File size: 9,210 Bytes
33b03a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Modified from:
# fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py
import warnings
warnings.filterwarnings("ignore")
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
import numpy as np
import argparse
import os
import sys
current_directory = os.getcwd()
sys.path.append(current_directory)
from utils.distributed import init_distributed_mode
from dataset.augmentation import center_crop_arr
from dataset.build import build_dataset
from tokenizer.tokenizer_image.vq_model import VQ_models
from condition.hed import HEDdetector, ControlNetHED_Apache2
import cv2
from torch.nn.parallel import DataParallel
from einops import rearrange
from datasets import load_dataset
from torchvision import transforms
from PIL import Image
from language.t5 import T5Embedder
from condition.canny import CannyDetector
from condition.hed import HEDdetector
from condition.lineart import LineArt
#################################################################################
# Training Loop #
#################################################################################
resolution = (512, 512)
image_transforms = transforms.Compose(
[
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
conditioning_image_transforms = transforms.Compose(
[
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
transforms.ToTensor(),
]
)
label_image_transforms = transforms.Compose(
[
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.NEAREST, antialias=True),
]
)
def collate_fn(examples):
pil_images = [example['image'].convert("RGB") for example in examples]
images = [image_transforms(image) for image in pil_images]
images = torch.stack(images)
conditioning_images = [example['control_depth'].convert("RGB") for example in examples]
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
conditioning_images = torch.stack(conditioning_images)
captions = [example['text'] for example in examples]
return {
"images": images, # -1~1
"conditioning_images": conditioning_images, # 0~1
"captions": captions,
# "labels": labels
}
def main(args):
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
# Setup DDP:
if not args.debug:
init_distributed_mode(args)
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
else:
device = 'cuda'
rank = 0
# Setup a feature folder:
if args.debug or rank == 0:
os.makedirs(args.code_path, exist_ok=True)
os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
os.makedirs(os.path.join(args.code_path, f'control_depth'), exist_ok=True)
os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)
# create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim)
vq_model.to(device)
vq_model.eval()
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
t5_model = T5Embedder(
device=device,
local_cache=True,
cache_dir=args.t5_path,
dir_or_name=args.t5_model_type,
model_max_length=args.t5_feature_max_len,
)
# Setup data:
if args.ten_crop:
crop_size = int(args.image_size * args.crop_range)
transform = transforms.Compose([
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
else:
crop_size = args.image_size
transform = transforms.Compose([
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
dataset = load_dataset(
args.data_path,
cache_dir=None,
)
try:
if not args.debug:
sampler = DistributedSampler(
dataset[args.split],
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=False,
seed=args.global_seed
)
else:
sampler = None
loader = DataLoader(
dataset[args.split],
batch_size=1, # important!
shuffle=False,
sampler=sampler,
num_workers=args.num_workers,
collate_fn=collate_fn,
pin_memory=True,
drop_last=False
)
except Exception as e:
pass
from tqdm import tqdm
total = 0
code_len = 1024
t5_feature_max_len = 120
t5_feature_dim = 2048
max_seq_length = t5_feature_max_len + code_len
for batch in tqdm(loader):
captions = batch['captions']
train_steps = rank + total
img_save_path = f'{args.code_path}/image/{train_steps}.png'
depth_save_path = f'{args.code_path}/control_depth/{train_steps}.png'
Image.fromarray((255*(batch['images'][0].numpy().transpose(1,2,0)*0.5+0.5)).astype('uint8'), mode='RGB').save(img_save_path)
Image.fromarray((255*batch['conditioning_images'][0].numpy().transpose(1,2,0)).astype('uint8'), mode='RGB').save(depth_save_path)
with torch.no_grad():
_, _, [_, _, indices] = vq_model.encode(batch['images'].to(device))
caption_emb, emb_mask = t5_model.get_text_embeddings(captions)
valid_num = int(emb_mask.sum().item())
caption_emb = caption_emb[:, :valid_num]
codes = indices.reshape(1, 1, -1)
x = codes.detach().cpu().numpy() # (1, num_aug, args.image_size//16 * args.image_size//16)
np.save(f'{args.code_path}/code/{train_steps}.npy', x)
caption_emb = caption_emb.to(torch.float32).detach().cpu().numpy()
caption_dict = {}
caption_dict['prompt'] = captions
caption_dict['caption_emb'] = caption_emb
np.savez(f'{args.code_path}/caption_emb/{train_steps}.npz', **caption_dict)
if not args.debug:
total += dist.get_world_size()
else:
total += 1
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, required=True)
parser.add_argument("--code-path", type=str, required=True)
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--dataset", type=str, default='imagenet')
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--num-workers", type=int, default=24)
parser.add_argument("--debug", action='store_true')
parser.add_argument("--min-threshold", type=int, default=200)
parser.add_argument("--max-threshold", type=int, default=400)
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
parser.add_argument("--t5-feature-max-len", type=int, default=120)
parser.add_argument("--split", type=str, default='train')
args = parser.parse_args()
main(args)
|