
|
| 89 |
+
requires_grad(ema, False)
|
| 90 |
+
logger.info(f"VQ Model EMA Parameters: {sum(p.numel() for p in ema.parameters()):,}")
|
| 91 |
+
vq_model = vq_model.to(device)
|
| 92 |
+
|
| 93 |
+
vq_loss = VQLoss(
|
| 94 |
+
disc_start=args.disc_start,
|
| 95 |
+
disc_weight=args.disc_weight,
|
| 96 |
+
disc_type=args.disc_type,
|
| 97 |
+
disc_loss=args.disc_loss,
|
| 98 |
+
gen_adv_loss=args.gen_loss,
|
| 99 |
+
image_size=args.image_size,
|
| 100 |
+
perceptual_weight=args.perceptual_weight,
|
| 101 |
+
reconstruction_weight=args.reconstruction_weight,
|
| 102 |
+
reconstruction_loss=args.reconstruction_loss,
|
| 103 |
+
codebook_weight=args.codebook_weight,
|
| 104 |
+
).to(device)
|
| 105 |
+
logger.info(f"Discriminator Parameters: {sum(p.numel() for p in vq_loss.discriminator.parameters()):,}")
|
| 106 |
+
|
| 107 |
+
# initialize a GradScaler. If enabled=False scaler is a no-op
|
| 108 |
+
scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
|
| 109 |
+
scaler_disc = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
|
| 110 |
+
# Setup optimizer
|
| 111 |
+
optimizer = torch.optim.Adam(vq_model.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
|
| 112 |
+
optimizer_disc = torch.optim.Adam(vq_loss.discriminator.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
|
| 113 |
+
|
| 114 |
+
# Setup data:
|
| 115 |
+
transform = transforms.Compose([
|
| 116 |
+
transforms.Lambda(lambda pil_image: random_crop_arr(pil_image, args.image_size)),
|
| 117 |
+
transforms.RandomHorizontalFlip(),
|
| 118 |
+
transforms.ToTensor(),
|
| 119 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 120 |
+
])
|
| 121 |
+
if args.dataset == 'imagenet_code':
|
| 122 |
+
dataset = build_dataset(args)
|
| 123 |
+
else:
|
| 124 |
+
dataset = build_dataset(args, transform=transform)
|
| 125 |
+
sampler = DistributedSampler(
|
| 126 |
+
dataset,
|
| 127 |
+
num_replicas=dist.get_world_size(),
|
| 128 |
+
rank=rank,
|
| 129 |
+
shuffle=True,
|
| 130 |
+
seed=args.global_seed
|
| 131 |
+
)
|
| 132 |
+
loader = DataLoader(
|
| 133 |
+
dataset,
|
| 134 |
+
batch_size=int(args.global_batch_size // dist.get_world_size()),
|
| 135 |
+
shuffle=False,
|
| 136 |
+
sampler=sampler,
|
| 137 |
+
num_workers=args.num_workers,
|
| 138 |
+
pin_memory=True,
|
| 139 |
+
drop_last=True
|
| 140 |
+
)
|
| 141 |
+
logger.info(f"Dataset contains {len(dataset):,} images ({args.data_path})")
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# Prepare models for training:
|
| 145 |
+
if args.vq_ckpt:
|
| 146 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 147 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 148 |
+
if args.ema:
|
| 149 |
+
ema.load_state_dict(checkpoint["ema"])
|
| 150 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
| 151 |
+
vq_loss.discriminator.load_state_dict(checkpoint["discriminator"])
|
| 152 |
+
optimizer_disc.load_state_dict(checkpoint["optimizer_disc"])
|
| 153 |
+
if not args.finetune:
|
| 154 |
+
train_steps = checkpoint["steps"] if "steps" in checkpoint else int(args.vq_ckpt.split('/')[-1].split('.')[0])
|
| 155 |
+
start_epoch = int(train_steps / int(len(dataset) / args.global_batch_size))
|
| 156 |
+
train_steps = int(start_epoch * int(len(dataset) / args.global_batch_size))
|
| 157 |
+
else:
|
| 158 |
+
train_steps = 0
|
| 159 |
+
start_epoch = 0
|
| 160 |
+
del checkpoint
|
| 161 |
+
logger.info(f"Resume training from checkpoint: {args.vq_ckpt}")
|
| 162 |
+
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
|
| 163 |
+
else:
|
| 164 |
+
train_steps = 0
|
| 165 |
+
start_epoch = 0
|
| 166 |
+
if args.ema:
|
| 167 |
+
update_ema(ema, vq_model, decay=0) # Ensure EMA is initialized with synced weights
|
| 168 |
+
|
| 169 |
+
if args.compile:
|
| 170 |
+
logger.info("compiling the model... (may take several minutes)")
|
| 171 |
+
vq_model = torch.compile(vq_model) # requires PyTorch 2.0
|
| 172 |
+
|
| 173 |
+
vq_model = DDP(vq_model.to(device), device_ids=[args.gpu])
|
| 174 |
+
vq_model.train()
|
| 175 |
+
if args.ema:
|
| 176 |
+
ema.eval() # EMA model should always be in eval mode
|
| 177 |
+
vq_loss = DDP(vq_loss.to(device), device_ids=[args.gpu])
|
| 178 |
+
vq_loss.train()
|
| 179 |
+
|
| 180 |
+
ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]
|
| 181 |
+
|
| 182 |
+
# Variables for monitoring/logging purposes:
|
| 183 |
+
log_steps = 0
|
| 184 |
+
running_loss = 0
|
| 185 |
+
start_time = time.time()
|
| 186 |
+
|
| 187 |
+
logger.info(f"Training for {args.epochs} epochs...")
|
| 188 |
+
for epoch in range(start_epoch, args.epochs):
|
| 189 |
+
sampler.set_epoch(epoch)
|
| 190 |
+
logger.info(f"Beginning epoch {epoch}...")
|
| 191 |
+
for x, y in loader:
|
| 192 |
+
imgs = x.to(device, non_blocking=True)
|
| 193 |
+
|
| 194 |
+
# generator training
|
| 195 |
+
optimizer.zero_grad()
|
| 196 |
+
with torch.cuda.amp.autocast(dtype=ptdtype):
|
| 197 |
+
recons_imgs, codebook_loss = vq_model(imgs)
|
| 198 |
+
loss_gen = vq_loss(codebook_loss, imgs, recons_imgs, optimizer_idx=0, global_step=train_steps+1,
|
| 199 |
+
last_layer=vq_model.module.decoder.last_layer,
|
| 200 |
+
logger=logger, log_every=args.log_every)
|
| 201 |
+
scaler.scale(loss_gen).backward()
|
| 202 |
+
if args.max_grad_norm != 0.0:
|
| 203 |
+
scaler.unscale_(optimizer)
|
| 204 |
+
torch.nn.utils.clip_grad_norm_(vq_model.parameters(), args.max_grad_norm)
|
| 205 |
+
scaler.step(optimizer)
|
| 206 |
+
scaler.update()
|
| 207 |
+
if args.ema:
|
| 208 |
+
update_ema(ema, vq_model.module._orig_mod if args.compile else vq_model.module)
|
| 209 |
+
|
| 210 |
+
# discriminator training
|
| 211 |
+
optimizer_disc.zero_grad()
|
| 212 |
+
with torch.cuda.amp.autocast(dtype=ptdtype):
|
| 213 |
+
loss_disc = vq_loss(codebook_loss, imgs, recons_imgs, optimizer_idx=1, global_step=train_steps+1,
|
| 214 |
+
logger=logger, log_every=args.log_every)
|
| 215 |
+
scaler_disc.scale(loss_disc).backward()
|
| 216 |
+
if args.max_grad_norm != 0.0:
|
| 217 |
+
scaler_disc.unscale_(optimizer_disc)
|
| 218 |
+
torch.nn.utils.clip_grad_norm_(vq_loss.module.discriminator.parameters(), args.max_grad_norm)
|
| 219 |
+
scaler_disc.step(optimizer_disc)
|
| 220 |
+
scaler_disc.update()
|
| 221 |
+
|
| 222 |
+
# # Log loss values:
|
| 223 |
+
running_loss += loss_gen.item() + loss_disc.item()
|
| 224 |
+
|
| 225 |
+
log_steps += 1
|
| 226 |
+
train_steps += 1
|
| 227 |
+
if train_steps % args.log_every == 0:
|
| 228 |
+
# Measure training speed:
|
| 229 |
+
torch.cuda.synchronize()
|
| 230 |
+
end_time = time.time()
|
| 231 |
+
steps_per_sec = log_steps / (end_time - start_time)
|
| 232 |
+
# Reduce loss history over all processes:
|
| 233 |
+
avg_loss = torch.tensor(running_loss / log_steps, device=device)
|
| 234 |
+
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
|
| 235 |
+
avg_loss = avg_loss.item() / dist.get_world_size()
|
| 236 |
+
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
|
| 237 |
+
# Reset monitoring variables:
|
| 238 |
+
running_loss = 0
|
| 239 |
+
log_steps = 0
|
| 240 |
+
start_time = time.time()
|
| 241 |
+
|
| 242 |
+
# Save checkpoint:
|
| 243 |
+
if train_steps % args.ckpt_every == 0 and train_steps > 0:
|
| 244 |
+
if rank == 0:
|
| 245 |
+
if args.compile:
|
| 246 |
+
model_weight = vq_model.module._orig_mod.state_dict()
|
| 247 |
+
else:
|
| 248 |
+
model_weight = vq_model.module.state_dict()
|
| 249 |
+
checkpoint = {
|
| 250 |
+
"model": model_weight,
|
| 251 |
+
"optimizer": optimizer.state_dict(),
|
| 252 |
+
"discriminator": vq_loss.module.discriminator.state_dict(),
|
| 253 |
+
"optimizer_disc": optimizer_disc.state_dict(),
|
| 254 |
+
"steps": train_steps,
|
| 255 |
+
"args": args
|
| 256 |
+
}
|
| 257 |
+
if args.ema:
|
| 258 |
+
checkpoint["ema"] = ema.state_dict()
|
| 259 |
+
if not args.no_local_save:
|
| 260 |
+
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
|
| 261 |
+
torch.save(checkpoint, checkpoint_path)
|
| 262 |
+
logger.info(f"Saved checkpoint to {checkpoint_path}")
|
| 263 |
+
|
| 264 |
+
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
|
| 265 |
+
torch.save(checkpoint, cloud_checkpoint_path)
|
| 266 |
+
logger.info(f"Saved checkpoint in cloud to {cloud_checkpoint_path}")
|
| 267 |
+
dist.barrier()
|
| 268 |
+
|
| 269 |
+
vq_model.eval() # important! This disables randomized embedding dropout
|
| 270 |
+
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
|
| 271 |
+
|
| 272 |
+
logger.info("Done!")
|
| 273 |
+
dist.destroy_process_group()
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
if __name__ == "__main__":
|
| 278 |
+
parser = argparse.ArgumentParser()
|
| 279 |
+
parser.add_argument("--data-path", type=str, default=None)
|
| 280 |
+
parser.add_argument("--code-path", type=str, default=None)
|
| 281 |
+
parser.add_argument("--data-face-path", type=str, default=None, help="face datasets to improve vq model")
|
| 282 |
+
parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path')
|
| 283 |
+
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
|
| 284 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 285 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for resume training")
|
| 286 |
+
parser.add_argument("--finetune", action='store_true', help="finetune a pre-trained vq model")
|
| 287 |
+
parser.add_argument("--ema", action='store_true', help="whether using ema training")
|
| 288 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 289 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 290 |
+
parser.add_argument("--codebook-l2-norm", action='store_true', default=True, help="l2 norm codebook")
|
| 291 |
+
parser.add_argument("--codebook-weight", type=float, default=1.0, help="codebook loss weight for vector quantization")
|
| 292 |
+
parser.add_argument("--entropy-loss-ratio", type=float, default=0.0, help="entropy loss ratio in codebook loss")
|
| 293 |
+
parser.add_argument("--commit-loss-beta", type=float, default=0.25, help="commit loss beta in codebook loss")
|
| 294 |
+
parser.add_argument("--reconstruction-weight", type=float, default=1.0, help="reconstruction loss weight of image pixel")
|
| 295 |
+
parser.add_argument("--reconstruction-loss", type=str, default='l2', help="reconstruction loss type of image pixel")
|
| 296 |
+
parser.add_argument("--perceptual-weight", type=float, default=1.0, help="perceptual loss weight of LPIPS")
|
| 297 |
+
parser.add_argument("--disc-weight", type=float, default=0.5, help="discriminator loss weight for gan training")
|
| 298 |
+
parser.add_argument("--disc-start", type=int, default=20000, help="iteration to start discriminator training and loss")
|
| 299 |
+
parser.add_argument("--disc-type", type=str, choices=['patchgan', 'stylegan'], default='patchgan', help="discriminator type")
|
| 300 |
+
parser.add_argument("--disc-loss", type=str, choices=['hinge', 'vanilla', 'non-saturating'], default='hinge', help="discriminator loss")
|
| 301 |
+
parser.add_argument("--gen-loss", type=str, choices=['hinge', 'non-saturating'], default='hinge', help="generator loss for gan training")
|
| 302 |
+
parser.add_argument("--compile", action='store_true', default=False)
|
| 303 |
+
parser.add_argument("--dropout-p", type=float, default=0.0, help="dropout_p")
|
| 304 |
+
parser.add_argument("--results-dir", type=str, default="results_tokenizer_image")
|
| 305 |
+
parser.add_argument("--dataset", type=str, default='imagenet')
|
| 306 |
+
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
|
| 307 |
+
parser.add_argument("--epochs", type=int, default=40)
|
| 308 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 309 |
+
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use.")
|
| 310 |
+
parser.add_argument("--beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
| 311 |
+
parser.add_argument("--beta2", type=float, default=0.95, help="The beta2 parameter for the Adam optimizer.")
|
| 312 |
+
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
|
| 313 |
+
parser.add_argument("--global-batch-size", type=int, default=64)
|
| 314 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 315 |
+
parser.add_argument("--num-workers", type=int, default=16)
|
| 316 |
+
parser.add_argument("--log-every", type=int, default=100)
|
| 317 |
+
parser.add_argument("--ckpt-every", type=int, default=5000)
|
| 318 |
+
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
|
| 319 |
+
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 320 |
+
parser.add_argument("--condition", type=str, default='hed')
|
| 321 |
+
parser.add_argument("--get-condition-img", type=bool, default=False)
|
| 322 |
+
args = parser.parse_args()
|
| 323 |
+
main(args)
|
tokenizer/vqgan/README.md
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Pretrained VQVAE Models
|
| 2 |
+
|
| 3 |
+
### install
|
| 4 |
+
```
|
| 5 |
+
pip install omegaconf
|
| 6 |
+
pip install einops
|
| 7 |
+
```
|
| 8 |
+
* download all needed models from https://github.com/CompVis/taming-transformers and put in pretrained_models/
|
| 9 |
+
* pip install pytorch_lightning
|
| 10 |
+
* python3 tools/convert_pytorch_lightning_to_torch.py
|
| 11 |
+
* pip uninstall pytorch_lightning
|
| 12 |
+
|
| 13 |
+
### demo
|
| 14 |
+
```
|
| 15 |
+
cd ${THIS_REPO_ROOT}
|
| 16 |
+
python3 tokenizer/vqgan/taming_vqgan_demo.py
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
### acknowledge
|
| 20 |
+
Codes in this folder are modified from from https://github.com/CompVis/taming-transformers
|
| 21 |
+
|
tokenizer/vqgan/configs/vqgan_imagenet_f16_1024.yaml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
base_learning_rate: 4.5e-06
|
| 3 |
+
target: taming.models.vqgan.VQModel
|
| 4 |
+
params:
|
| 5 |
+
embed_dim: 256
|
| 6 |
+
n_embed: 1024
|
| 7 |
+
ddconfig:
|
| 8 |
+
double_z: false
|
| 9 |
+
z_channels: 256
|
| 10 |
+
resolution: 256
|
| 11 |
+
in_channels: 3
|
| 12 |
+
out_ch: 3
|
| 13 |
+
ch: 128
|
| 14 |
+
ch_mult:
|
| 15 |
+
- 1
|
| 16 |
+
- 1
|
| 17 |
+
- 2
|
| 18 |
+
- 2
|
| 19 |
+
- 4
|
| 20 |
+
num_res_blocks: 2
|
| 21 |
+
attn_resolutions:
|
| 22 |
+
- 16
|
| 23 |
+
dropout: 0.0
|
| 24 |
+
lossconfig:
|
| 25 |
+
target: taming.modules.losses.vqperceptual.VQLPIPSWithDiscriminator
|
| 26 |
+
params:
|
| 27 |
+
disc_conditional: false
|
| 28 |
+
disc_in_channels: 3
|
| 29 |
+
disc_start: 0
|
| 30 |
+
disc_weight: 0.8
|
| 31 |
+
codebook_weight: 1.0
|
| 32 |
+
|
tokenizer/vqgan/configs/vqgan_imagenet_f16_16384.yaml
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
base_learning_rate: 4.5e-06
|
| 3 |
+
target: taming.models.vqgan.VQModel
|
| 4 |
+
params:
|
| 5 |
+
embed_dim: 256
|
| 6 |
+
n_embed: 16384
|
| 7 |
+
monitor: val/rec_loss
|
| 8 |
+
ddconfig:
|
| 9 |
+
double_z: false
|
| 10 |
+
z_channels: 256
|
| 11 |
+
resolution: 256
|
| 12 |
+
in_channels: 3
|
| 13 |
+
out_ch: 3
|
| 14 |
+
ch: 128
|
| 15 |
+
ch_mult:
|
| 16 |
+
- 1
|
| 17 |
+
- 1
|
| 18 |
+
- 2
|
| 19 |
+
- 2
|
| 20 |
+
- 4
|
| 21 |
+
num_res_blocks: 2
|
| 22 |
+
attn_resolutions:
|
| 23 |
+
- 16
|
| 24 |
+
dropout: 0.0
|
| 25 |
+
lossconfig:
|
| 26 |
+
target: taming.modules.losses.vqperceptual.VQLPIPSWithDiscriminator
|
| 27 |
+
params:
|
| 28 |
+
disc_conditional: false
|
| 29 |
+
disc_in_channels: 3
|
| 30 |
+
disc_start: 0
|
| 31 |
+
disc_weight: 0.75
|
| 32 |
+
disc_num_layers: 2
|
| 33 |
+
codebook_weight: 1.0
|
| 34 |
+
|
tokenizer/vqgan/configs/vqgan_openimage_f8_16384.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
params:
|
| 3 |
+
embed_dim: 4
|
| 4 |
+
n_embed: 16384
|
| 5 |
+
ddconfig:
|
| 6 |
+
double_z: false
|
| 7 |
+
z_channels: 4
|
| 8 |
+
resolution: 256
|
| 9 |
+
in_channels: 3
|
| 10 |
+
out_ch: 3
|
| 11 |
+
ch: 128
|
| 12 |
+
ch_mult:
|
| 13 |
+
- 1
|
| 14 |
+
- 2
|
| 15 |
+
- 2
|
| 16 |
+
- 4
|
| 17 |
+
num_res_blocks: 2
|
| 18 |
+
attn_resolutions:
|
| 19 |
+
- 32
|
| 20 |
+
dropout: 0.0
|
tokenizer/vqgan/configs/vqgan_openimage_f8_256.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
params:
|
| 3 |
+
embed_dim: 4
|
| 4 |
+
n_embed: 256
|
| 5 |
+
ddconfig:
|
| 6 |
+
double_z: false
|
| 7 |
+
z_channels: 4
|
| 8 |
+
resolution: 256
|
| 9 |
+
in_channels: 3
|
| 10 |
+
out_ch: 3
|
| 11 |
+
ch: 128
|
| 12 |
+
ch_mult:
|
| 13 |
+
- 1
|
| 14 |
+
- 2
|
| 15 |
+
- 2
|
| 16 |
+
- 4
|
| 17 |
+
num_res_blocks: 2
|
| 18 |
+
attn_resolutions:
|
| 19 |
+
- 32
|
| 20 |
+
dropout: 0.0
|
tokenizer/vqgan/layer.py
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pytorch_diffusion + derived encoder decoder
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def nonlinearity(x):
|
| 9 |
+
# swish
|
| 10 |
+
return x*torch.sigmoid(x)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def Normalize(in_channels):
|
| 14 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Upsample(nn.Module):
|
| 18 |
+
def __init__(self, in_channels, with_conv):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.with_conv = with_conv
|
| 21 |
+
if self.with_conv:
|
| 22 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 23 |
+
in_channels,
|
| 24 |
+
kernel_size=3,
|
| 25 |
+
stride=1,
|
| 26 |
+
padding=1)
|
| 27 |
+
|
| 28 |
+
def forward(self, x):
|
| 29 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 30 |
+
if self.with_conv:
|
| 31 |
+
x = self.conv(x)
|
| 32 |
+
return x
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class Downsample(nn.Module):
|
| 36 |
+
def __init__(self, in_channels, with_conv):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.with_conv = with_conv
|
| 39 |
+
if self.with_conv:
|
| 40 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 41 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 42 |
+
in_channels,
|
| 43 |
+
kernel_size=3,
|
| 44 |
+
stride=2,
|
| 45 |
+
padding=0)
|
| 46 |
+
|
| 47 |
+
def forward(self, x):
|
| 48 |
+
if self.with_conv:
|
| 49 |
+
pad = (0,1,0,1)
|
| 50 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 51 |
+
x = self.conv(x)
|
| 52 |
+
else:
|
| 53 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 54 |
+
return x
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class ResnetBlock(nn.Module):
|
| 58 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
| 59 |
+
dropout, temb_channels=512):
|
| 60 |
+
super().__init__()
|
| 61 |
+
self.in_channels = in_channels
|
| 62 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 63 |
+
self.out_channels = out_channels
|
| 64 |
+
self.use_conv_shortcut = conv_shortcut
|
| 65 |
+
|
| 66 |
+
self.norm1 = Normalize(in_channels)
|
| 67 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
| 68 |
+
out_channels,
|
| 69 |
+
kernel_size=3,
|
| 70 |
+
stride=1,
|
| 71 |
+
padding=1)
|
| 72 |
+
if temb_channels > 0:
|
| 73 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
| 74 |
+
out_channels)
|
| 75 |
+
self.norm2 = Normalize(out_channels)
|
| 76 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 77 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
| 78 |
+
out_channels,
|
| 79 |
+
kernel_size=3,
|
| 80 |
+
stride=1,
|
| 81 |
+
padding=1)
|
| 82 |
+
if self.in_channels != self.out_channels:
|
| 83 |
+
if self.use_conv_shortcut:
|
| 84 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
| 85 |
+
out_channels,
|
| 86 |
+
kernel_size=3,
|
| 87 |
+
stride=1,
|
| 88 |
+
padding=1)
|
| 89 |
+
else:
|
| 90 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
| 91 |
+
out_channels,
|
| 92 |
+
kernel_size=1,
|
| 93 |
+
stride=1,
|
| 94 |
+
padding=0)
|
| 95 |
+
|
| 96 |
+
def forward(self, x, temb):
|
| 97 |
+
h = x
|
| 98 |
+
h = self.norm1(h)
|
| 99 |
+
h = nonlinearity(h)
|
| 100 |
+
h = self.conv1(h)
|
| 101 |
+
|
| 102 |
+
if temb is not None:
|
| 103 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 104 |
+
|
| 105 |
+
h = self.norm2(h)
|
| 106 |
+
h = nonlinearity(h)
|
| 107 |
+
h = self.dropout(h)
|
| 108 |
+
h = self.conv2(h)
|
| 109 |
+
|
| 110 |
+
if self.in_channels != self.out_channels:
|
| 111 |
+
if self.use_conv_shortcut:
|
| 112 |
+
x = self.conv_shortcut(x)
|
| 113 |
+
else:
|
| 114 |
+
x = self.nin_shortcut(x)
|
| 115 |
+
|
| 116 |
+
return x+h
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class AttnBlock(nn.Module):
|
| 120 |
+
def __init__(self, in_channels):
|
| 121 |
+
super().__init__()
|
| 122 |
+
self.in_channels = in_channels
|
| 123 |
+
|
| 124 |
+
self.norm = Normalize(in_channels)
|
| 125 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 126 |
+
in_channels,
|
| 127 |
+
kernel_size=1,
|
| 128 |
+
stride=1,
|
| 129 |
+
padding=0)
|
| 130 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 131 |
+
in_channels,
|
| 132 |
+
kernel_size=1,
|
| 133 |
+
stride=1,
|
| 134 |
+
padding=0)
|
| 135 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 136 |
+
in_channels,
|
| 137 |
+
kernel_size=1,
|
| 138 |
+
stride=1,
|
| 139 |
+
padding=0)
|
| 140 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 141 |
+
in_channels,
|
| 142 |
+
kernel_size=1,
|
| 143 |
+
stride=1,
|
| 144 |
+
padding=0)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def forward(self, x):
|
| 148 |
+
h_ = x
|
| 149 |
+
h_ = self.norm(h_)
|
| 150 |
+
q = self.q(h_)
|
| 151 |
+
k = self.k(h_)
|
| 152 |
+
v = self.v(h_)
|
| 153 |
+
|
| 154 |
+
# compute attention
|
| 155 |
+
b,c,h,w = q.shape
|
| 156 |
+
q = q.reshape(b,c,h*w)
|
| 157 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 158 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 159 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 160 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 161 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 162 |
+
|
| 163 |
+
# attend to values
|
| 164 |
+
v = v.reshape(b,c,h*w)
|
| 165 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 166 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 167 |
+
h_ = h_.reshape(b,c,h,w)
|
| 168 |
+
|
| 169 |
+
h_ = self.proj_out(h_)
|
| 170 |
+
|
| 171 |
+
return x+h_
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class Encoder(nn.Module):
|
| 176 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 177 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 178 |
+
resolution, z_channels, double_z=True, **ignore_kwargs):
|
| 179 |
+
super().__init__()
|
| 180 |
+
self.ch = ch
|
| 181 |
+
self.temb_ch = 0
|
| 182 |
+
self.num_resolutions = len(ch_mult)
|
| 183 |
+
self.num_res_blocks = num_res_blocks
|
| 184 |
+
self.resolution = resolution
|
| 185 |
+
self.in_channels = in_channels
|
| 186 |
+
|
| 187 |
+
# downsampling
|
| 188 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 189 |
+
self.ch,
|
| 190 |
+
kernel_size=3,
|
| 191 |
+
stride=1,
|
| 192 |
+
padding=1)
|
| 193 |
+
|
| 194 |
+
curr_res = resolution
|
| 195 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 196 |
+
self.down = nn.ModuleList()
|
| 197 |
+
for i_level in range(self.num_resolutions):
|
| 198 |
+
block = nn.ModuleList()
|
| 199 |
+
attn = nn.ModuleList()
|
| 200 |
+
block_in = ch*in_ch_mult[i_level]
|
| 201 |
+
block_out = ch*ch_mult[i_level]
|
| 202 |
+
for i_block in range(self.num_res_blocks):
|
| 203 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 204 |
+
out_channels=block_out,
|
| 205 |
+
temb_channels=self.temb_ch,
|
| 206 |
+
dropout=dropout))
|
| 207 |
+
block_in = block_out
|
| 208 |
+
if curr_res in attn_resolutions:
|
| 209 |
+
attn.append(AttnBlock(block_in))
|
| 210 |
+
down = nn.Module()
|
| 211 |
+
down.block = block
|
| 212 |
+
down.attn = attn
|
| 213 |
+
if i_level != self.num_resolutions-1:
|
| 214 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 215 |
+
curr_res = curr_res // 2
|
| 216 |
+
self.down.append(down)
|
| 217 |
+
|
| 218 |
+
# middle
|
| 219 |
+
self.mid = nn.Module()
|
| 220 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 221 |
+
out_channels=block_in,
|
| 222 |
+
temb_channels=self.temb_ch,
|
| 223 |
+
dropout=dropout)
|
| 224 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 225 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 226 |
+
out_channels=block_in,
|
| 227 |
+
temb_channels=self.temb_ch,
|
| 228 |
+
dropout=dropout)
|
| 229 |
+
|
| 230 |
+
# end
|
| 231 |
+
self.norm_out = Normalize(block_in)
|
| 232 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 233 |
+
2*z_channels if double_z else z_channels,
|
| 234 |
+
kernel_size=3,
|
| 235 |
+
stride=1,
|
| 236 |
+
padding=1)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def forward(self, x):
|
| 240 |
+
#assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
| 241 |
+
|
| 242 |
+
# timestep embedding
|
| 243 |
+
temb = None
|
| 244 |
+
|
| 245 |
+
# downsampling
|
| 246 |
+
hs = [self.conv_in(x)]
|
| 247 |
+
for i_level in range(self.num_resolutions):
|
| 248 |
+
for i_block in range(self.num_res_blocks):
|
| 249 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 250 |
+
if len(self.down[i_level].attn) > 0:
|
| 251 |
+
h = self.down[i_level].attn[i_block](h)
|
| 252 |
+
hs.append(h)
|
| 253 |
+
if i_level != self.num_resolutions-1:
|
| 254 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 255 |
+
|
| 256 |
+
# middle
|
| 257 |
+
h = hs[-1]
|
| 258 |
+
h = self.mid.block_1(h, temb)
|
| 259 |
+
h = self.mid.attn_1(h)
|
| 260 |
+
h = self.mid.block_2(h, temb)
|
| 261 |
+
|
| 262 |
+
# end
|
| 263 |
+
h = self.norm_out(h)
|
| 264 |
+
h = nonlinearity(h)
|
| 265 |
+
h = self.conv_out(h)
|
| 266 |
+
return h
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
class Decoder(nn.Module):
|
| 270 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 271 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 272 |
+
resolution, z_channels, give_pre_end=False, **ignorekwargs):
|
| 273 |
+
super().__init__()
|
| 274 |
+
self.ch = ch
|
| 275 |
+
self.temb_ch = 0
|
| 276 |
+
self.num_resolutions = len(ch_mult)
|
| 277 |
+
self.num_res_blocks = num_res_blocks
|
| 278 |
+
self.resolution = resolution
|
| 279 |
+
self.in_channels = in_channels
|
| 280 |
+
self.give_pre_end = give_pre_end
|
| 281 |
+
|
| 282 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 283 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 284 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 285 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
| 286 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 287 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
| 288 |
+
self.z_shape, np.prod(self.z_shape)))
|
| 289 |
+
|
| 290 |
+
# z to block_in
|
| 291 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 292 |
+
block_in,
|
| 293 |
+
kernel_size=3,
|
| 294 |
+
stride=1,
|
| 295 |
+
padding=1)
|
| 296 |
+
|
| 297 |
+
# middle
|
| 298 |
+
self.mid = nn.Module()
|
| 299 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 300 |
+
out_channels=block_in,
|
| 301 |
+
temb_channels=self.temb_ch,
|
| 302 |
+
dropout=dropout)
|
| 303 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 304 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 305 |
+
out_channels=block_in,
|
| 306 |
+
temb_channels=self.temb_ch,
|
| 307 |
+
dropout=dropout)
|
| 308 |
+
|
| 309 |
+
# upsampling
|
| 310 |
+
self.up = nn.ModuleList()
|
| 311 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 312 |
+
block = nn.ModuleList()
|
| 313 |
+
attn = nn.ModuleList()
|
| 314 |
+
block_out = ch*ch_mult[i_level]
|
| 315 |
+
for i_block in range(self.num_res_blocks+1):
|
| 316 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 317 |
+
out_channels=block_out,
|
| 318 |
+
temb_channels=self.temb_ch,
|
| 319 |
+
dropout=dropout))
|
| 320 |
+
block_in = block_out
|
| 321 |
+
if curr_res in attn_resolutions:
|
| 322 |
+
attn.append(AttnBlock(block_in))
|
| 323 |
+
up = nn.Module()
|
| 324 |
+
up.block = block
|
| 325 |
+
up.attn = attn
|
| 326 |
+
if i_level != 0:
|
| 327 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 328 |
+
curr_res = curr_res * 2
|
| 329 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 330 |
+
|
| 331 |
+
# end
|
| 332 |
+
self.norm_out = Normalize(block_in)
|
| 333 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 334 |
+
out_ch,
|
| 335 |
+
kernel_size=3,
|
| 336 |
+
stride=1,
|
| 337 |
+
padding=1)
|
| 338 |
+
|
| 339 |
+
def forward(self, z):
|
| 340 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 341 |
+
self.last_z_shape = z.shape
|
| 342 |
+
|
| 343 |
+
# timestep embedding
|
| 344 |
+
temb = None
|
| 345 |
+
|
| 346 |
+
# z to block_in
|
| 347 |
+
h = self.conv_in(z)
|
| 348 |
+
|
| 349 |
+
# middle
|
| 350 |
+
h = self.mid.block_1(h, temb)
|
| 351 |
+
h = self.mid.attn_1(h)
|
| 352 |
+
h = self.mid.block_2(h, temb)
|
| 353 |
+
|
| 354 |
+
# upsampling
|
| 355 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 356 |
+
for i_block in range(self.num_res_blocks+1):
|
| 357 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 358 |
+
if len(self.up[i_level].attn) > 0:
|
| 359 |
+
h = self.up[i_level].attn[i_block](h)
|
| 360 |
+
if i_level != 0:
|
| 361 |
+
h = self.up[i_level].upsample(h)
|
| 362 |
+
|
| 363 |
+
# end
|
| 364 |
+
if self.give_pre_end:
|
| 365 |
+
return h
|
| 366 |
+
|
| 367 |
+
h = self.norm_out(h)
|
| 368 |
+
h = nonlinearity(h)
|
| 369 |
+
h = self.conv_out(h)
|
| 370 |
+
return h
|
| 371 |
+
|
| 372 |
+
|
tokenizer/vqgan/model.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from tokenizer.vqgan.layer import Encoder, Decoder
|
| 6 |
+
from tokenizer.vqgan.quantize import VectorQuantizer2 as VectorQuantizer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
VQGAN_FROM_TAMING = {
|
| 10 |
+
'vqgan_imagenet_f16_1024': (
|
| 11 |
+
'tokenizer/vqgan/configs/vqgan_imagenet_f16_1024.yaml',
|
| 12 |
+
'pretrained_models/vqgan_imagenet_f16_1024/ckpts/last.pth'),
|
| 13 |
+
'vqgan_imagenet_f16_16384': (
|
| 14 |
+
'tokenizer/vqgan/configs/vqgan_imagenet_f16_16384.yaml',
|
| 15 |
+
'pretrained_models/vqgan_imagenet_f16_16384/ckpts/last.pth'),
|
| 16 |
+
'vqgan_openimage_f8_256': (
|
| 17 |
+
'tokenizer/vqgan/configs/vqgan_openimage_f8_256.yaml',
|
| 18 |
+
'pretrained_models/vq-f8-n256/model.pth'),
|
| 19 |
+
'vqgan_openimage_f8_16384': (
|
| 20 |
+
'tokenizer/vqgan/configs/vqgan_openimage_f8_16384.yaml',
|
| 21 |
+
'pretrained_models/vq-f8/model.pth'),
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
class VQModel(nn.Module):
|
| 25 |
+
def __init__(self,
|
| 26 |
+
ddconfig,
|
| 27 |
+
n_embed,
|
| 28 |
+
embed_dim,
|
| 29 |
+
ckpt_path=None,
|
| 30 |
+
ignore_keys=[],
|
| 31 |
+
image_key="image",
|
| 32 |
+
colorize_nlabels=None,
|
| 33 |
+
monitor=None,
|
| 34 |
+
remap=None,
|
| 35 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
| 36 |
+
**kwargs,
|
| 37 |
+
):
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.image_key = image_key
|
| 40 |
+
self.encoder = Encoder(**ddconfig)
|
| 41 |
+
self.decoder = Decoder(**ddconfig)
|
| 42 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
| 43 |
+
remap=remap, sane_index_shape=sane_index_shape)
|
| 44 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
| 45 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 46 |
+
if ckpt_path is not None:
|
| 47 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 48 |
+
self.image_key = image_key
|
| 49 |
+
if colorize_nlabels is not None:
|
| 50 |
+
assert type(colorize_nlabels)==int
|
| 51 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 52 |
+
if monitor is not None:
|
| 53 |
+
self.monitor = monitor
|
| 54 |
+
|
| 55 |
+
def init_from_ckpt(self, path, ignore_keys=list(), logging=True):
|
| 56 |
+
model_weight = torch.load(path, map_location="cpu")["state_dict"]
|
| 57 |
+
keys = list(model_weight.keys())
|
| 58 |
+
for k in keys:
|
| 59 |
+
for ik in ignore_keys:
|
| 60 |
+
if k.startswith(ik):
|
| 61 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 62 |
+
del model_weight[k]
|
| 63 |
+
missing, unexpected = self.load_state_dict(model_weight, strict=False)
|
| 64 |
+
if logging:
|
| 65 |
+
print(f"Restored from {path}")
|
| 66 |
+
print(f"Missing Keys in State Dict: {missing}")
|
| 67 |
+
print(f"Unexpected Keys in State Dict: {unexpected}")
|
| 68 |
+
|
| 69 |
+
def encode(self, x):
|
| 70 |
+
h = self.encoder(x)
|
| 71 |
+
h = self.quant_conv(h)
|
| 72 |
+
quant, emb_loss, info = self.quantize(h)
|
| 73 |
+
return quant, emb_loss, info
|
| 74 |
+
|
| 75 |
+
def decode(self, quant):
|
| 76 |
+
quant = self.post_quant_conv(quant)
|
| 77 |
+
dec = self.decoder(quant)
|
| 78 |
+
return dec
|
| 79 |
+
|
| 80 |
+
def decode_code(self, code_b, shape, channel_first=True):
|
| 81 |
+
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first)
|
| 82 |
+
dec = self.decode(quant_b)
|
| 83 |
+
return dec
|
| 84 |
+
|
| 85 |
+
def forward(self, input):
|
| 86 |
+
quant, diff, _ = self.encode(input)
|
| 87 |
+
dec = self.decode(quant)
|
| 88 |
+
return dec, diff
|
tokenizer/vqgan/quantize.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
from torch import einsum
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class VectorQuantizer(nn.Module):
|
| 10 |
+
"""
|
| 11 |
+
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
|
| 12 |
+
____________________________________________
|
| 13 |
+
Discretization bottleneck part of the VQ-VAE.
|
| 14 |
+
Inputs:
|
| 15 |
+
- n_e : number of embeddings
|
| 16 |
+
- e_dim : dimension of embedding
|
| 17 |
+
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
| 18 |
+
_____________________________________________
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
# NOTE: this class contains a bug regarding beta; see VectorQuantizer2 for
|
| 22 |
+
# a fix and use legacy=False to apply that fix. VectorQuantizer2 can be
|
| 23 |
+
# used wherever VectorQuantizer has been used before and is additionally
|
| 24 |
+
# more efficient.
|
| 25 |
+
def __init__(self, n_e, e_dim, beta):
|
| 26 |
+
super(VectorQuantizer, self).__init__()
|
| 27 |
+
self.n_e = n_e
|
| 28 |
+
self.e_dim = e_dim
|
| 29 |
+
self.beta = beta
|
| 30 |
+
|
| 31 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
| 32 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
| 33 |
+
|
| 34 |
+
def forward(self, z):
|
| 35 |
+
"""
|
| 36 |
+
Inputs the output of the encoder network z and maps it to a discrete
|
| 37 |
+
one-hot vector that is the index of the closest embedding vector e_j
|
| 38 |
+
z (continuous) -> z_q (discrete)
|
| 39 |
+
z.shape = (batch, channel, height, width)
|
| 40 |
+
quantization pipeline:
|
| 41 |
+
1. get encoder input (B,C,H,W)
|
| 42 |
+
2. flatten input to (B*H*W,C)
|
| 43 |
+
"""
|
| 44 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
| 45 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
| 46 |
+
z_flattened = z.view(-1, self.e_dim)
|
| 47 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 48 |
+
|
| 49 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
| 50 |
+
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
| 51 |
+
torch.matmul(z_flattened, self.embedding.weight.t())
|
| 52 |
+
|
| 53 |
+
## could possible replace this here
|
| 54 |
+
# #\start...
|
| 55 |
+
# find closest encodings
|
| 56 |
+
min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
|
| 57 |
+
|
| 58 |
+
min_encodings = torch.zeros(
|
| 59 |
+
min_encoding_indices.shape[0], self.n_e).to(z)
|
| 60 |
+
min_encodings.scatter_(1, min_encoding_indices, 1)
|
| 61 |
+
|
| 62 |
+
# dtype min encodings: torch.float32
|
| 63 |
+
# min_encodings shape: torch.Size([2048, 512])
|
| 64 |
+
# min_encoding_indices.shape: torch.Size([2048, 1])
|
| 65 |
+
|
| 66 |
+
# get quantized latent vectors
|
| 67 |
+
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
| 68 |
+
#.........\end
|
| 69 |
+
|
| 70 |
+
# with:
|
| 71 |
+
# .........\start
|
| 72 |
+
#min_encoding_indices = torch.argmin(d, dim=1)
|
| 73 |
+
#z_q = self.embedding(min_encoding_indices)
|
| 74 |
+
# ......\end......... (TODO)
|
| 75 |
+
|
| 76 |
+
# compute loss for embedding
|
| 77 |
+
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
|
| 78 |
+
torch.mean((z_q - z.detach()) ** 2)
|
| 79 |
+
|
| 80 |
+
# preserve gradients
|
| 81 |
+
z_q = z + (z_q - z).detach()
|
| 82 |
+
|
| 83 |
+
# perplexity
|
| 84 |
+
e_mean = torch.mean(min_encodings, dim=0)
|
| 85 |
+
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
| 86 |
+
|
| 87 |
+
# reshape back to match original input shape
|
| 88 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 89 |
+
|
| 90 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
| 91 |
+
|
| 92 |
+
def get_codebook_entry(self, indices, shape):
|
| 93 |
+
# shape specifying (batch, height, width, channel)
|
| 94 |
+
# TODO: check for more easy handling with nn.Embedding
|
| 95 |
+
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
|
| 96 |
+
min_encodings.scatter_(1, indices[:,None], 1)
|
| 97 |
+
|
| 98 |
+
# get quantized latent vectors
|
| 99 |
+
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
| 100 |
+
|
| 101 |
+
if shape is not None:
|
| 102 |
+
z_q = z_q.view(shape)
|
| 103 |
+
|
| 104 |
+
# reshape back to match original input shape
|
| 105 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 106 |
+
|
| 107 |
+
return z_q
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class VectorQuantizer2(nn.Module):
|
| 111 |
+
"""
|
| 112 |
+
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
| 113 |
+
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
| 114 |
+
"""
|
| 115 |
+
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
| 116 |
+
# backwards compatibility we use the buggy version by default, but you can
|
| 117 |
+
# specify legacy=False to fix it.
|
| 118 |
+
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
|
| 119 |
+
sane_index_shape=False, legacy=True):
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.n_e = n_e
|
| 122 |
+
self.e_dim = e_dim
|
| 123 |
+
self.beta = beta
|
| 124 |
+
self.legacy = legacy
|
| 125 |
+
|
| 126 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
| 127 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
| 128 |
+
|
| 129 |
+
self.remap = remap
|
| 130 |
+
if self.remap is not None:
|
| 131 |
+
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
| 132 |
+
self.re_embed = self.used.shape[0]
|
| 133 |
+
self.unknown_index = unknown_index # "random" or "extra" or integer
|
| 134 |
+
if self.unknown_index == "extra":
|
| 135 |
+
self.unknown_index = self.re_embed
|
| 136 |
+
self.re_embed = self.re_embed+1
|
| 137 |
+
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
| 138 |
+
f"Using {self.unknown_index} for unknown indices.")
|
| 139 |
+
else:
|
| 140 |
+
self.re_embed = n_e
|
| 141 |
+
|
| 142 |
+
self.sane_index_shape = sane_index_shape
|
| 143 |
+
|
| 144 |
+
def remap_to_used(self, inds):
|
| 145 |
+
ishape = inds.shape
|
| 146 |
+
assert len(ishape)>1
|
| 147 |
+
inds = inds.reshape(ishape[0],-1)
|
| 148 |
+
used = self.used.to(inds)
|
| 149 |
+
match = (inds[:,:,None]==used[None,None,...]).long()
|
| 150 |
+
new = match.argmax(-1)
|
| 151 |
+
unknown = match.sum(2)<1
|
| 152 |
+
if self.unknown_index == "random":
|
| 153 |
+
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
|
| 154 |
+
else:
|
| 155 |
+
new[unknown] = self.unknown_index
|
| 156 |
+
return new.reshape(ishape)
|
| 157 |
+
|
| 158 |
+
def unmap_to_all(self, inds):
|
| 159 |
+
ishape = inds.shape
|
| 160 |
+
assert len(ishape)>1
|
| 161 |
+
inds = inds.reshape(ishape[0],-1)
|
| 162 |
+
used = self.used.to(inds)
|
| 163 |
+
if self.re_embed > self.used.shape[0]: # extra token
|
| 164 |
+
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
|
| 165 |
+
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
|
| 166 |
+
return back.reshape(ishape)
|
| 167 |
+
|
| 168 |
+
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
| 169 |
+
assert temp is None or temp==1.0, "Only for interface compatible with Gumbel"
|
| 170 |
+
assert rescale_logits==False, "Only for interface compatible with Gumbel"
|
| 171 |
+
assert return_logits==False, "Only for interface compatible with Gumbel"
|
| 172 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
| 173 |
+
z = rearrange(z, 'b c h w -> b h w c').contiguous()
|
| 174 |
+
z_flattened = z.view(-1, self.e_dim)
|
| 175 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 176 |
+
|
| 177 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
| 178 |
+
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
| 179 |
+
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
|
| 180 |
+
|
| 181 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
| 182 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
| 183 |
+
perplexity = None
|
| 184 |
+
min_encodings = None
|
| 185 |
+
|
| 186 |
+
# compute loss for embedding
|
| 187 |
+
if not self.legacy:
|
| 188 |
+
loss = self.beta * torch.mean((z_q.detach()-z)**2) + \
|
| 189 |
+
torch.mean((z_q - z.detach()) ** 2)
|
| 190 |
+
else:
|
| 191 |
+
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
|
| 192 |
+
torch.mean((z_q - z.detach()) ** 2)
|
| 193 |
+
|
| 194 |
+
# preserve gradients
|
| 195 |
+
z_q = z + (z_q - z).detach()
|
| 196 |
+
|
| 197 |
+
# reshape back to match original input shape
|
| 198 |
+
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
|
| 199 |
+
|
| 200 |
+
if self.remap is not None:
|
| 201 |
+
min_encoding_indices = min_encoding_indices.reshape(z.shape[0],-1) # add batch axis
|
| 202 |
+
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
| 203 |
+
min_encoding_indices = min_encoding_indices.reshape(-1,1) # flatten
|
| 204 |
+
|
| 205 |
+
if self.sane_index_shape:
|
| 206 |
+
min_encoding_indices = min_encoding_indices.reshape(
|
| 207 |
+
z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
| 208 |
+
|
| 209 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
| 210 |
+
|
| 211 |
+
def get_codebook_entry(self, indices, shape, channel_first=True):
|
| 212 |
+
# shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel)
|
| 213 |
+
if self.remap is not None:
|
| 214 |
+
indices = indices.reshape(shape[0],-1) # add batch axis
|
| 215 |
+
indices = self.unmap_to_all(indices)
|
| 216 |
+
indices = indices.reshape(-1) # flatten again
|
| 217 |
+
|
| 218 |
+
# get quantized latent vectors
|
| 219 |
+
z_q = self.embedding(indices) # (b*h*w, c)
|
| 220 |
+
|
| 221 |
+
if shape is not None:
|
| 222 |
+
if channel_first:
|
| 223 |
+
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1])
|
| 224 |
+
# reshape back to match original input shape
|
| 225 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 226 |
+
else:
|
| 227 |
+
z_q = z_q.view(shape)
|
| 228 |
+
|
| 229 |
+
return z_q
|
tokenizer/vqgan/reconstruction_vqgan_ddp.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 4 |
+
import torch.distributed as dist
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 7 |
+
from torchvision.datasets import ImageFolder
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import os
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import numpy as np
|
| 13 |
+
import itertools
|
| 14 |
+
import argparse
|
| 15 |
+
import random
|
| 16 |
+
|
| 17 |
+
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
|
| 18 |
+
from skimage.metrics import structural_similarity as ssim_loss
|
| 19 |
+
from omegaconf import OmegaConf
|
| 20 |
+
from tokenizer.vqgan.model import VQModel
|
| 21 |
+
from tokenizer.vqgan.model import VQGAN_FROM_TAMING
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class SingleFolderDataset(Dataset):
|
| 25 |
+
def __init__(self, directory, transform=None):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.directory = directory
|
| 28 |
+
self.transform = transform
|
| 29 |
+
self.image_paths = [os.path.join(directory, file_name) for file_name in os.listdir(directory)
|
| 30 |
+
if os.path.isfile(os.path.join(directory, file_name))]
|
| 31 |
+
|
| 32 |
+
def __len__(self):
|
| 33 |
+
return len(self.image_paths)
|
| 34 |
+
|
| 35 |
+
def __getitem__(self, idx):
|
| 36 |
+
image_path = self.image_paths[idx]
|
| 37 |
+
image = Image.open(image_path).convert('RGB')
|
| 38 |
+
if self.transform:
|
| 39 |
+
image = self.transform(image)
|
| 40 |
+
return image, torch.tensor(0)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def create_npz_from_sample_folder(sample_dir, num=50_000):
|
| 44 |
+
"""
|
| 45 |
+
Builds a single .npz file from a folder of .png samples.
|
| 46 |
+
"""
|
| 47 |
+
samples = []
|
| 48 |
+
for i in tqdm(range(num), desc="Building .npz file from samples"):
|
| 49 |
+
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
|
| 50 |
+
sample_np = np.asarray(sample_pil).astype(np.uint8)
|
| 51 |
+
samples.append(sample_np)
|
| 52 |
+
|
| 53 |
+
random.shuffle(samples) # This is very important for IS(Inception Score) !!!
|
| 54 |
+
samples = np.stack(samples)
|
| 55 |
+
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
|
| 56 |
+
npz_path = f"{sample_dir}.npz"
|
| 57 |
+
np.savez(npz_path, arr_0=samples)
|
| 58 |
+
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
|
| 59 |
+
return npz_path
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def center_crop_arr(pil_image, image_size):
|
| 63 |
+
"""
|
| 64 |
+
Center cropping implementation from ADM.
|
| 65 |
+
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
|
| 66 |
+
"""
|
| 67 |
+
while min(*pil_image.size) >= 2 * image_size:
|
| 68 |
+
pil_image = pil_image.resize(
|
| 69 |
+
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
scale = image_size / min(*pil_image.size)
|
| 73 |
+
pil_image = pil_image.resize(
|
| 74 |
+
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
arr = np.array(pil_image)
|
| 78 |
+
crop_y = (arr.shape[0] - image_size) // 2
|
| 79 |
+
crop_x = (arr.shape[1] - image_size) // 2
|
| 80 |
+
return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def main(args):
|
| 84 |
+
# Setup PyTorch:
|
| 85 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 86 |
+
torch.set_grad_enabled(False)
|
| 87 |
+
|
| 88 |
+
# Setup DDP:
|
| 89 |
+
dist.init_process_group("nccl")
|
| 90 |
+
rank = dist.get_rank()
|
| 91 |
+
device = rank % torch.cuda.device_count()
|
| 92 |
+
seed = args.global_seed * dist.get_world_size() + rank
|
| 93 |
+
torch.manual_seed(seed)
|
| 94 |
+
torch.cuda.set_device(device)
|
| 95 |
+
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
|
| 96 |
+
|
| 97 |
+
# create and load vqgan
|
| 98 |
+
cfg, ckpt = VQGAN_FROM_TAMING[args.vqgan]
|
| 99 |
+
config = OmegaConf.load(cfg)
|
| 100 |
+
vq_model = VQModel(**config.model.get("params", dict())).to(device)
|
| 101 |
+
vq_model.init_from_ckpt(ckpt, logging=False)
|
| 102 |
+
vq_model.eval()
|
| 103 |
+
|
| 104 |
+
# Create folder to save samples:
|
| 105 |
+
folder_name = f"{args.vqgan}-{args.dataset}-size-{args.image_size}-seed-{args.global_seed}"
|
| 106 |
+
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
|
| 107 |
+
if rank == 0:
|
| 108 |
+
os.makedirs(sample_folder_dir, exist_ok=True)
|
| 109 |
+
print(f"Saving .png samples at {sample_folder_dir}")
|
| 110 |
+
dist.barrier()
|
| 111 |
+
|
| 112 |
+
# Setup data:
|
| 113 |
+
transform = transforms.Compose([
|
| 114 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
|
| 115 |
+
transforms.ToTensor(),
|
| 116 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 117 |
+
])
|
| 118 |
+
|
| 119 |
+
if args.dataset == 'imagenet':
|
| 120 |
+
dataset = ImageFolder(args.data_path, transform=transform)
|
| 121 |
+
num_fid_samples = 50000
|
| 122 |
+
elif args.dataset == 'coco':
|
| 123 |
+
dataset = SingleFolderDataset(args.data_path, transform=transform)
|
| 124 |
+
num_fid_samples = 5000
|
| 125 |
+
else:
|
| 126 |
+
raise Exception("please check dataset")
|
| 127 |
+
|
| 128 |
+
sampler = DistributedSampler(
|
| 129 |
+
dataset,
|
| 130 |
+
num_replicas=dist.get_world_size(),
|
| 131 |
+
rank=rank,
|
| 132 |
+
shuffle=False,
|
| 133 |
+
seed=args.global_seed
|
| 134 |
+
)
|
| 135 |
+
loader = DataLoader(
|
| 136 |
+
dataset,
|
| 137 |
+
batch_size=args.per_proc_batch_size,
|
| 138 |
+
shuffle=False,
|
| 139 |
+
sampler=sampler,
|
| 140 |
+
num_workers=args.num_workers,
|
| 141 |
+
pin_memory=True,
|
| 142 |
+
drop_last=False
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
|
| 146 |
+
n = args.per_proc_batch_size
|
| 147 |
+
global_batch_size = n * dist.get_world_size()
|
| 148 |
+
|
| 149 |
+
psnr_val_rgb = []
|
| 150 |
+
ssim_val_rgb = []
|
| 151 |
+
loader = tqdm(loader) if rank == 0 else loader
|
| 152 |
+
total = 0
|
| 153 |
+
for x, _ in loader:
|
| 154 |
+
rgb_gts = x
|
| 155 |
+
rgb_gts = (rgb_gts.permute(0, 2, 3, 1).to("cpu").numpy() + 1.0) / 2.0 # rgb_gt value is between [0, 1]
|
| 156 |
+
x = x.to(device)
|
| 157 |
+
with torch.no_grad():
|
| 158 |
+
latent, _, [_, _, indices] = vq_model.encode(x)
|
| 159 |
+
samples = vq_model.decode_code(indices, latent.shape) # output value is between [-1, 1]
|
| 160 |
+
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
|
| 161 |
+
|
| 162 |
+
# Save samples to disk as individual .png files
|
| 163 |
+
for i, (sample, rgb_gt) in enumerate(zip(samples, rgb_gts)):
|
| 164 |
+
index = i * dist.get_world_size() + rank + total
|
| 165 |
+
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
|
| 166 |
+
# metric
|
| 167 |
+
rgb_restored = sample.astype(np.float32) / 255. # rgb_restored value is between [0, 1]
|
| 168 |
+
psnr = psnr_loss(rgb_restored, rgb_gt)
|
| 169 |
+
ssim = ssim_loss(rgb_restored, rgb_gt, multichannel=True, data_range=2.0, channel_axis=-1)
|
| 170 |
+
psnr_val_rgb.append(psnr)
|
| 171 |
+
ssim_val_rgb.append(ssim)
|
| 172 |
+
total += global_batch_size
|
| 173 |
+
|
| 174 |
+
# ------------------------------------
|
| 175 |
+
# Summary
|
| 176 |
+
# ------------------------------------
|
| 177 |
+
# Make sure all processes have finished saving their samples
|
| 178 |
+
dist.barrier()
|
| 179 |
+
world_size = dist.get_world_size()
|
| 180 |
+
gather_psnr_val = [None for _ in range(world_size)]
|
| 181 |
+
gather_ssim_val = [None for _ in range(world_size)]
|
| 182 |
+
dist.all_gather_object(gather_psnr_val, psnr_val_rgb)
|
| 183 |
+
dist.all_gather_object(gather_ssim_val, ssim_val_rgb)
|
| 184 |
+
|
| 185 |
+
if rank == 0:
|
| 186 |
+
gather_psnr_val = list(itertools.chain(*gather_psnr_val))
|
| 187 |
+
gather_ssim_val = list(itertools.chain(*gather_ssim_val))
|
| 188 |
+
psnr_val_rgb = sum(gather_psnr_val) / len(gather_psnr_val)
|
| 189 |
+
ssim_val_rgb = sum(gather_ssim_val) / len(gather_ssim_val)
|
| 190 |
+
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb))
|
| 191 |
+
|
| 192 |
+
result_file = f"{sample_folder_dir}_results.txt"
|
| 193 |
+
print("writing results to {}".format(result_file))
|
| 194 |
+
with open(result_file, 'w') as f:
|
| 195 |
+
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb), file=f)
|
| 196 |
+
|
| 197 |
+
create_npz_from_sample_folder(sample_folder_dir, num_fid_samples)
|
| 198 |
+
print("Done.")
|
| 199 |
+
|
| 200 |
+
dist.barrier()
|
| 201 |
+
dist.destroy_process_group()
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
if __name__ == "__main__":
|
| 205 |
+
parser = argparse.ArgumentParser()
|
| 206 |
+
parser.add_argument("--data-path", type=str, required=True)
|
| 207 |
+
parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco'], default='imagenet')
|
| 208 |
+
parser.add_argument("--vqgan", type=str, choices=list(VQGAN_FROM_TAMING.keys()), default="vqgan_imagenet_f16_16384")
|
| 209 |
+
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
|
| 210 |
+
parser.add_argument("--sample-dir", type=str, default="reconstructions")
|
| 211 |
+
parser.add_argument("--per-proc-batch-size", type=int, default=32)
|
| 212 |
+
parser.add_argument("--global-seed", type=int, default=0)
|
| 213 |
+
parser.add_argument("--num-workers", type=int, default=4)
|
| 214 |
+
args = parser.parse_args()
|
| 215 |
+
main(args)
|
tokenizer/vqgan/taming_vqgan_demo.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from omegaconf import OmegaConf
|
| 7 |
+
from tokenizer.vqgan.model import VQModel
|
| 8 |
+
from tokenizer.vqgan.model import VQGAN_FROM_TAMING
|
| 9 |
+
|
| 10 |
+
# before running demo, make sure to:
|
| 11 |
+
# (1) download all needed models from https://github.com/CompVis/taming-transformers and put in pretrained_models/
|
| 12 |
+
# (2) pip install pytorch_lightning
|
| 13 |
+
# (3) python3 tools/convert_pytorch_lightning_to_torch.py
|
| 14 |
+
# (4) pip uninstall pytorch_lightning
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def main(args):
|
| 18 |
+
# Setup PyTorch:
|
| 19 |
+
torch.manual_seed(args.seed)
|
| 20 |
+
torch.set_grad_enabled(False)
|
| 21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
|
| 23 |
+
# create and load model
|
| 24 |
+
cfg, ckpt = VQGAN_FROM_TAMING[args.vqgan]
|
| 25 |
+
config = OmegaConf.load(cfg)
|
| 26 |
+
model = VQModel(**config.model.get("params", dict()))
|
| 27 |
+
model.init_from_ckpt(ckpt)
|
| 28 |
+
model.to(device)
|
| 29 |
+
model.eval()
|
| 30 |
+
|
| 31 |
+
# load image
|
| 32 |
+
img_path = args.image_path
|
| 33 |
+
out_path = args.image_path.replace('.jpg', '_vqgan.jpg').replace('.jpeg', '_vqgan.jpeg').replace('.png', '_vqgan.png')
|
| 34 |
+
input_size = args.image_size
|
| 35 |
+
img = Image.open(img_path).convert("RGB")
|
| 36 |
+
|
| 37 |
+
# preprocess
|
| 38 |
+
size_org = img.size
|
| 39 |
+
img = img.resize((input_size, input_size))
|
| 40 |
+
img = np.array(img) / 255.
|
| 41 |
+
x = 2.0 * img - 1.0 # x value is between [-1, 1]
|
| 42 |
+
x = torch.tensor(x)
|
| 43 |
+
x = x.unsqueeze(dim=0)
|
| 44 |
+
x = torch.einsum('nhwc->nchw', x)
|
| 45 |
+
x_input = x.float().to("cuda")
|
| 46 |
+
|
| 47 |
+
# inference
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
latent, _, [_, _, indices] = model.encode(x_input)
|
| 50 |
+
output = model.decode_code(indices, latent.shape) # output value is between [-1, 1]
|
| 51 |
+
|
| 52 |
+
# postprocess
|
| 53 |
+
output = F.interpolate(output, size=[size_org[1], size_org[0]], mode='bilinear').permute(0, 2, 3, 1)[0]
|
| 54 |
+
sample = torch.clamp(127.5 * output + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
|
| 55 |
+
|
| 56 |
+
# save
|
| 57 |
+
Image.fromarray(sample).save(out_path)
|
| 58 |
+
print("Reconstructed image is saved to {}".format(out_path))
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
if __name__ == "__main__":
|
| 62 |
+
parser = argparse.ArgumentParser()
|
| 63 |
+
parser.add_argument("--image-path", type=str, default="assets/example.jpg")
|
| 64 |
+
parser.add_argument("--vqgan", type=str, choices=list(VQGAN_FROM_TAMING.keys()), default="vqgan_openimage_f8_16384")
|
| 65 |
+
parser.add_argument("--image-size", type=int, choices=[256, 512, 1024], default=512)
|
| 66 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 67 |
+
args = parser.parse_args()
|
| 68 |
+
main(args)
|
tools/check_image_codes.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 6 |
+
from torchvision.utils import save_image
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def main(args):
|
| 10 |
+
# Setup PyTorch:
|
| 11 |
+
torch.manual_seed(args.seed)
|
| 12 |
+
torch.set_grad_enabled(False)
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
|
| 15 |
+
# create and load model
|
| 16 |
+
vq_model = VQ_models[args.vq_model](
|
| 17 |
+
codebook_size=args.codebook_size,
|
| 18 |
+
codebook_embed_dim=args.codebook_embed_dim)
|
| 19 |
+
vq_model.to(device)
|
| 20 |
+
vq_model.eval()
|
| 21 |
+
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
|
| 22 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 23 |
+
del checkpoint
|
| 24 |
+
|
| 25 |
+
# load image code
|
| 26 |
+
latent_dim = args.codebook_embed_dim
|
| 27 |
+
latent_size = args.image_size // args.downsample_size
|
| 28 |
+
codes = torch.from_numpy(np.load(args.code_path)).to(device)
|
| 29 |
+
if codes.ndim == 3: # flip augmentation
|
| 30 |
+
qzshape = (codes.shape[1], latent_dim, latent_size, latent_size)
|
| 31 |
+
else:
|
| 32 |
+
qzshape = (1, latent_dim, latent_size, latent_size)
|
| 33 |
+
index_sample = codes.reshape(-1)
|
| 34 |
+
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
|
| 35 |
+
|
| 36 |
+
# save
|
| 37 |
+
out_path = "sample_image_code.png"
|
| 38 |
+
nrow = max(4, int(codes.shape[1]//2))
|
| 39 |
+
save_image(samples, out_path, nrow=nrow, normalize=True, value_range=(-1, 1))
|
| 40 |
+
print("Reconstructed image is saved to {}".format(out_path))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
if __name__ == "__main__":
|
| 45 |
+
parser = argparse.ArgumentParser()
|
| 46 |
+
parser.add_argument("--code-path", type=str, required=True)
|
| 47 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 48 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 49 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 50 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 51 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
|
| 52 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 53 |
+
parser.add_argument("--seed", type=int, default=0)
|
| 54 |
+
args = parser.parse_args()
|
| 55 |
+
main(args)
|
tools/convert_pytorch_lightning_to_torch.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
MODEL_PATH = 'pretrained_models'
|
| 5 |
+
pt_lightnings = [
|
| 6 |
+
'vqgan_imagenet_f16_1024/ckpts/last.ckpt',
|
| 7 |
+
'vqgan_imagenet_f16_16384/ckpts/last.ckpt',
|
| 8 |
+
'vq-f8-n256/model.ckpt',
|
| 9 |
+
'vq-f8/model.ckpt',
|
| 10 |
+
]
|
| 11 |
+
pts = [
|
| 12 |
+
'vqgan_imagenet_f16_1024/ckpts/last.pth',
|
| 13 |
+
'vqgan_imagenet_f16_16384/ckpts/last.pth',
|
| 14 |
+
'vq-f8-n256/model.pth',
|
| 15 |
+
'vq-f8/model.pth',
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
for pt_l, pt in zip(pt_lightnings, pts):
|
| 19 |
+
pt_l_weight = torch.load(os.path.join(MODEL_PATH, pt_l), map_location='cpu')
|
| 20 |
+
pt_weight = {
|
| 21 |
+
'state_dict': pt_l_weight['state_dict']
|
| 22 |
+
}
|
| 23 |
+
pt_path = os.path.join(MODEL_PATH, pt)
|
| 24 |
+
torch.save(pt_weight, pt_path)
|
| 25 |
+
print(f'saving to {pt_path}')
|
tools/draw_figure.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
font_size = 14
|
| 5 |
+
|
| 6 |
+
def fid_scaling_law_no_cfg():
|
| 7 |
+
# data
|
| 8 |
+
steps = np.array([50, 100, 200, 300,])
|
| 9 |
+
loss_b = np.array([41.025, 33.442, 32.105, 32.196])
|
| 10 |
+
loss_l = np.array([25.889, 24.654, 19.742, 19.070])
|
| 11 |
+
loss_xl = np.array([19.820, 18.037, 14.772, 15.549])
|
| 12 |
+
|
| 13 |
+
steps_ = np.array([50, 200, 300,])
|
| 14 |
+
loss_xxl = np.array([17.195, 13.997, 14.648])
|
| 15 |
+
loss_3b = np.array([16.431, 9.949, 9.380])
|
| 16 |
+
# Plot
|
| 17 |
+
plt.figure(figsize=(6, 4))
|
| 18 |
+
|
| 19 |
+
plt.plot(steps, loss_b, 'o-', label='B', color='red')
|
| 20 |
+
plt.plot(steps, loss_l, 'o-', label='L', color='orange')
|
| 21 |
+
plt.plot(steps, loss_xl, 'o-', label='XL', color='green')
|
| 22 |
+
plt.plot(steps_, loss_xxl, 'o-', label='XXL', color='blue')
|
| 23 |
+
plt.plot(steps_, loss_3b, 'o-', label='3B', color='purple')
|
| 24 |
+
|
| 25 |
+
plt.xlabel('Training Epochs', fontsize=font_size)
|
| 26 |
+
plt.ylabel('FID', fontsize=font_size)
|
| 27 |
+
# plt.grid(True)
|
| 28 |
+
# plt.yscale('log')
|
| 29 |
+
|
| 30 |
+
# Customize the plot to match the appearance of the provided figure
|
| 31 |
+
plt.legend(loc='upper right', framealpha=0.5, fontsize=font_size, facecolor='white')
|
| 32 |
+
|
| 33 |
+
# Customizing the x and y axis ticks (to match the example's steps)
|
| 34 |
+
# plt.xticks(np.linspace(0, 800000, 5), ['0', '200K', '400K', '600K', '800K'])
|
| 35 |
+
plt.yticks(np.arange(5, 50, step=5))
|
| 36 |
+
|
| 37 |
+
# Show plot
|
| 38 |
+
plt.tight_layout()
|
| 39 |
+
plt.savefig('fid_scaling_law_no_cfg.png', dpi=600)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def fid_scaling_law_cfg():
|
| 44 |
+
# data
|
| 45 |
+
steps = np.array([50, 100, 200, 300,])
|
| 46 |
+
loss_b_cfg = np.array([8.309, 7.256, 6.542, 6.249])
|
| 47 |
+
loss_l_cfg = np.array([4.240, 3.705, 3.220, 3.075])
|
| 48 |
+
loss_xl_cfg = np.array([3.420, 3.089, 2.617, 2.629])
|
| 49 |
+
|
| 50 |
+
steps_ = np.array([50, 200, 300,])
|
| 51 |
+
loss_xxl_cfg = np.array([2.893, 2.331, 2.340])
|
| 52 |
+
loss_3b_cfg = np.array([2.611, 2.381, 2.329])
|
| 53 |
+
# Plot
|
| 54 |
+
plt.figure(figsize=(6, 4))
|
| 55 |
+
|
| 56 |
+
plt.plot(steps, loss_b_cfg, 'o-', label='B', color='red')
|
| 57 |
+
plt.plot(steps, loss_l_cfg, 'o-', label='L', color='orange')
|
| 58 |
+
plt.plot(steps, loss_xl_cfg, 'o-', label='XL', color='green')
|
| 59 |
+
plt.plot(steps_, loss_xxl_cfg, 'o-', label='XXL', color='blue')
|
| 60 |
+
plt.plot(steps_, loss_3b_cfg, 'o-', label='3B', color='purple')
|
| 61 |
+
|
| 62 |
+
plt.xlabel('Training Epochs', fontsize=font_size)
|
| 63 |
+
plt.ylabel('FID', fontsize=font_size)
|
| 64 |
+
# plt.grid(True)
|
| 65 |
+
# plt.yscale('log')
|
| 66 |
+
|
| 67 |
+
# Customize the plot to match the appearance of the provided figure
|
| 68 |
+
plt.legend(loc='upper right', framealpha=0.5, fontsize=font_size, facecolor='white')
|
| 69 |
+
|
| 70 |
+
# Customizing the x and y axis ticks (to match the example's steps)
|
| 71 |
+
# plt.xticks(np.linspace(0, 800000, 5), ['0', '200K', '400K', '600K', '800K'])
|
| 72 |
+
plt.yticks(np.arange(2, 9, step=1))
|
| 73 |
+
|
| 74 |
+
# Show plot
|
| 75 |
+
plt.tight_layout()
|
| 76 |
+
plt.savefig('fid_scaling_law_cfg.png', dpi=600)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def sample_topk():
|
| 81 |
+
# Data
|
| 82 |
+
top_k = np.array([16384, 10000, 8000, 6000, 4000, 2000, 1000])
|
| 83 |
+
fid_values = np.array([3.075, 3.369, 3.643, 3.969, 4.635, 5.998, 7.428])
|
| 84 |
+
inception_scores = np.array([256.067, 265.222, 268.237, 270.159, 271.455, 267.278, 251.268])
|
| 85 |
+
|
| 86 |
+
fig, ax1 = plt.subplots()
|
| 87 |
+
# Create first y-axis
|
| 88 |
+
ax1.set_xlabel('top-k', fontsize=font_size)
|
| 89 |
+
ax1.set_ylabel('FID', color='teal', fontsize=font_size)
|
| 90 |
+
ax1.plot(top_k, fid_values, 'o-', color='teal', label="FID")
|
| 91 |
+
ax1.tick_params(axis='y', labelcolor='teal')
|
| 92 |
+
ax1.tick_params(axis='x')
|
| 93 |
+
|
| 94 |
+
# Create second y-axis
|
| 95 |
+
ax2 = ax1.twinx()
|
| 96 |
+
ax2.set_ylabel('Inception Score', color='brown', fontsize=font_size)
|
| 97 |
+
ax2.plot(top_k, inception_scores, 'o-', color='brown', label="Inception Score")
|
| 98 |
+
ax2.tick_params(axis='y', labelcolor='brown')
|
| 99 |
+
|
| 100 |
+
# Adding a legend
|
| 101 |
+
fig.legend(loc='upper right', bbox_to_anchor=(1.0, 1.0), bbox_transform=ax1.transAxes, fontsize=font_size)
|
| 102 |
+
|
| 103 |
+
fig.tight_layout() # Adjust layout to prevent overlap
|
| 104 |
+
plt.savefig('effect_topk.png', dpi=600)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def sample_cfg():
|
| 109 |
+
# Data
|
| 110 |
+
cfg = np.array([1.5, 1.75, 2.00, 2.25])
|
| 111 |
+
fid_values = np.array([4.743, 3.151, 3.075, 3.620])
|
| 112 |
+
inception_scores = np.array([165.381, 214.152, 256.067, 291.695])
|
| 113 |
+
|
| 114 |
+
plt.figure(figsize=(10, 4))
|
| 115 |
+
fig, ax1 = plt.subplots()
|
| 116 |
+
# Create first y-axis
|
| 117 |
+
ax1.set_xlabel('cfg', fontsize=font_size)
|
| 118 |
+
ax1.set_ylabel('FID', color='teal', fontsize=font_size)
|
| 119 |
+
ax1.plot(cfg, fid_values, 'o-', color='teal', label="FID")
|
| 120 |
+
ax1.tick_params(axis='y', labelcolor='teal')
|
| 121 |
+
ax1.tick_params(axis='x')
|
| 122 |
+
|
| 123 |
+
# Create second y-axis
|
| 124 |
+
ax2 = ax1.twinx()
|
| 125 |
+
ax2.set_ylabel('Inception Score', color='brown', fontsize=font_size)
|
| 126 |
+
ax2.plot(cfg, inception_scores, 'o-', color='brown', label="Inception Score")
|
| 127 |
+
ax2.tick_params(axis='y', labelcolor='brown')
|
| 128 |
+
|
| 129 |
+
# Adding a legend
|
| 130 |
+
fig.legend(loc='upper right', bbox_to_anchor=(1.0, 1.0), bbox_transform=ax1.transAxes, fontsize=font_size)
|
| 131 |
+
|
| 132 |
+
fig.tight_layout() # Adjust layout to prevent overlap
|
| 133 |
+
plt.savefig('effect_cfg.png', dpi=600)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
fid_scaling_law_no_cfg()
|
| 139 |
+
fid_scaling_law_cfg()
|
| 140 |
+
sample_cfg()
|
| 141 |
+
sample_topk()
|
tools/imagenet_en_cn.py
ADDED
|
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
IMAGENET_1K_CLASSES = {
|
| 2 |
+
0: 'tench, Tinca tinca [丁鲷]',
|
| 3 |
+
1: 'goldfish, Carassius auratus [金鱼]',
|
| 4 |
+
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias [大白鲨]',
|
| 5 |
+
3: 'tiger shark, Galeocerdo cuvieri [虎鲨]',
|
| 6 |
+
4: 'hammerhead, hammerhead shark [锤头鲨]',
|
| 7 |
+
5: 'electric ray, crampfish, numbfish, torpedo [电鳐]',
|
| 8 |
+
6: 'stingray [黄貂鱼]',
|
| 9 |
+
7: 'cock [公鸡]',
|
| 10 |
+
8: 'hen [母鸡]',
|
| 11 |
+
9: 'ostrich, Struthio camelus [鸵鸟]',
|
| 12 |
+
10: 'brambling, Fringilla montifringilla [燕雀]',
|
| 13 |
+
11: 'goldfinch, Carduelis carduelis [金翅雀]',
|
| 14 |
+
12: 'house finch, linnet, Carpodacus mexicanus [家朱雀]',
|
| 15 |
+
13: 'junco, snowbird [灯芯草雀]',
|
| 16 |
+
14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea [靛蓝雀,靛蓝鸟]',
|
| 17 |
+
15: 'robin, American robin, Turdus migratorius [蓝鹀]',
|
| 18 |
+
16: 'bulbul [夜莺]',
|
| 19 |
+
17: 'jay [松鸦]',
|
| 20 |
+
18: 'magpie [喜鹊]',
|
| 21 |
+
19: 'chickadee [山雀]',
|
| 22 |
+
20: 'water ouzel, dipper [河鸟]',
|
| 23 |
+
21: 'kite [鸢(猛禽)]',
|
| 24 |
+
22: 'bald eagle, American eagle, Haliaeetus leucocephalus [秃头鹰]',
|
| 25 |
+
23: 'vulture [秃鹫]',
|
| 26 |
+
24: 'great grey owl, great gray owl, Strix nebulosa [大灰猫头鹰]',
|
| 27 |
+
25: 'European fire salamander, Salamandra salamandra [欧洲火蝾螈]',
|
| 28 |
+
26: 'common newt, Triturus vulgaris [普通蝾螈]',
|
| 29 |
+
27: 'eft [水蜥]',
|
| 30 |
+
28: 'spotted salamander, Ambystoma maculatum [斑点蝾螈]',
|
| 31 |
+
29: 'axolotl, mud puppy, Ambystoma mexicanum [蝾螈,泥狗]',
|
| 32 |
+
30: 'bullfrog, Rana catesbeiana [牛蛙]',
|
| 33 |
+
31: 'tree frog, tree-frog [树蛙]',
|
| 34 |
+
32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui [尾蛙,铃蟾蜍,肋蟾蜍,尾蟾蜍]',
|
| 35 |
+
33: 'loggerhead, loggerhead turtle, Caretta caretta [红海龟]',
|
| 36 |
+
34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea [皮革龟]',
|
| 37 |
+
35: 'mud turtle [泥龟]',
|
| 38 |
+
36: 'terrapin [淡水龟]',
|
| 39 |
+
37: 'box turtle, box tortoise [箱龟]',
|
| 40 |
+
38: 'banded gecko [带状壁虎]',
|
| 41 |
+
39: 'common iguana, iguana, Iguana iguana [普通鬣蜥]',
|
| 42 |
+
40: 'American chameleon, anole, Anolis carolinensis [美国变色龙]',
|
| 43 |
+
41: 'whiptail, whiptail lizard [鞭尾蜥蜴]',
|
| 44 |
+
42: 'agama [飞龙科蜥蜴]',
|
| 45 |
+
43: 'frilled lizard, Chlamydosaurus kingi [褶边蜥蜴]',
|
| 46 |
+
44: 'alligator lizard [鳄鱼蜥蜴]',
|
| 47 |
+
45: 'Gila monster, Heloderma suspectum [毒蜥]',
|
| 48 |
+
46: 'green lizard, Lacerta viridis [绿蜥蜴]',
|
| 49 |
+
47: 'African chameleon, Chamaeleo chamaeleon [非洲变色龙]',
|
| 50 |
+
48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis [科莫多蜥蜴]',
|
| 51 |
+
49: 'African crocodile, Nile crocodile, Crocodylus niloticus [非洲鳄,尼罗河鳄鱼]',
|
| 52 |
+
50: 'American alligator, Alligator mississipiensis [美国鳄鱼,鳄鱼]',
|
| 53 |
+
51: 'triceratops [三角龙]',
|
| 54 |
+
52: 'thunder snake, worm snake, Carphophis amoenus [雷蛇,蠕虫蛇]',
|
| 55 |
+
53: 'ringneck snake, ring-necked snake, ring snake [环蛇,环颈蛇]',
|
| 56 |
+
54: 'hognose snake, puff adder, sand viper [希腊蛇]',
|
| 57 |
+
55: 'green snake, grass snake [绿蛇,草蛇]',
|
| 58 |
+
56: 'king snake, kingsnake [国王蛇]',
|
| 59 |
+
57: 'garter snake, grass snake [袜带蛇,草蛇]',
|
| 60 |
+
58: 'water snake [水蛇]',
|
| 61 |
+
59: 'vine snake [藤蛇]',
|
| 62 |
+
60: 'night snake, Hypsiglena torquata [夜蛇]',
|
| 63 |
+
61: 'boa constrictor, Constrictor constrictor [大蟒蛇]',
|
| 64 |
+
62: 'rock python, rock snake, Python sebae [岩石蟒蛇,岩蛇,蟒蛇]',
|
| 65 |
+
63: 'Indian cobra, Naja naja [印度眼镜蛇]',
|
| 66 |
+
64: 'green mamba [绿曼巴]',
|
| 67 |
+
65: 'sea snake [海蛇]',
|
| 68 |
+
66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus [角腹蛇]',
|
| 69 |
+
67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus [菱纹响尾蛇]',
|
| 70 |
+
68: 'sidewinder, horned rattlesnake, Crotalus cerastes [角响尾蛇]',
|
| 71 |
+
69: 'trilobite [三叶虫]',
|
| 72 |
+
70: 'harvestman, daddy longlegs, Phalangium opilio [盲蜘蛛]',
|
| 73 |
+
71: 'scorpion [蝎子]',
|
| 74 |
+
72: 'black and gold garden spider, Argiope aurantia [黑金花园蜘蛛]',
|
| 75 |
+
73: 'barn spider, Araneus cavaticus [谷仓蜘蛛]',
|
| 76 |
+
74: 'garden spider, Aranea diademata [花园蜘蛛]',
|
| 77 |
+
75: 'black widow, Latrodectus mactans [黑寡妇蜘蛛]',
|
| 78 |
+
76: 'tarantula [狼蛛]',
|
| 79 |
+
77: 'wolf spider, hunting spider [狼蜘蛛,狩猎蜘蛛]',
|
| 80 |
+
78: 'tick [壁虱]',
|
| 81 |
+
79: 'centipede [蜈蚣]',
|
| 82 |
+
80: 'black grouse [黑松鸡]',
|
| 83 |
+
81: 'ptarmigan [松鸡,雷鸟]',
|
| 84 |
+
82: 'ruffed grouse, partridge, Bonasa umbellus [披肩鸡,披肩榛鸡]',
|
| 85 |
+
83: 'prairie chicken, prairie grouse, prairie fowl [草原鸡,草原松鸡]',
|
| 86 |
+
84: 'peacock [孔雀]',
|
| 87 |
+
85: 'quail [鹌鹑]',
|
| 88 |
+
86: 'partridge [鹧鸪]',
|
| 89 |
+
87: 'African grey, African gray, Psittacus erithacus [非洲灰鹦鹉]',
|
| 90 |
+
88: 'macaw [金刚鹦鹉]',
|
| 91 |
+
89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita [硫冠鹦鹉]',
|
| 92 |
+
90: 'lorikeet [短尾鹦鹉]',
|
| 93 |
+
91: 'coucal [褐翅鸦鹃]',
|
| 94 |
+
92: 'bee eater [蜜蜂]',
|
| 95 |
+
93: 'hornbill [犀鸟]',
|
| 96 |
+
94: 'hummingbird [蜂鸟]',
|
| 97 |
+
95: 'jacamar [鹟䴕]',
|
| 98 |
+
96: 'toucan [犀鸟]',
|
| 99 |
+
97: 'drake [野鸭]',
|
| 100 |
+
98: 'red-breasted merganser, Mergus serrator [���胸秋沙鸭]',
|
| 101 |
+
99: 'goose [鹅]',
|
| 102 |
+
100: 'black swan, Cygnus atratus [黑天鹅]',
|
| 103 |
+
101: 'tusker [大象]',
|
| 104 |
+
102: 'echidna, spiny anteater, anteater [针鼹鼠]',
|
| 105 |
+
103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus [鸭嘴兽]',
|
| 106 |
+
104: 'wallaby, brush kangaroo [沙袋鼠]',
|
| 107 |
+
105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus [考拉,考拉熊]',
|
| 108 |
+
106: 'wombat [袋熊]',
|
| 109 |
+
107: 'jellyfish [水母]',
|
| 110 |
+
108: 'sea anemone, anemone [海葵]',
|
| 111 |
+
109: 'brain coral [脑珊瑚]',
|
| 112 |
+
110: 'flatworm, platyhelminth [扁形虫扁虫]',
|
| 113 |
+
111: 'nematode, nematode worm, roundworm [线虫,蛔虫]',
|
| 114 |
+
112: 'conch [海螺]',
|
| 115 |
+
113: 'snail [蜗牛]',
|
| 116 |
+
114: 'slug [鼻涕虫]',
|
| 117 |
+
115: 'sea slug, nudibranch [海参]',
|
| 118 |
+
116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore [石鳖]',
|
| 119 |
+
117: 'chambered nautilus, pearly nautilus, nautilus [鹦鹉螺]',
|
| 120 |
+
118: 'Dungeness crab, Cancer magister [珍宝蟹]',
|
| 121 |
+
119: 'rock crab, Cancer irroratus [石蟹]',
|
| 122 |
+
120: 'fiddler crab [招潮蟹]',
|
| 123 |
+
121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica [帝王蟹,阿拉斯加蟹,阿拉斯加帝王蟹]',
|
| 124 |
+
122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus [美国龙虾,缅因州龙虾]',
|
| 125 |
+
123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish [大螯虾]',
|
| 126 |
+
124: 'crayfish, crawfish, crawdad, crawdaddy [小龙虾]',
|
| 127 |
+
125: 'hermit crab [寄居蟹]',
|
| 128 |
+
126: 'isopod [等足目动物(明虾和螃蟹近亲)]',
|
| 129 |
+
127: 'white stork, Ciconia ciconia [白鹳]',
|
| 130 |
+
128: 'black stork, Ciconia nigra [黑鹳]',
|
| 131 |
+
129: 'spoonbill [鹭]',
|
| 132 |
+
130: 'flamingo [火烈鸟]',
|
| 133 |
+
131: 'little blue heron, Egretta caerulea [小蓝鹭]',
|
| 134 |
+
132: 'American egret, great white heron, Egretta albus [美国鹭,大白鹭]',
|
| 135 |
+
133: 'bittern [麻鸦]',
|
| 136 |
+
134: 'crane [鹤]',
|
| 137 |
+
135: 'limpkin, Aramus pictus [秧鹤]',
|
| 138 |
+
136: 'European gallinule, Porphyrio porphyrio [欧洲水鸡,紫水鸡]',
|
| 139 |
+
137: 'American coot, marsh hen, mud hen, water hen, Fulica americana [沼泽泥母鸡,水母鸡]',
|
| 140 |
+
138: 'bustard [鸨]',
|
| 141 |
+
139: 'ruddy turnstone, Arenaria interpres [红翻石鹬]',
|
| 142 |
+
140: 'red-backed sandpiper, dunlin, Erolia alpina [红背鹬,黑腹滨鹬]',
|
| 143 |
+
141: 'redshank, Tringa totanus [红脚鹬]',
|
| 144 |
+
142: 'dowitcher [半蹼鹬]',
|
| 145 |
+
143: 'oystercatcher, oyster catcher [蛎鹬]',
|
| 146 |
+
144: 'pelican [鹈鹕]',
|
| 147 |
+
145: 'king penguin, Aptenodytes patagonica [国王企鹅]',
|
| 148 |
+
146: 'albatross, mollymawk [信天翁,大海鸟]',
|
| 149 |
+
147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus [灰鲸]',
|
| 150 |
+
148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca [杀人鲸,逆戟鲸,虎鲸]',
|
| 151 |
+
149: 'dugong, Dugong dugon [海牛]',
|
| 152 |
+
150: 'sea lion [海狮]',
|
| 153 |
+
151: 'Chihuahua [奇瓦瓦]',
|
| 154 |
+
152: 'Japanese spaniel [日本猎犬]',
|
| 155 |
+
153: 'Maltese dog, Maltese terrier, Maltese [马尔济斯犬]',
|
| 156 |
+
154: 'Pekinese, Pekingese, Peke [狮子狗]',
|
| 157 |
+
155: 'Shih-Tzu [西施犬]',
|
| 158 |
+
156: 'Blenheim spaniel [布莱尼姆猎犬]',
|
| 159 |
+
157: 'papillon [巴比狗]',
|
| 160 |
+
158: 'toy terrier [玩具犬]',
|
| 161 |
+
159: 'Rhodesian ridgeback [罗得西亚长背猎狗]',
|
| 162 |
+
160: 'Afghan hound, Afghan [阿富汗猎犬]',
|
| 163 |
+
161: 'basset, basset hound [猎犬]',
|
| 164 |
+
162: 'beagle [比格犬,猎兔犬]',
|
| 165 |
+
163: 'bloodhound, sleuthhound [侦探犬]',
|
| 166 |
+
164: 'bluetick [蓝色快狗]',
|
| 167 |
+
165: 'black-and-tan coonhound [黑褐猎浣熊犬]',
|
| 168 |
+
166: 'Walker hound, Walker foxhound [沃克猎犬]',
|
| 169 |
+
167: 'English foxhound [英国猎狐犬]',
|
| 170 |
+
168: 'redbone [美洲赤狗]',
|
| 171 |
+
169: 'borzoi, Russian wolfhound [俄罗斯猎狼犬]',
|
| 172 |
+
170: 'Irish wolfhound [爱尔兰猎狼犬]',
|
| 173 |
+
171: 'Italian greyhound [意大利灰狗]',
|
| 174 |
+
172: 'whippet [惠比特犬]',
|
| 175 |
+
173: 'Ibizan hound, Ibizan Podenco [依比沙猎犬]',
|
| 176 |
+
174: 'Norwegian elkhound, elkhound [挪威猎犬]',
|
| 177 |
+
175: 'otterhound, otter hound [奥达猎犬,水獭猎犬]',
|
| 178 |
+
176: 'Saluki, gazelle hound [沙克犬,瞪羚猎犬]',
|
| 179 |
+
177: 'Scottish deerhound, deerhound [苏格兰猎鹿犬,猎鹿犬]',
|
| 180 |
+
178: 'Weimaraner [威玛猎犬]',
|
| 181 |
+
179: 'Staffordshire bullterrier, Staffordshire bull terrier [斯塔福德郡牛头梗,斯塔福德郡斗牛梗]',
|
| 182 |
+
180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier [美国斯塔福德郡梗,美国比特斗牛梗,斗牛梗]',
|
| 183 |
+
181: 'Bedlington terrier [贝德灵顿梗]',
|
| 184 |
+
182: 'Border terrier [边境梗]',
|
| 185 |
+
183: 'Kerry blue terrier [凯丽蓝梗]',
|
| 186 |
+
184: 'Irish terrier [爱尔兰梗]',
|
| 187 |
+
185: 'Norfolk terrier [诺福克梗]',
|
| 188 |
+
186: 'Norwich terrier [诺维奇梗]',
|
| 189 |
+
187: 'Yorkshire terrier [约克郡梗]',
|
| 190 |
+
188: 'wire-haired fox terrier [刚毛猎狐梗]',
|
| 191 |
+
189: 'Lakeland terrier [莱克兰梗]',
|
| 192 |
+
190: 'Sealyham terrier, Sealyham [锡利哈姆梗]',
|
| 193 |
+
191: 'Airedale, Airedale terrier [艾尔谷犬]',
|
| 194 |
+
192: 'cairn, cairn terrier [凯恩梗]',
|
| 195 |
+
193: 'Australian terrier [澳大利亚梗]',
|
| 196 |
+
194: 'Dandie Dinmont, Dandie Dinmont terrier [丹迪丁蒙梗]',
|
| 197 |
+
195: 'Boston bull, Boston terrier [波士顿梗]',
|
| 198 |
+
196: 'miniature schnauzer [迷你雪纳瑞犬]',
|
| 199 |
+
197: 'giant schnauzer [巨型雪纳瑞犬]',
|
| 200 |
+
198: 'standard schnauzer [标准雪纳瑞犬]',
|
| 201 |
+
199: 'Scotch terrier, Scottish terrier, Scottie [苏格兰梗]',
|
| 202 |
+
200: 'Tibetan terrier, chrysanthemum dog [西藏梗,菊花狗]',
|
| 203 |
+
201: 'silky terrier, Sydney silky [丝毛梗]',
|
| 204 |
+
202: 'soft-coated wheaten terrier [软毛麦色梗]',
|
| 205 |
+
203: 'West Highland white terrier [西高地白梗]',
|
| 206 |
+
204: 'Lhasa, Lhasa apso [拉萨阿普索犬]',
|
| 207 |
+
205: 'flat-coated retriever [平毛寻回犬]',
|
| 208 |
+
206: 'curly-coated retriever [卷毛寻回犬]',
|
| 209 |
+
207: 'golden retriever [金毛猎犬]',
|
| 210 |
+
208: 'Labrador retriever [拉布拉多猎犬]',
|
| 211 |
+
209: 'Chesapeake Bay retriever [乞沙比克猎犬]',
|
| 212 |
+
210: 'German short-haired pointer [德国短毛猎犬]',
|
| 213 |
+
211: 'vizsla, Hungarian pointer [维兹拉犬]',
|
| 214 |
+
212: 'English setter [英国谍犬]',
|
| 215 |
+
213: 'Irish setter, red setter [爱尔兰雪达犬,红色猎犬]',
|
| 216 |
+
214: 'Gordon setter [戈登雪达犬]',
|
| 217 |
+
215: 'Brittany spaniel [布列塔尼犬猎犬]',
|
| 218 |
+
216: 'clumber, clumber spaniel [黄毛,黄毛猎犬]',
|
| 219 |
+
217: 'English springer, English springer spaniel [英国史宾格犬]',
|
| 220 |
+
218: 'Welsh springer spaniel [威尔士史宾格犬]',
|
| 221 |
+
219: 'cocker spaniel, English cocker spaniel, cocker [可卡犬,英国可卡犬]',
|
| 222 |
+
220: 'Sussex spaniel [萨塞克斯猎犬]',
|
| 223 |
+
221: 'Irish water spaniel [爱尔兰水猎犬]',
|
| 224 |
+
222: 'kuvasz [哥威斯犬]',
|
| 225 |
+
223: 'schipperke [舒柏奇犬]',
|
| 226 |
+
224: 'groenendael [比利时牧羊犬]',
|
| 227 |
+
225: 'malinois [马里努阿犬]',
|
| 228 |
+
226: 'briard [伯瑞犬]',
|
| 229 |
+
227: 'kelpie [凯尔皮犬]',
|
| 230 |
+
228: 'komondor [匈牙利牧羊犬]',
|
| 231 |
+
229: 'Old English sheepdog, bobtail [老英国牧羊犬]',
|
| 232 |
+
230: 'Shetland sheepdog, Shetland sheep dog, Shetland [喜乐蒂牧羊犬]',
|
| 233 |
+
231: 'collie [牧羊犬]',
|
| 234 |
+
232: 'Border collie [边境牧羊犬]',
|
| 235 |
+
233: 'Bouvier des Flandres, Bouviers des Flandres [法兰德斯牧牛狗]',
|
| 236 |
+
234: 'Rottweiler [罗特韦尔犬]',
|
| 237 |
+
235: 'German shepherd, German shepherd dog, German police dog, alsatian [德国牧羊犬,德国警犬,阿尔萨斯]',
|
| 238 |
+
236: 'Doberman, Doberman pinscher [多伯曼犬,杜宾犬]',
|
| 239 |
+
237: 'miniature pinscher [迷你杜宾犬]',
|
| 240 |
+
238: 'Greater Swiss Mountain dog [大瑞士山地犬]',
|
| 241 |
+
239: 'Bernese mountain dog [伯恩山犬]',
|
| 242 |
+
240: 'Appenzeller [Appenzeller狗]',
|
| 243 |
+
241: 'EntleBucher [EntleBucher狗]',
|
| 244 |
+
242: 'boxer [拳师狗]',
|
| 245 |
+
243: 'bull mastiff [斗牛獒]',
|
| 246 |
+
244: 'Tibetan mastiff [藏獒]',
|
| 247 |
+
245: 'French bulldog [法国斗牛犬]',
|
| 248 |
+
246: 'Great Dane [大丹犬]',
|
| 249 |
+
247: 'Saint Bernard, St Bernard [圣伯纳德狗]',
|
| 250 |
+
248: 'Eskimo dog, husky [爱斯基摩犬,哈士奇]',
|
| 251 |
+
249: 'malamute, malemute, Alaskan malamute [雪橇犬,阿拉斯加爱斯基摩狗]',
|
| 252 |
+
250: 'Siberian husky [哈士奇]',
|
| 253 |
+
251: 'dalmatian, coach dog, carriage dog [达尔马提亚,教练车狗]',
|
| 254 |
+
252: 'affenpinscher, monkey pinscher, monkey dog [狮毛狗]',
|
| 255 |
+
253: 'basenji [巴辛吉狗]',
|
| 256 |
+
254: 'pug, pug-dog [哈巴狗,狮子狗]',
|
| 257 |
+
255: 'Leonberg [莱昂贝格狗]',
|
| 258 |
+
256: 'Newfoundland, Newfoundland dog [纽芬兰岛狗]',
|
| 259 |
+
257: 'Great Pyrenees [大白熊犬]',
|
| 260 |
+
258: 'Samoyed, Samoyede [萨摩耶犬]',
|
| 261 |
+
259: 'Pomeranian [博美犬]',
|
| 262 |
+
260: 'chow, chow chow [松狮,松狮]',
|
| 263 |
+
261: 'keeshond [荷兰卷尾狮毛狗]',
|
| 264 |
+
262: 'Brabancon griffon [布鲁塞尔格林芬犬]',
|
| 265 |
+
263: 'Pembroke, Pembroke Welsh corgi [彭布洛克威尔士科基犬]',
|
| 266 |
+
264: 'Cardigan, Cardigan Welsh corgi [威尔士柯基犬]',
|
| 267 |
+
265: 'toy poodle [玩具贵宾犬]',
|
| 268 |
+
266: 'miniature poodle [迷你贵宾犬]',
|
| 269 |
+
267: 'standard poodle [标准贵宾犬]',
|
| 270 |
+
268: 'Mexican hairless [墨西哥无毛犬]',
|
| 271 |
+
269: 'timber wolf, grey wolf, gray wolf, Canis lupus [灰狼]',
|
| 272 |
+
270: 'white wolf, Arctic wolf, Canis lupus tundrarum [白狼,北极狼]',
|
| 273 |
+
271: 'red wolf, maned wolf, Canis rufus, Canis niger [红太狼,鬃狼,犬犬鲁弗斯]',
|
| 274 |
+
272: 'coyote, prairie wolf, brush wolf, Canis latrans [狼,草原狼,刷狼,郊狼]',
|
| 275 |
+
273: 'dingo, warrigal, warragal, Canis dingo [澳洲野狗,澳大利亚野犬]',
|
| 276 |
+
274: 'dhole, Cuon alpinus [豺]',
|
| 277 |
+
275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus [非洲猎犬,土狼犬]',
|
| 278 |
+
276: 'hyena, hyaena [鬣狗]',
|
| 279 |
+
277: 'red fox, Vulpes vulpes [红狐狸]',
|
| 280 |
+
278: 'kit fox, Vulpes macrotis [沙狐]',
|
| 281 |
+
279: 'Arctic fox, white fox, Alopex lagopus [北极狐狸,白狐狸]',
|
| 282 |
+
280: 'grey fox, gray fox, Urocyon cinereoargenteus [灰狐狸]',
|
| 283 |
+
281: 'tabby, tabby cat [虎斑猫]',
|
| 284 |
+
282: 'tiger cat [山猫,虎猫]',
|
| 285 |
+
283: 'Persian cat [波斯猫]',
|
| 286 |
+
284: 'Siamese cat, Siamese [暹罗暹罗猫,]',
|
| 287 |
+
285: 'Egyptian cat [埃及猫]',
|
| 288 |
+
286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor [美洲狮,美洲豹]',
|
| 289 |
+
287: 'lynx, catamount [猞猁,山猫]',
|
| 290 |
+
288: 'leopard, Panthera pardus [豹子]',
|
| 291 |
+
289: 'snow leopard, ounce, Panthera uncia [雪豹]',
|
| 292 |
+
290: 'jaguar, panther, Panthera onca, Felis onca [美洲虎]',
|
| 293 |
+
291: 'lion, king of beasts, Panthera leo [狮子]',
|
| 294 |
+
292: 'tiger, Panthera tigris [老虎]',
|
| 295 |
+
293: 'cheetah, chetah, Acinonyx jubatus [猎豹]',
|
| 296 |
+
294: 'brown bear, bruin, Ursus arctos [棕熊]',
|
| 297 |
+
295: 'American black bear, black bear, Ursus americanus, Euarctos americanus [美洲黑熊]',
|
| 298 |
+
296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus [冰熊,北极熊]',
|
| 299 |
+
297: 'sloth bear, Melursus ursinus, Ursus ursinus [懒熊]',
|
| 300 |
+
298: 'mongoose [猫鼬]',
|
| 301 |
+
299: 'meerkat, mierkat [猫鼬,海猫]',
|
| 302 |
+
300: 'tiger beetle [虎甲虫]',
|
| 303 |
+
301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle [瓢虫]',
|
| 304 |
+
302: 'ground beetle, carabid beetle [土鳖虫]',
|
| 305 |
+
303: 'long-horned beetle, longicorn, longicorn beetle [天牛]',
|
| 306 |
+
304: 'leaf beetle, chrysomelid [龟甲虫]',
|
| 307 |
+
305: 'dung beetle [粪甲虫]',
|
| 308 |
+
306: 'rhinoceros beetle [犀牛甲虫]',
|
| 309 |
+
307: 'weevil [象甲]',
|
| 310 |
+
308: 'fly [苍蝇]',
|
| 311 |
+
309: 'bee [蜜蜂]',
|
| 312 |
+
310: 'ant, emmet, pismire [蚂蚁]',
|
| 313 |
+
311: 'grasshopper, hopper [蚱蜢]',
|
| 314 |
+
312: 'cricket [蟋蟀]',
|
| 315 |
+
313: 'walking stick, walkingstick, stick insect [竹节虫]',
|
| 316 |
+
314: 'cockroach, roach [蟑螂]',
|
| 317 |
+
315: 'mantis, mantid [螳螂]',
|
| 318 |
+
316: 'cicada, cicala [蝉]',
|
| 319 |
+
317: 'leafhopper [叶蝉]',
|
| 320 |
+
318: 'lacewing, lacewing fly [草蜻蛉]',
|
| 321 |
+
319: 'dragonfly, darning needle, devils darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk [蜻蜓]',
|
| 322 |
+
320: 'damselfly [豆娘,蜻蛉]',
|
| 323 |
+
321: 'admiral [优红蛱蝶]',
|
| 324 |
+
322: 'ringlet, ringlet butterfly [小环蝴蝶]',
|
| 325 |
+
323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus [君主蝴蝶,大斑蝶]',
|
| 326 |
+
324: 'cabbage butterfly [菜粉蝶]',
|
| 327 |
+
325: 'sulphur butterfly, sulfur butterfly [白蝴蝶]',
|
| 328 |
+
326: 'lycaenid, lycaenid butterfly [灰蝶]',
|
| 329 |
+
327: 'starfish, sea star [海星]',
|
| 330 |
+
328: 'sea urchin [海胆]',
|
| 331 |
+
329: 'sea cucumber, holothurian [海参,海黄瓜]',
|
| 332 |
+
330: 'wood rabbit, cottontail, cottontail rabbit [野兔]',
|
| 333 |
+
331: 'hare [兔]',
|
| 334 |
+
332: 'Angora, Angora rabbit [安哥拉兔]',
|
| 335 |
+
333: 'hamster [仓鼠]',
|
| 336 |
+
334: 'porcupine, hedgehog [刺猬,豪猪,]',
|
| 337 |
+
335: 'fox squirrel, eastern fox squirrel, Sciurus niger [黑松鼠]',
|
| 338 |
+
336: 'marmot [土拨鼠]',
|
| 339 |
+
337: 'beaver [海狸]',
|
| 340 |
+
338: 'guinea pig, Cavia cobaya [豚鼠,豚鼠]',
|
| 341 |
+
339: 'sorrel [栗色马]',
|
| 342 |
+
340: 'zebra [斑马]',
|
| 343 |
+
341: 'hog, pig, grunter, squealer, Sus scrofa [猪]',
|
| 344 |
+
342: 'wild boar, boar, Sus scrofa [野猪]',
|
| 345 |
+
343: 'warthog [疣猪]',
|
| 346 |
+
344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius [河马]',
|
| 347 |
+
345: 'ox [牛]',
|
| 348 |
+
346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis [水牛,亚洲水牛]',
|
| 349 |
+
347: 'bison [野牛]',
|
| 350 |
+
348: 'ram, tup [公羊]',
|
| 351 |
+
349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis [大角羊,洛矶山大角羊]',
|
| 352 |
+
350: 'ibex, Capra ibex [山羊]',
|
| 353 |
+
351: 'hartebeest [狷羚]',
|
| 354 |
+
352: 'impala, Aepyceros melampus [黑斑羚]',
|
| 355 |
+
353: 'gazelle [瞪羚]',
|
| 356 |
+
354: 'Arabian camel, dromedary, Camelus dromedarius [阿拉伯单峰骆驼,骆驼]',
|
| 357 |
+
355: 'llama [骆驼]',
|
| 358 |
+
356: 'weasel [黄鼠狼]',
|
| 359 |
+
357: 'mink [水貂]',
|
| 360 |
+
358: 'polecat, fitch, foulmart, foumart, Mustela putorius [臭猫]',
|
| 361 |
+
359: 'black-footed ferret, ferret, Mustela nigripes [黑足鼬]',
|
| 362 |
+
360: 'otter [水獭]',
|
| 363 |
+
361: 'skunk, polecat, wood pussy [臭鼬,木猫]',
|
| 364 |
+
362: 'badger [獾]',
|
| 365 |
+
363: 'armadillo [犰狳]',
|
| 366 |
+
364: 'three-toed sloth, ai, Bradypus tridactylus [树懒]',
|
| 367 |
+
365: 'orangutan, orang, orangutang, Pongo pygmaeus [猩猩,婆罗洲猩猩]',
|
| 368 |
+
366: 'gorilla, Gorilla gorilla [大猩猩]',
|
| 369 |
+
367: 'chimpanzee, chimp, Pan troglodytes [黑猩猩]',
|
| 370 |
+
368: 'gibbon, Hylobates lar [长臂猿]',
|
| 371 |
+
369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus [合趾猿长臂猿,合趾猿]',
|
| 372 |
+
370: 'guenon, guenon monkey [长尾猴]',
|
| 373 |
+
371: 'patas, hussar monkey, Erythrocebus patas [赤猴]',
|
| 374 |
+
372: 'baboon [狒狒]',
|
| 375 |
+
373: 'macaque [恒河猴,猕猴]',
|
| 376 |
+
374: 'langur [白头叶猴]',
|
| 377 |
+
375: 'colobus, colobus monkey [疣猴]',
|
| 378 |
+
376: 'proboscis monkey, Nasalis larvatus [长鼻猴]',
|
| 379 |
+
377: 'marmoset [狨(美洲产小型长尾猴)]',
|
| 380 |
+
378: 'capuchin, ringtail, Cebus capucinus [卷尾猴]',
|
| 381 |
+
379: 'howler monkey, howler [吼猴]',
|
| 382 |
+
380: 'titi, titi monkey [伶猴]',
|
| 383 |
+
381: 'spider monkey, Ateles geoffroyi [蜘蛛猴]',
|
| 384 |
+
382: 'squirrel monkey, Saimiri sciureus [松鼠猴]',
|
| 385 |
+
383: 'Madagascar cat, ring-tailed lemur, Lemur catta [马达加斯加环尾狐猴,鼠狐猴]',
|
| 386 |
+
384: 'indri, indris, Indri indri, Indri brevicaudatus [大狐猴,马达加斯加大狐猴]',
|
| 387 |
+
385: 'Indian elephant, Elephas maximus [印度大象,亚洲象]',
|
| 388 |
+
386: 'African elephant, Loxodonta africana [非洲象,非洲象]',
|
| 389 |
+
387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens [小熊猫]',
|
| 390 |
+
388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca [大熊猫]',
|
| 391 |
+
389: 'barracouta, snoek [杖鱼]',
|
| 392 |
+
390: 'eel [鳗鱼]',
|
| 393 |
+
391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch [银鲑,银鲑鱼]',
|
| 394 |
+
392: 'rock beauty, Holocanthus tricolor [三色刺蝶鱼]',
|
| 395 |
+
393: 'anemone fish [海葵鱼]',
|
| 396 |
+
394: 'sturgeon [鲟鱼]',
|
| 397 |
+
395: 'gar, garfish, garpike, billfish, Lepisosteus osseus [雀鳝]',
|
| 398 |
+
396: 'lionfish [狮子鱼]',
|
| 399 |
+
397: 'puffer, pufferfish, blowfish, globefish [河豚]',
|
| 400 |
+
398: 'abacus [算盘]',
|
| 401 |
+
399: 'abaya [长袍]',
|
| 402 |
+
400: 'academic gown, academic robe, judge robe [学位袍]',
|
| 403 |
+
401: 'accordion, piano accordion, squeeze box [手风琴]',
|
| 404 |
+
402: 'acoustic guitar [原声吉他]',
|
| 405 |
+
403: 'aircraft carrier, carrier, flattop, attack aircraft carrier [航空母舰]',
|
| 406 |
+
404: 'airliner [客机]',
|
| 407 |
+
405: 'airship, dirigible [飞艇]',
|
| 408 |
+
406: 'altar [祭坛]',
|
| 409 |
+
407: 'ambulance [救护车]',
|
| 410 |
+
408: 'amphibian, amphibious vehicle [水陆两用车]',
|
| 411 |
+
409: 'analog clock [模拟时钟]',
|
| 412 |
+
410: 'apiary, bee house [蜂房]',
|
| 413 |
+
411: 'apron [围裙]',
|
| 414 |
+
412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin [垃圾桶]',
|
| 415 |
+
413: 'assault rifle, assault gun [攻击步枪,枪]',
|
| 416 |
+
414: 'backpack, back pack, knapsack, packsack, rucksack, haversack [背包]',
|
| 417 |
+
415: 'bakery, bakeshop, bakehouse [面包店,面包铺,]',
|
| 418 |
+
416: 'balance beam, beam [平衡木]',
|
| 419 |
+
417: 'balloon [热气球]',
|
| 420 |
+
418: 'ballpoint, ballpoint pen, ballpen, Biro [圆珠笔]',
|
| 421 |
+
419: 'Band Aid [创可贴]',
|
| 422 |
+
420: 'banjo [班卓琴]',
|
| 423 |
+
421: 'bannister, banister, balustrade, balusters, handrail [栏杆,楼梯扶手]',
|
| 424 |
+
422: 'barbell [杠铃]',
|
| 425 |
+
423: 'barber chair [理发师的椅子]',
|
| 426 |
+
424: 'barbershop [理发店]',
|
| 427 |
+
425: 'barn [牲口棚]',
|
| 428 |
+
426: 'barometer [晴雨表]',
|
| 429 |
+
427: 'barrel, cask [圆筒]',
|
| 430 |
+
428: 'barrow, garden cart, lawn cart, wheelbarrow [园地小车,手推车]',
|
| 431 |
+
429: 'baseball [棒球]',
|
| 432 |
+
430: 'basketball [篮球]',
|
| 433 |
+
431: 'bassinet [婴儿床]',
|
| 434 |
+
432: 'bassoon [巴松管,低音管]',
|
| 435 |
+
433: 'bathing cap, swimming cap [游泳帽]',
|
| 436 |
+
434: 'bath towel [沐浴毛巾]',
|
| 437 |
+
435: 'bathtub, bathing tub, bath, tub [浴缸,澡盆]',
|
| 438 |
+
436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon [沙滩车,旅行车]',
|
| 439 |
+
437: 'beacon, lighthouse, beacon light, pharos [灯塔]',
|
| 440 |
+
438: 'beaker [高脚杯]',
|
| 441 |
+
439: 'bearskin, busby, shako [熊皮高帽]',
|
| 442 |
+
440: 'beer bottle [啤酒瓶]',
|
| 443 |
+
441: 'beer glass [啤酒杯]',
|
| 444 |
+
442: 'bell cote, bell cot [钟塔]',
|
| 445 |
+
443: 'bib [(小儿用的)围嘴]',
|
| 446 |
+
444: 'bicycle-built-for-two, tandem bicycle, tandem [串联自行车,]',
|
| 447 |
+
445: 'bikini, two-piece [比基尼]',
|
| 448 |
+
446: 'binder, ring-binder [装订册]',
|
| 449 |
+
447: 'binoculars, field glasses, opera glasses [双筒望远镜]',
|
| 450 |
+
448: 'birdhouse [鸟舍]',
|
| 451 |
+
449: 'boathouse [船库]',
|
| 452 |
+
450: 'bobsled, bobsleigh, bob [雪橇]',
|
| 453 |
+
451: 'bolo tie, bolo, bola tie, bola [饰扣式领带]',
|
| 454 |
+
452: 'bonnet, poke bonnet [阔边女帽]',
|
| 455 |
+
453: 'bookcase [书橱]',
|
| 456 |
+
454: 'bookshop, bookstore, bookstall [书店,书摊]',
|
| 457 |
+
455: 'bottlecap [瓶盖]',
|
| 458 |
+
456: 'bow [弓箭]',
|
| 459 |
+
457: 'bow tie, bow-tie, bowtie [蝴蝶结领结]',
|
| 460 |
+
458: 'brass, memorial tablet, plaque [铜制牌位]',
|
| 461 |
+
459: 'brassiere, bra, bandeau [奶罩]',
|
| 462 |
+
460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty [防波堤,海堤]',
|
| 463 |
+
461: 'breastplate, aegis, egis [铠甲]',
|
| 464 |
+
462: 'broom [扫帚]',
|
| 465 |
+
463: 'bucket, pail [桶]',
|
| 466 |
+
464: 'buckle [扣环]',
|
| 467 |
+
465: 'bulletproof vest [防弹背心]',
|
| 468 |
+
466: 'bullet train, bullet [动车,子弹头列车]',
|
| 469 |
+
467: 'butcher shop, meat market [肉铺,肉菜市场]',
|
| 470 |
+
468: 'cab, hack, taxi, taxicab [出租车]',
|
| 471 |
+
469: 'caldron, cauldron [大锅]',
|
| 472 |
+
470: 'candle, taper, wax light [蜡烛]',
|
| 473 |
+
471: 'cannon [大炮]',
|
| 474 |
+
472: 'canoe [独木舟]',
|
| 475 |
+
473: 'can opener, tin opener [开瓶器,开罐器]',
|
| 476 |
+
474: 'cardigan [开衫]',
|
| 477 |
+
475: 'car mirror [车镜]',
|
| 478 |
+
476: 'carousel, carrousel, merry-go-round, roundabout, whirligig [旋转木马]',
|
| 479 |
+
477: 'carpenters kit, tool kit [木匠的工具包,工具包]',
|
| 480 |
+
478: 'carton [纸箱]',
|
| 481 |
+
479: 'car wheel [车轮]',
|
| 482 |
+
480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM [取款机,自动取款机]',
|
| 483 |
+
481: 'cassette [盒式录音带]',
|
| 484 |
+
482: 'cassette player [卡带播放器]',
|
| 485 |
+
483: 'castle [城堡]',
|
| 486 |
+
484: 'catamaran [双体船]',
|
| 487 |
+
485: 'CD player [CD播放器]',
|
| 488 |
+
486: 'cello, violoncello [大提琴]',
|
| 489 |
+
487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone [移动电话,手机]',
|
| 490 |
+
488: 'chain [铁链]',
|
| 491 |
+
489: 'chainlink fence [围栏]',
|
| 492 |
+
490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour [链甲]',
|
| 493 |
+
491: 'chain saw, chainsaw [电锯,油锯]',
|
| 494 |
+
492: 'chest [箱子]',
|
| 495 |
+
493: 'chiffonier, commode [衣柜,洗脸台]',
|
| 496 |
+
494: 'chime, bell, gong [编钟,钟,锣]',
|
| 497 |
+
495: 'china cabinet, china closet [中国橱柜]',
|
| 498 |
+
496: 'Christmas stocking [圣诞袜]',
|
| 499 |
+
497: 'church, church building [教堂,教堂建筑]',
|
| 500 |
+
498: 'cinema, movie theater, movie theatre, movie house, picture palace [电影院,剧场]',
|
| 501 |
+
499: 'cleaver, meat cleaver, chopper [切肉刀,菜刀]',
|
| 502 |
+
500: 'cliff dwelling [悬崖屋]',
|
| 503 |
+
501: 'cloak [斗篷]',
|
| 504 |
+
502: 'clog, geta, patten, sabot [木屐,木鞋]',
|
| 505 |
+
503: 'cocktail shaker [鸡尾酒调酒器]',
|
| 506 |
+
504: 'coffee mug [咖啡杯]',
|
| 507 |
+
505: 'coffeepot [咖啡壶]',
|
| 508 |
+
506: 'coil, spiral, volute, whorl, helix [螺旋结构(楼梯)]',
|
| 509 |
+
507: 'combination lock [组合锁]',
|
| 510 |
+
508: 'computer keyboard, keypad [电脑键盘,键盘]',
|
| 511 |
+
509: 'confectionery, confectionary, candy store [糖果,糖果店]',
|
| 512 |
+
510: 'container ship, containership, container vessel [集装箱船]',
|
| 513 |
+
511: 'convertible [敞篷车]',
|
| 514 |
+
512: 'corkscrew, bottle screw [开瓶器,瓶螺杆]',
|
| 515 |
+
513: 'cornet, horn, trumpet, trump [短号,喇叭]',
|
| 516 |
+
514: 'cowboy boot [牛仔靴]',
|
| 517 |
+
515: 'cowboy hat, ten-gallon hat [牛仔帽]',
|
| 518 |
+
516: 'cradle [摇篮]',
|
| 519 |
+
517: 'crane [起重机]',
|
| 520 |
+
518: 'crash helmet [头盔]',
|
| 521 |
+
519: 'crate [板条箱]',
|
| 522 |
+
520: 'crib, cot [小儿床]',
|
| 523 |
+
521: 'Crock Pot [砂锅]',
|
| 524 |
+
522: 'croquet ball [槌球]',
|
| 525 |
+
523: 'crutch [拐杖]',
|
| 526 |
+
524: 'cuirass [胸甲]',
|
| 527 |
+
525: 'dam, dike, dyke [大坝,堤防]',
|
| 528 |
+
526: 'desk [书桌]',
|
| 529 |
+
527: 'desktop computer [台式电脑]',
|
| 530 |
+
528: 'dial telephone, dial phone [有线电话]',
|
| 531 |
+
529: 'diaper, nappy, napkin [尿布湿]',
|
| 532 |
+
530: 'digital clock [数字时钟]',
|
| 533 |
+
531: 'digital watch [数字手表]',
|
| 534 |
+
532: 'dining table, board [餐桌板]',
|
| 535 |
+
533: 'dishrag, dishcloth [抹布]',
|
| 536 |
+
534: 'dishwasher, dish washer, dishwashing machine [洗碗机,洗碟机]',
|
| 537 |
+
535: 'disk brake, disc brake [盘式制动器]',
|
| 538 |
+
536: 'dock, dockage, docking facility [码头,船坞,码头设施]',
|
| 539 |
+
537: 'dogsled, dog sled, dog sleigh [狗拉雪橇]',
|
| 540 |
+
538: 'dome [圆顶]',
|
| 541 |
+
539: 'doormat, welcome mat [门垫,垫子]',
|
| 542 |
+
540: 'drilling platform, offshore rig [钻井平台,海上钻井]',
|
| 543 |
+
541: 'drum, membranophone, tympan [鼓,乐器,鼓膜]',
|
| 544 |
+
542: 'drumstick [鼓槌]',
|
| 545 |
+
543: 'dumbbell [哑铃]',
|
| 546 |
+
544: 'Dutch oven [荷兰烤箱]',
|
| 547 |
+
545: 'electric fan, blower [电风扇,鼓风机]',
|
| 548 |
+
546: 'electric guitar [电吉他]',
|
| 549 |
+
547: 'electric locomotive [电力机车]',
|
| 550 |
+
548: 'entertainment center [电视,电视柜]',
|
| 551 |
+
549: 'envelope [信封]',
|
| 552 |
+
550: 'espresso maker [浓缩咖啡机]',
|
| 553 |
+
551: 'face powder [扑面粉]',
|
| 554 |
+
552: 'feather boa, boa [女用长围巾]',
|
| 555 |
+
553: 'file, file cabinet, filing cabinet [文件,文件柜,档案柜]',
|
| 556 |
+
554: 'fireboat [消防船]',
|
| 557 |
+
555: 'fire engine, fire truck [消防车]',
|
| 558 |
+
556: 'fire screen, fireguard [火炉栏]',
|
| 559 |
+
557: 'flagpole, flagstaff [旗杆]',
|
| 560 |
+
558: 'flute, transverse flute [长笛]',
|
| 561 |
+
559: 'folding chair [折叠椅]',
|
| 562 |
+
560: 'football helmet [橄榄球头盔]',
|
| 563 |
+
561: 'forklift [叉车]',
|
| 564 |
+
562: 'fountain [喷泉]',
|
| 565 |
+
563: 'fountain pen [钢笔]',
|
| 566 |
+
564: 'four-poster [有四根帷柱的床]',
|
| 567 |
+
565: 'freight car [运货车厢]',
|
| 568 |
+
566: 'French horn, horn [圆号,喇叭]',
|
| 569 |
+
567: 'frying pan, frypan, skillet [煎锅]',
|
| 570 |
+
568: 'fur coat [裘皮大衣]',
|
| 571 |
+
569: 'garbage truck, dustcart [垃圾车]',
|
| 572 |
+
570: 'gasmask, respirator, gas helmet [防毒面具,呼吸器]',
|
| 573 |
+
571: 'gas pump, gasoline pump, petrol pump, island dispenser [汽油泵]',
|
| 574 |
+
572: 'goblet [高脚杯]',
|
| 575 |
+
573: 'go-kart [卡丁车]',
|
| 576 |
+
574: 'golf ball [高尔夫球]',
|
| 577 |
+
575: 'golfcart, golf cart [高尔夫球车]',
|
| 578 |
+
576: 'gondola [狭长小船]',
|
| 579 |
+
577: 'gong, tam-tam [锣]',
|
| 580 |
+
578: 'gown [礼服]',
|
| 581 |
+
579: 'grand piano, grand [钢琴]',
|
| 582 |
+
580: 'greenhouse, nursery, glasshouse [温室,苗圃]',
|
| 583 |
+
581: 'grille, radiator grille [散热器格栅]',
|
| 584 |
+
582: 'grocery store, grocery, food market, market [杂货店,食品市场]',
|
| 585 |
+
583: 'guillotine [断头台]',
|
| 586 |
+
584: 'hair slide [小发夹]',
|
| 587 |
+
585: 'hair spray [头发喷雾]',
|
| 588 |
+
586: 'half track [半履带装甲车]',
|
| 589 |
+
587: 'hammer [锤子]',
|
| 590 |
+
588: 'hamper [大篮子]',
|
| 591 |
+
589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier [手摇鼓风机,吹风机]',
|
| 592 |
+
590: 'hand-held computer, hand-held microcomputer [手提电脑]',
|
| 593 |
+
591: 'handkerchief, hankie, hanky, hankey [手帕]',
|
| 594 |
+
592: 'hard disc, hard disk, fixed disk [硬盘]',
|
| 595 |
+
593: 'harmonica, mouth organ, harp, mouth harp [口琴,口风琴]',
|
| 596 |
+
594: 'harp [竖琴]',
|
| 597 |
+
595: 'harvester, reaper [收割机]',
|
| 598 |
+
596: 'hatchet [斧头]',
|
| 599 |
+
597: 'holster [手枪皮套]',
|
| 600 |
+
598: 'home theater, home theatre [家庭影院]',
|
| 601 |
+
599: 'honeycomb [蜂窝]',
|
| 602 |
+
600: 'hook, claw [钩爪]',
|
| 603 |
+
601: 'hoopskirt, crinoline [衬裙]',
|
| 604 |
+
602: 'horizontal bar, high bar [单杠]',
|
| 605 |
+
603: 'horse cart, horse-cart [马车]',
|
| 606 |
+
604: 'hourglass [沙漏]',
|
| 607 |
+
605: 'iPod [手机,iPad]',
|
| 608 |
+
606: 'iron, smoothing iron [熨斗]',
|
| 609 |
+
607: 'jack-o-lantern [南瓜灯笼]',
|
| 610 |
+
608: 'jean, blue jean, denim [牛仔裤,蓝色牛仔裤]',
|
| 611 |
+
609: 'jeep, landrover [吉普车]',
|
| 612 |
+
610: 'jersey, T-shirt, tee shirt [运动衫,T恤]',
|
| 613 |
+
611: 'jigsaw puzzle [拼图]',
|
| 614 |
+
612: 'jinrikisha, ricksha, rickshaw [人力车]',
|
| 615 |
+
613: 'joystick [操纵杆]',
|
| 616 |
+
614: 'kimono [和服]',
|
| 617 |
+
615: 'knee pad [护膝]',
|
| 618 |
+
616: 'knot [蝴蝶结]',
|
| 619 |
+
617: 'lab coat, laboratory coat [大褂,实验室外套]',
|
| 620 |
+
618: 'ladle [长柄勺]',
|
| 621 |
+
619: 'lampshade, lamp shade [灯罩]',
|
| 622 |
+
620: 'laptop, laptop computer [笔记本电脑]',
|
| 623 |
+
621: 'lawn mower, mower [割草机]',
|
| 624 |
+
622: 'lens cap, lens cover [镜头盖]',
|
| 625 |
+
623: 'letter opener, paper knife, paperknife [开信刀,裁纸刀]',
|
| 626 |
+
624: 'library [图书馆]',
|
| 627 |
+
625: 'lifeboat [救生艇]',
|
| 628 |
+
626: 'lighter, light, igniter, ignitor [点火器,打火机]',
|
| 629 |
+
627: 'limousine, limo [豪华轿车]',
|
| 630 |
+
628: 'liner, ocean liner [远洋班轮]',
|
| 631 |
+
629: 'lipstick, lip rouge [唇膏,口红]',
|
| 632 |
+
630: 'Loafer [平底便鞋]',
|
| 633 |
+
631: 'lotion [洗剂]',
|
| 634 |
+
632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system [扬声器]',
|
| 635 |
+
633: 'loupe, jewelers loupe [放大镜]',
|
| 636 |
+
634: 'lumbermill, sawmill [锯木厂]',
|
| 637 |
+
635: 'magnetic compass [磁罗盘]',
|
| 638 |
+
636: 'mailbag, postbag [邮袋]',
|
| 639 |
+
637: 'mailbox, letter box [信箱]',
|
| 640 |
+
638: 'maillot [女游泳衣]',
|
| 641 |
+
639: 'maillot, tank suit [有肩带浴衣]',
|
| 642 |
+
640: 'manhole cover [窨井盖]',
|
| 643 |
+
641: 'maraca [沙球(一种打击乐器)]',
|
| 644 |
+
642: 'marimba, xylophone [马林巴木琴]',
|
| 645 |
+
643: 'mask [面膜]',
|
| 646 |
+
644: 'matchstick [火柴]',
|
| 647 |
+
645: 'maypole [花柱]',
|
| 648 |
+
646: 'maze, labyrinth [迷宫]',
|
| 649 |
+
647: 'measuring cup [量杯]',
|
| 650 |
+
648: 'medicine chest, medicine cabinet [药箱]',
|
| 651 |
+
649: 'megalith, megalithic structure [巨石,巨石结构]',
|
| 652 |
+
650: 'microphone, mike [麦克风]',
|
| 653 |
+
651: 'microwave, microwave oven [微波炉]',
|
| 654 |
+
652: 'military uniform [军装]',
|
| 655 |
+
653: 'milk can [奶桶]',
|
| 656 |
+
654: 'minibus [迷你巴士]',
|
| 657 |
+
655: 'miniskirt, mini [迷你裙]',
|
| 658 |
+
656: 'minivan [面包车]',
|
| 659 |
+
657: 'missile [导弹]',
|
| 660 |
+
658: 'mitten [连指手套]',
|
| 661 |
+
659: 'mixing bowl [搅拌钵]',
|
| 662 |
+
660: 'mobile home, manufactured home [活动房屋(由汽车拖拉的)]',
|
| 663 |
+
661: 'Model T [T型发动机小汽车]',
|
| 664 |
+
662: 'modem [调制解调器]',
|
| 665 |
+
663: 'monastery [修道院]',
|
| 666 |
+
664: 'monitor [显示器]',
|
| 667 |
+
665: 'moped [电瓶车]',
|
| 668 |
+
666: 'mortar [砂浆]',
|
| 669 |
+
667: 'mortarboard [学士]',
|
| 670 |
+
668: 'mosque [清真寺]',
|
| 671 |
+
669: 'mosquito net [蚊帐]',
|
| 672 |
+
670: 'motor scooter, scooter [摩托车]',
|
| 673 |
+
671: 'mountain bike, all-terrain bike, off-roader [山地自行车]',
|
| 674 |
+
672: 'mountain tent [登山帐]',
|
| 675 |
+
673: 'mouse, computer mouse [鼠标,电脑鼠标]',
|
| 676 |
+
674: 'mousetrap [捕鼠器]',
|
| 677 |
+
675: 'moving van [搬家车]',
|
| 678 |
+
676: 'muzzle [口套]',
|
| 679 |
+
677: 'nail [钉子]',
|
| 680 |
+
678: 'neck brace [颈托]',
|
| 681 |
+
679: 'necklace [项链]',
|
| 682 |
+
680: 'nipple [乳头(瓶)]',
|
| 683 |
+
681: 'notebook, notebook computer [笔记本,笔记本电脑]',
|
| 684 |
+
682: 'obelisk [方尖碑]',
|
| 685 |
+
683: 'oboe, hautboy, hautbois [双簧管]',
|
| 686 |
+
684: 'ocarina, sweet potato [陶笛,卵形笛]',
|
| 687 |
+
685: 'odometer, hodometer, mileometer, milometer [里程表]',
|
| 688 |
+
686: 'oil filter [滤油器]',
|
| 689 |
+
687: 'organ, pipe organ [风琴,管风琴]',
|
| 690 |
+
688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO [示波器]',
|
| 691 |
+
689: 'overskirt [罩裙]',
|
| 692 |
+
690: 'oxcart [牛车]',
|
| 693 |
+
691: 'oxygen mask [氧气面罩]',
|
| 694 |
+
692: 'packet [包装]',
|
| 695 |
+
693: 'paddle, boat paddle [船桨]',
|
| 696 |
+
694: 'paddlewheel, paddle wheel [明轮,桨轮]',
|
| 697 |
+
695: 'padlock [挂锁,扣锁]',
|
| 698 |
+
696: 'paintbrush [画笔]',
|
| 699 |
+
697: 'pajama, pyjama, pjs, jammies [睡衣]',
|
| 700 |
+
698: 'palace [宫殿]',
|
| 701 |
+
699: 'panpipe, pandean pipe, syrinx [排箫,鸣管]',
|
| 702 |
+
700: 'paper towel [纸巾]',
|
| 703 |
+
701: 'parachute, chute [降落伞]',
|
| 704 |
+
702: 'parallel bars, bars [双杠]',
|
| 705 |
+
703: 'park bench [公园长椅]',
|
| 706 |
+
704: 'parking meter [停车收费表,停车计时器]',
|
| 707 |
+
705: 'passenger car, coach, carriage [客车,教练车]',
|
| 708 |
+
706: 'patio, terrace [露台,阳台]',
|
| 709 |
+
707: 'pay-phone, pay-station [付费电话]',
|
| 710 |
+
708: 'pedestal, plinth, footstall [基座,基脚]',
|
| 711 |
+
709: 'pencil box, pencil case [铅笔盒]',
|
| 712 |
+
710: 'pencil sharpener [卷笔刀]',
|
| 713 |
+
711: 'perfume, essence [香水(瓶)]',
|
| 714 |
+
712: 'Petri dish [培养皿]',
|
| 715 |
+
713: 'photocopier [复印机]',
|
| 716 |
+
714: 'pick, plectrum, plectron [拨弦片,拨子]',
|
| 717 |
+
715: 'pickelhaube [尖顶头盔]',
|
| 718 |
+
716: 'picket fence, paling [栅栏,栅栏]',
|
| 719 |
+
717: 'pickup, pickup truck [皮卡,皮卡车]',
|
| 720 |
+
718: 'pier [桥墩]',
|
| 721 |
+
719: 'piggy bank, penny bank [存钱罐]',
|
| 722 |
+
720: 'pill bottle [药瓶]',
|
| 723 |
+
721: 'pillow [枕头]',
|
| 724 |
+
722: 'ping-pong ball [乒乓球]',
|
| 725 |
+
723: 'pinwheel [风车]',
|
| 726 |
+
724: 'pirate, pirate ship [海盗船]',
|
| 727 |
+
725: 'pitcher, ewer [水罐]',
|
| 728 |
+
726: 'plane, carpenters plane, woodworking plane [木工刨]',
|
| 729 |
+
727: 'planetarium [天文馆]',
|
| 730 |
+
728: 'plastic bag [塑料袋]',
|
| 731 |
+
729: 'plate rack [板架]',
|
| 732 |
+
730: 'plow, plough [犁型铲雪机]',
|
| 733 |
+
731: 'plunger, plumbers helper [手压皮碗泵]',
|
| 734 |
+
732: 'Polaroid camera, Polaroid Land camera [宝丽来相机]',
|
| 735 |
+
733: 'pole [电线杆]',
|
| 736 |
+
734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria [警车,巡逻车]',
|
| 737 |
+
735: 'poncho [雨披]',
|
| 738 |
+
736: 'pool table, billiard table, snooker table [台球桌]',
|
| 739 |
+
737: 'pop bottle, soda bottle [充气饮料瓶]',
|
| 740 |
+
738: 'pot, flowerpot [花盆]',
|
| 741 |
+
739: 'potters wheel [陶工旋盘]',
|
| 742 |
+
740: 'power drill [电钻]',
|
| 743 |
+
741: 'prayer rug, prayer mat [祈祷垫,地毯]',
|
| 744 |
+
742: 'printer [打印机]',
|
| 745 |
+
743: 'prison, prison house [监狱]',
|
| 746 |
+
744: 'projectile, missile [炮弹,导弹]',
|
| 747 |
+
745: 'projector [投影仪]',
|
| 748 |
+
746: 'puck, hockey puck [冰球]',
|
| 749 |
+
747: 'punching bag, punch bag, punching ball, punchball [沙包,吊球]',
|
| 750 |
+
748: 'purse [钱包]',
|
| 751 |
+
749: 'quill, quill pen [羽管笔]',
|
| 752 |
+
750: 'quilt, comforter, comfort, puff [被子]',
|
| 753 |
+
751: 'racer, race car, racing car [赛车]',
|
| 754 |
+
752: 'racket, racquet [球拍]',
|
| 755 |
+
753: 'radiator [散热器]',
|
| 756 |
+
754: 'radio, wireless [收音机]',
|
| 757 |
+
755: 'radio telescope, radio reflector [射电望远镜,无线电反射器]',
|
| 758 |
+
756: 'rain barrel [雨桶]',
|
| 759 |
+
757: 'recreational vehicle, RV, R.V. [休闲车,房车]',
|
| 760 |
+
758: 'reel [卷轴,卷筒]',
|
| 761 |
+
759: 'reflex camera [反射式照相机]',
|
| 762 |
+
760: 'refrigerator, icebox [冰箱,冰柜]',
|
| 763 |
+
761: 'remote control, remote [遥控器]',
|
| 764 |
+
762: 'restaurant, eating house, eating place, eatery [餐厅,饮食店,食堂]',
|
| 765 |
+
763: 'revolver, six-gun, six-shooter [左轮手枪]',
|
| 766 |
+
764: 'rifle [步枪]',
|
| 767 |
+
765: 'rocking chair, rocker [摇椅]',
|
| 768 |
+
766: 'rotisserie [电转烤肉架]',
|
| 769 |
+
767: 'rubber eraser, rubber, pencil eraser [橡皮]',
|
| 770 |
+
768: 'rugby ball [橄榄球]',
|
| 771 |
+
769: 'rule, ruler [直尺]',
|
| 772 |
+
770: 'running shoe [跑步鞋]',
|
| 773 |
+
771: 'safe [保险柜]',
|
| 774 |
+
772: 'safety pin [安全别针]',
|
| 775 |
+
773: 'saltshaker, salt shaker [盐瓶(调味用)]',
|
| 776 |
+
774: 'sandal [凉鞋]',
|
| 777 |
+
775: 'sarong [纱笼,围裙]',
|
| 778 |
+
776: 'sax, saxophone [萨克斯管]',
|
| 779 |
+
777: 'scabbard [剑鞘]',
|
| 780 |
+
778: 'scale, weighing machine [秤,称重机]',
|
| 781 |
+
779: 'school bus [校车]',
|
| 782 |
+
780: 'schooner [帆船]',
|
| 783 |
+
781: 'scoreboard [记分牌]',
|
| 784 |
+
782: 'screen, CRT screen [屏幕]',
|
| 785 |
+
783: 'screw [螺丝]',
|
| 786 |
+
784: 'screwdriver [螺丝刀]',
|
| 787 |
+
785: 'seat belt, seatbelt [安全带]',
|
| 788 |
+
786: 'sewing machine [缝纫机]',
|
| 789 |
+
787: 'shield, buckler [盾牌,盾牌]',
|
| 790 |
+
788: 'shoe shop, shoe-shop, shoe store [皮鞋店,鞋店]',
|
| 791 |
+
789: 'shoji [障子]',
|
| 792 |
+
790: 'shopping basket [购物篮]',
|
| 793 |
+
791: 'shopping cart [购物车]',
|
| 794 |
+
792: 'shovel [铁锹]',
|
| 795 |
+
793: 'shower cap [浴帽]',
|
| 796 |
+
794: 'shower curtain [浴帘]',
|
| 797 |
+
795: 'ski [滑雪板]',
|
| 798 |
+
796: 'ski mask [滑雪面罩]',
|
| 799 |
+
797: 'sleeping bag [睡袋]',
|
| 800 |
+
798: 'slide rule, slipstick [滑尺]',
|
| 801 |
+
799: 'sliding door [滑动门]',
|
| 802 |
+
800: 'slot, one-armed bandit [角子老虎机]',
|
| 803 |
+
801: 'snorkel [潜水通气管]',
|
| 804 |
+
802: 'snowmobile [雪橇]',
|
| 805 |
+
803: 'snowplow, snowplough [扫雪机,扫雪机]',
|
| 806 |
+
804: 'soap dispenser [皂液器]',
|
| 807 |
+
805: 'soccer ball [足球]',
|
| 808 |
+
806: 'sock [袜子]',
|
| 809 |
+
807: 'solar dish, solar collector, solar furnace [碟式太阳能,太阳能集热器,太阳能炉]',
|
| 810 |
+
808: 'sombrero [宽边帽]',
|
| 811 |
+
809: 'soup bowl [汤碗]',
|
| 812 |
+
810: 'space bar [空格键]',
|
| 813 |
+
811: 'space heater [空间加热器]',
|
| 814 |
+
812: 'space shuttle [航天飞机]',
|
| 815 |
+
813: 'spatula [铲(搅拌或涂敷用的)]',
|
| 816 |
+
814: 'speedboat [快艇]',
|
| 817 |
+
815: 'spider web, spiders web [蜘蛛网]',
|
| 818 |
+
816: 'spindle [纺锤,纱锭]',
|
| 819 |
+
817: 'sports car, sport car [跑车]',
|
| 820 |
+
818: 'spotlight, spot [聚光灯]',
|
| 821 |
+
819: 'stage [舞台]',
|
| 822 |
+
820: 'steam locomotive [蒸汽机车]',
|
| 823 |
+
821: 'steel arch bridge [钢拱桥]',
|
| 824 |
+
822: 'steel drum [钢滚筒]',
|
| 825 |
+
823: 'stethoscope [听诊器]',
|
| 826 |
+
824: 'stole [女用披肩]',
|
| 827 |
+
825: 'stone wall [石头墙]',
|
| 828 |
+
826: 'stopwatch, stop watch [秒表]',
|
| 829 |
+
827: 'stove [火炉]',
|
| 830 |
+
828: 'strainer [过滤器]',
|
| 831 |
+
829: 'streetcar, tram, tramcar, trolley, trolley car [有轨电车,电车]',
|
| 832 |
+
830: 'stretcher [担架]',
|
| 833 |
+
831: 'studio couch, day bed [沙发床]',
|
| 834 |
+
832: 'stupa, tope [佛塔]',
|
| 835 |
+
833: 'submarine, pigboat, sub, U-boat [潜艇,潜水艇]',
|
| 836 |
+
834: 'suit, suit of clothes [套装,衣服]',
|
| 837 |
+
835: 'sundial [日晷]',
|
| 838 |
+
836: 'sunglass [太阳镜]',
|
| 839 |
+
837: 'sunglasses, dark glasses, shades [太阳镜,墨镜]',
|
| 840 |
+
838: 'sunscreen, sunblock, sun blocker [防晒霜,防晒剂]',
|
| 841 |
+
839: 'suspension bridge [悬索桥]',
|
| 842 |
+
840: 'swab, swob, mop [拖把]',
|
| 843 |
+
841: 'sweatshirt [运动衫]',
|
| 844 |
+
842: 'swimming trunks, bathing trunks [游泳裤]',
|
| 845 |
+
843: 'swing [秋千]',
|
| 846 |
+
844: 'switch, electric switch, electrical switch [开关,电器开关]',
|
| 847 |
+
845: 'syringe [注射器]',
|
| 848 |
+
846: 'table lamp [台灯]',
|
| 849 |
+
847: 'tank, army tank, armored combat vehicle, armoured combat vehicle [坦克,装甲战车,装甲战斗车辆]',
|
| 850 |
+
848: 'tape player [磁带播放器]',
|
| 851 |
+
849: 'teapot [茶壶]',
|
| 852 |
+
850: 'teddy, teddy bear [泰迪,泰迪熊]',
|
| 853 |
+
851: 'television, television system [电视]',
|
| 854 |
+
852: 'tennis ball [网球]',
|
| 855 |
+
853: 'thatch, thatched roof [茅草,茅草屋顶]',
|
| 856 |
+
854: 'theater curtain, theatre curtain [幕布,剧院的帷幕]',
|
| 857 |
+
855: 'thimble [顶针]',
|
| 858 |
+
856: 'thresher, thrasher, threshing machine [脱粒机]',
|
| 859 |
+
857: 'throne [宝座]',
|
| 860 |
+
858: 'tile roof [瓦屋顶]',
|
| 861 |
+
859: 'toaster [烤面包机]',
|
| 862 |
+
860: 'tobacco shop, tobacconist shop, tobacconist [烟草店,烟草]',
|
| 863 |
+
861: 'toilet seat [马桶]',
|
| 864 |
+
862: 'torch [火炬]',
|
| 865 |
+
863: 'totem pole [图腾柱]',
|
| 866 |
+
864: 'tow truck, tow car, wrecker [拖车,牵引车,清障车]',
|
| 867 |
+
865: 'toyshop [玩具店]',
|
| 868 |
+
866: 'tractor [拖拉机]',
|
| 869 |
+
867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi [拖车,铰接式卡车]',
|
| 870 |
+
868: 'tray [托盘]',
|
| 871 |
+
869: 'trench coat [风衣]',
|
| 872 |
+
870: 'tricycle, trike, velocipede [三轮车]',
|
| 873 |
+
871: 'trimaran [三体船]',
|
| 874 |
+
872: 'tripod [三脚架]',
|
| 875 |
+
873: 'triumphal arch [凯旋门]',
|
| 876 |
+
874: 'trolleybus, trolley coach, trackless trolley [无轨电车]',
|
| 877 |
+
875: 'trombone [长号]',
|
| 878 |
+
876: 'tub, vat [浴盆,浴缸]',
|
| 879 |
+
877: 'turnstile [旋转式栅门]',
|
| 880 |
+
878: 'typewriter keyboard [打字机键盘]',
|
| 881 |
+
879: 'umbrella [伞]',
|
| 882 |
+
880: 'unicycle, monocycle [独轮车]',
|
| 883 |
+
881: 'upright, upright piano [直立式钢琴]',
|
| 884 |
+
882: 'vacuum, vacuum cleaner [真空吸尘器]',
|
| 885 |
+
883: 'vase [花瓶]',
|
| 886 |
+
884: 'vault [拱顶]',
|
| 887 |
+
885: 'velvet [天鹅绒]',
|
| 888 |
+
886: 'vending machine [自动售货机]',
|
| 889 |
+
887: 'vestment [祭服]',
|
| 890 |
+
888: 'viaduct [高架桥]',
|
| 891 |
+
889: 'violin, fiddle [小提琴,小提琴]',
|
| 892 |
+
890: 'volleyball [排球]',
|
| 893 |
+
891: 'waffle iron [松饼机]',
|
| 894 |
+
892: 'wall clock [挂钟]',
|
| 895 |
+
893: 'wallet, billfold, notecase, pocketbook [钱包,皮夹]',
|
| 896 |
+
894: 'wardrobe, closet, press [衣柜,壁橱]',
|
| 897 |
+
895: 'warplane, military plane [军用飞机]',
|
| 898 |
+
896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin [洗脸盆,洗手盆]',
|
| 899 |
+
897: 'washer, automatic washer, washing machine [洗衣机,自动洗衣机]',
|
| 900 |
+
898: 'water bottle [水瓶]',
|
| 901 |
+
899: 'water jug [水壶]',
|
| 902 |
+
900: 'water tower [水塔]',
|
| 903 |
+
901: 'whiskey jug [威士忌壶]',
|
| 904 |
+
902: 'whistle [哨子]',
|
| 905 |
+
903: 'wig [假发]',
|
| 906 |
+
904: 'window screen [纱窗]',
|
| 907 |
+
905: 'window shade [百叶窗]',
|
| 908 |
+
906: 'Windsor tie [温莎领带]',
|
| 909 |
+
907: 'wine bottle [葡萄酒瓶]',
|
| 910 |
+
908: 'wing [飞机翅膀,飞机]',
|
| 911 |
+
909: 'wok [炒菜锅]',
|
| 912 |
+
910: 'wooden spoon [木制的勺子]',
|
| 913 |
+
911: 'wool, woolen, woollen [毛织品,羊绒]',
|
| 914 |
+
912: 'worm fence, snake fence, snake-rail fence, Virginia fence [栅栏,围栏]',
|
| 915 |
+
913: 'wreck [沉船]',
|
| 916 |
+
914: 'yawl [双桅船]',
|
| 917 |
+
915: 'yurt [蒙古包]',
|
| 918 |
+
916: 'web site, website, internet site, site [网站,互联网网站]',
|
| 919 |
+
917: 'comic book [漫画]',
|
| 920 |
+
918: 'crossword puzzle, crossword [纵横字谜]',
|
| 921 |
+
919: 'street sign [路标]',
|
| 922 |
+
920: 'traffic light, traffic signal, stoplight [交通信号灯]',
|
| 923 |
+
921: 'book jacket, dust cover, dust jacket, dust wrapper [防尘罩,书皮]',
|
| 924 |
+
922: 'menu [菜单]',
|
| 925 |
+
923: 'plate [盘子]',
|
| 926 |
+
924: 'guacamole [鳄梨酱]',
|
| 927 |
+
925: 'consomme [清汤]',
|
| 928 |
+
926: 'hot pot, hotpot [罐焖土豆烧肉]',
|
| 929 |
+
927: 'trifle [蛋糕]',
|
| 930 |
+
928: 'ice cream, icecream [冰淇淋]',
|
| 931 |
+
929: 'ice lolly, lolly, lollipop, popsicle [雪糕,冰棍,冰棒]',
|
| 932 |
+
930: 'French loaf [法式面包]',
|
| 933 |
+
931: 'bagel, beigel [百吉饼]',
|
| 934 |
+
932: 'pretzel [椒盐脆饼]',
|
| 935 |
+
933: 'cheeseburger [芝士汉堡]',
|
| 936 |
+
934: 'hotdog, hot dog, red hot [热狗]',
|
| 937 |
+
935: 'mashed potato [土豆泥]',
|
| 938 |
+
936: 'head cabbage [结球甘蓝]',
|
| 939 |
+
937: 'broccoli [西兰花]',
|
| 940 |
+
938: 'cauliflower [菜花]',
|
| 941 |
+
939: 'zucchini, courgette [绿皮密生西葫芦]',
|
| 942 |
+
940: 'spaghetti squash [西葫芦]',
|
| 943 |
+
941: 'acorn squash [小青南瓜]',
|
| 944 |
+
942: 'butternut squash [南瓜]',
|
| 945 |
+
943: 'cucumber, cuke [黄瓜]',
|
| 946 |
+
944: 'artichoke, globe artichoke [朝鲜蓟]',
|
| 947 |
+
945: 'bell pepper [甜椒]',
|
| 948 |
+
946: 'cardoon [刺棘蓟]',
|
| 949 |
+
947: 'mushroom [蘑菇]',
|
| 950 |
+
948: 'Granny Smith [绿苹果]',
|
| 951 |
+
949: 'strawberry [草莓]',
|
| 952 |
+
950: 'orange [橘子]',
|
| 953 |
+
951: 'lemon [柠檬]',
|
| 954 |
+
952: 'fig [无花果]',
|
| 955 |
+
953: 'pineapple, ananas [菠萝]',
|
| 956 |
+
954: 'banana [香蕉]',
|
| 957 |
+
955: 'jackfruit, jak, jack [菠萝蜜]',
|
| 958 |
+
956: 'custard apple [蛋奶冻苹果]',
|
| 959 |
+
957: 'pomegranate [石榴]',
|
| 960 |
+
958: 'hay [干草]',
|
| 961 |
+
959: 'carbonara [烤面条加干酪沙司]',
|
| 962 |
+
960: 'chocolate sauce, chocolate syrup [巧克力酱,巧克力糖浆]',
|
| 963 |
+
961: 'dough [面团]',
|
| 964 |
+
962: 'meat loaf, meatloaf [瑞士肉包,肉饼]',
|
| 965 |
+
963: 'pizza, pizza pie [披萨,披萨饼]',
|
| 966 |
+
964: 'potpie [馅饼]',
|
| 967 |
+
965: 'burrito [卷饼]',
|
| 968 |
+
966: 'red wine [红葡萄酒]',
|
| 969 |
+
967: 'espresso [意大利浓咖啡]',
|
| 970 |
+
968: 'cup [杯子]',
|
| 971 |
+
969: 'eggnog [蛋酒]',
|
| 972 |
+
970: 'alp [高山]',
|
| 973 |
+
971: 'bubble [泡泡]',
|
| 974 |
+
972: 'cliff, drop, drop-off [悬崖]',
|
| 975 |
+
973: 'coral reef [珊瑚礁]',
|
| 976 |
+
974: 'geyser [间歇泉]',
|
| 977 |
+
975: 'lakeside, lakeshore [湖边,湖岸]',
|
| 978 |
+
976: 'promontory, headland, head, foreland [海角]',
|
| 979 |
+
977: 'sandbar, sand bar [沙洲,沙坝]',
|
| 980 |
+
978: 'seashore, coast, seacoast, sea-coast [海滨,海岸]',
|
| 981 |
+
979: 'valley, vale [峡谷]',
|
| 982 |
+
980: 'volcano [火山]',
|
| 983 |
+
981: 'ballplayer, baseball player [棒球,棒球运动员]',
|
| 984 |
+
982: 'groom, bridegroom [新郎]',
|
| 985 |
+
983: 'scuba diver [潜水员]',
|
| 986 |
+
984: 'rapeseed [油菜]',
|
| 987 |
+
985: 'daisy [雏菊]',
|
| 988 |
+
986: 'yellow ladys slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum [杓兰]',
|
| 989 |
+
987: 'corn [玉米]',
|
| 990 |
+
988: 'acorn [橡子]',
|
| 991 |
+
989: 'hip, rose hip, rosehip [玫瑰果]',
|
| 992 |
+
990: 'buckeye, horse chestnut, conker [七叶树果实]',
|
| 993 |
+
991: 'coral fungus [珊瑚菌]',
|
| 994 |
+
992: 'agaric [木耳]',
|
| 995 |
+
993: 'gyromitra [鹿花菌]',
|
| 996 |
+
994: 'stinkhorn, carrion fungus [鬼笔菌]',
|
| 997 |
+
995: 'earthstar [地星(菌类)]',
|
| 998 |
+
996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa [多叶奇果菌]',
|
| 999 |
+
997: 'bolete [牛肝菌]',
|
| 1000 |
+
998: 'ear, spike, capitulum [玉米穗]',
|
| 1001 |
+
999: 'toilet tissue, toilet paper, bathroom tissue [卫生纸]',
|
| 1002 |
+
}
|
tools/push_gpt_to_hf.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from:
|
| 2 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/sample_ddp.py
|
| 3 |
+
import torch
|
| 4 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 5 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 6 |
+
import argparse
|
| 7 |
+
|
| 8 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 9 |
+
from autoregressive.models.gpt_hf import GPT_models_HF, TransformerHF
|
| 10 |
+
|
| 11 |
+
device = "cuda" if torch.cuda_is_available() else "cpu"
|
| 12 |
+
|
| 13 |
+
def main(args):
|
| 14 |
+
# Setup PyTorch:
|
| 15 |
+
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
|
| 16 |
+
torch.set_grad_enabled(False)
|
| 17 |
+
|
| 18 |
+
# create and load gpt model
|
| 19 |
+
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
|
| 20 |
+
latent_size = args.image_size // args.downsample_size
|
| 21 |
+
gpt_model = GPT_models_HF[args.gpt_model](
|
| 22 |
+
vocab_size=args.codebook_size,
|
| 23 |
+
block_size=latent_size ** 2,
|
| 24 |
+
num_classes=args.num_classes,
|
| 25 |
+
cls_token_num=args.cls_token_num,
|
| 26 |
+
model_type=args.gpt_type,
|
| 27 |
+
).to(device=device, dtype=precision)
|
| 28 |
+
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
|
| 29 |
+
if args.from_fsdp: # fsdp
|
| 30 |
+
model_weight = checkpoint
|
| 31 |
+
elif "model" in checkpoint: # ddp
|
| 32 |
+
model_weight = checkpoint["model"]
|
| 33 |
+
elif "module" in checkpoint: # deepspeed
|
| 34 |
+
model_weight = checkpoint["module"]
|
| 35 |
+
elif "state_dict" in checkpoint:
|
| 36 |
+
model_weight = checkpoint["state_dict"]
|
| 37 |
+
else:
|
| 38 |
+
raise Exception("please check model weight, maybe add --from-fsdp to run command")
|
| 39 |
+
|
| 40 |
+
# load weights
|
| 41 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 42 |
+
gpt_model.eval()
|
| 43 |
+
del checkpoint
|
| 44 |
+
|
| 45 |
+
# push to hub
|
| 46 |
+
repo_id = f"FoundationVision/{args.gpt_model}-{args.image_size}"
|
| 47 |
+
gpt_model.push_to_hub(repo_id)
|
| 48 |
+
|
| 49 |
+
# reload
|
| 50 |
+
model = TransformerHF.from_pretrained(repo_id)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
parser = argparse.ArgumentParser()
|
| 55 |
+
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
|
| 56 |
+
parser.add_argument("--gpt-ckpt", type=str, default=None)
|
| 57 |
+
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
|
| 58 |
+
parser.add_argument("--from-fsdp", action='store_true')
|
| 59 |
+
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
|
| 60 |
+
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
|
| 61 |
+
parser.add_argument("--compile", action='store_true', default=True)
|
| 62 |
+
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
|
| 63 |
+
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
|
| 64 |
+
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
|
| 65 |
+
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
|
| 66 |
+
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384)
|
| 67 |
+
parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256)
|
| 68 |
+
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
|
| 69 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 70 |
+
args = parser.parse_args()
|
| 71 |
+
main(args)
|
utils/data.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from PIL import Image
|
| 3 |
+
|
| 4 |
+
def center_crop_arr(pil_image, image_size):
|
| 5 |
+
"""
|
| 6 |
+
Center cropping implementation from ADM.
|
| 7 |
+
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
|
| 8 |
+
"""
|
| 9 |
+
while min(*pil_image.size) >= 2 * image_size:
|
| 10 |
+
pil_image = pil_image.resize(
|
| 11 |
+
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
scale = image_size / min(*pil_image.size)
|
| 15 |
+
pil_image = pil_image.resize(
|
| 16 |
+
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
arr = np.array(pil_image)
|
| 20 |
+
crop_y = (arr.shape[0] - image_size) // 2
|
| 21 |
+
crop_x = (arr.shape[1] - image_size) // 2
|
| 22 |
+
return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
|