File size: 9,210 Bytes
33b03a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Modified from:
#   fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/extract_features.py

import warnings
warnings.filterwarnings("ignore")
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
import numpy as np
import argparse
import os
import sys
current_directory = os.getcwd()
sys.path.append(current_directory)
from utils.distributed import init_distributed_mode
from dataset.augmentation import center_crop_arr
from dataset.build import build_dataset
from tokenizer.tokenizer_image.vq_model import VQ_models
from condition.hed import HEDdetector, ControlNetHED_Apache2
import cv2
from torch.nn.parallel import DataParallel
from einops import rearrange
from datasets import load_dataset
from torchvision import transforms
from PIL import Image
from language.t5 import T5Embedder
from condition.canny import CannyDetector
from condition.hed import HEDdetector
from condition.lineart import LineArt
#################################################################################
#                                  Training Loop                                #
#################################################################################
resolution = (512, 512)
image_transforms = transforms.Compose(
    [
        transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5]),
    ]
)
conditioning_image_transforms = transforms.Compose(
        [
            transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
            transforms.ToTensor(),
        ]
    )
label_image_transforms = transforms.Compose(
        [
            transforms.Resize(resolution, interpolation=transforms.InterpolationMode.NEAREST, antialias=True),
        ]
    )

def collate_fn(examples):

    pil_images = [example['image'].convert("RGB") for example in examples]
    images = [image_transforms(image) for image in pil_images]
    images = torch.stack(images)
    
    conditioning_images = [example['control_depth'].convert("RGB") for example in examples]
    conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
    conditioning_images = torch.stack(conditioning_images)
    captions = [example['text'] for example in examples]

    

    return {
        "images": images,  # -1~1
        "conditioning_images": conditioning_images,  # 0~1
        "captions": captions,
        # "labels": labels
    }

def main(args):
    
    assert torch.cuda.is_available(), "Training currently requires at least one GPU."
    # Setup DDP:
    if not args.debug:
        init_distributed_mode(args)
        rank = dist.get_rank()
        device = rank % torch.cuda.device_count()
        seed = args.global_seed * dist.get_world_size() + rank
        torch.manual_seed(seed)
        torch.cuda.set_device(device)
        print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
    else:
        device = 'cuda'
        rank = 0
    
    # Setup a feature folder:
    if args.debug or rank == 0:
        os.makedirs(args.code_path, exist_ok=True)
        os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True)
        os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True)
        os.makedirs(os.path.join(args.code_path, f'control_depth'), exist_ok=True)
        os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True)

    # create and load model
    vq_model = VQ_models[args.vq_model](
        codebook_size=args.codebook_size,
        codebook_embed_dim=args.codebook_embed_dim)
    vq_model.to(device)
    vq_model.eval()
    checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
    vq_model.load_state_dict(checkpoint["model"])
    del checkpoint
    
    t5_model = T5Embedder(
        device=device, 
        local_cache=True, 
        cache_dir=args.t5_path, 
        dir_or_name=args.t5_model_type,
        model_max_length=args.t5_feature_max_len,
    )

    # Setup data:
    if args.ten_crop:
        crop_size = int(args.image_size * args.crop_range)
        transform = transforms.Compose([
            transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
            transforms.TenCrop(args.image_size), # this is a tuple of PIL Images
            transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
        ])
    else:
        crop_size = args.image_size 
        transform = transforms.Compose([
            transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
        ])
    dataset = load_dataset(
                    args.data_path,
                    cache_dir=None,
                )
    try:
        if not args.debug:
            sampler = DistributedSampler(
                dataset[args.split],
                num_replicas=dist.get_world_size(),
                rank=rank,
                shuffle=False,
                seed=args.global_seed
            )
        else:
            sampler = None
        loader = DataLoader(
            dataset[args.split],
            batch_size=1, # important!
            shuffle=False,
            sampler=sampler,
            num_workers=args.num_workers,
            collate_fn=collate_fn,
            pin_memory=True,
            drop_last=False
        )
    except Exception as e:
        pass
    
    from tqdm import tqdm
    total = 0
    code_len = 1024
    t5_feature_max_len = 120
    t5_feature_dim = 2048
    max_seq_length = t5_feature_max_len + code_len
    for batch in tqdm(loader):
        
        captions = batch['captions']
        
        train_steps = rank + total
        img_save_path = f'{args.code_path}/image/{train_steps}.png'
        depth_save_path = f'{args.code_path}/control_depth/{train_steps}.png'

        Image.fromarray((255*(batch['images'][0].numpy().transpose(1,2,0)*0.5+0.5)).astype('uint8'), mode='RGB').save(img_save_path)
        Image.fromarray((255*batch['conditioning_images'][0].numpy().transpose(1,2,0)).astype('uint8'), mode='RGB').save(depth_save_path)
        
        with torch.no_grad():
            _, _, [_, _, indices] = vq_model.encode(batch['images'].to(device))
            
            caption_emb, emb_mask = t5_model.get_text_embeddings(captions)
            valid_num = int(emb_mask.sum().item())
            caption_emb = caption_emb[:, :valid_num]
        
        codes = indices.reshape(1, 1, -1)
        x = codes.detach().cpu().numpy()    # (1, num_aug, args.image_size//16 * args.image_size//16)
        np.save(f'{args.code_path}/code/{train_steps}.npy', x)

        caption_emb = caption_emb.to(torch.float32).detach().cpu().numpy()
        caption_dict = {}
        caption_dict['prompt'] = captions
        caption_dict['caption_emb'] = caption_emb
        np.savez(f'{args.code_path}/caption_emb/{train_steps}.npz', **caption_dict)
        if not args.debug:
            total += dist.get_world_size()
        else:
            total += 1

    dist.destroy_process_group()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, required=True)
    parser.add_argument("--code-path", type=str, required=True)
    parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
    parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model")
    parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
    parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
    parser.add_argument("--dataset", type=str, default='imagenet')
    parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
    parser.add_argument("--ten-crop", action='store_true', help="whether using random crop")
    parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop")
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--num-workers", type=int, default=24)
    parser.add_argument("--debug", action='store_true')
    parser.add_argument("--min-threshold", type=int, default=200)
    parser.add_argument("--max-threshold", type=int, default=400)
    parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt')
    parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
    parser.add_argument("--t5-feature-max-len", type=int, default=120)
    parser.add_argument("--split", type=str, default='train')
    args = parser.parse_args()
    main(args)