File size: 14,777 Bytes
33b03a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Modified from:
#   fast-DiT: https://github.com/chuanyangjin/fast-DiT/blob/main/train.py
#   nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from glob import glob
from copy import deepcopy
import os
import time
import inspect
import argparse

from utils.logger import create_logger
from utils.distributed import init_distributed_mode
from utils.ema import update_ema, requires_grad
from dataset.build import build_dataset
from autoregressive.models.gpt import GPT_models


#################################################################################
#                             Training Helper Functions                         #
#################################################################################
def creat_optimizer(model, weight_decay, learning_rate, betas, logger):
    # start with all of the candidate parameters
    param_dict = {pn: p for pn, p in model.named_parameters()}
    # filter out those that do not require grad
    param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
    # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
    # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
    decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
    nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
    optim_groups = [
        {'params': decay_params, 'weight_decay': weight_decay},
        {'params': nodecay_params, 'weight_decay': 0.0}
    ]
    num_decay_params = sum(p.numel() for p in decay_params)
    num_nodecay_params = sum(p.numel() for p in nodecay_params)
    logger.info(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
    logger.info(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
    # Create AdamW optimizer and use the fused version if it is available
    fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
    extra_args = dict(fused=True) if fused_available else dict()
    optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
    logger.info(f"using fused AdamW: {fused_available}")
    return optimizer



#################################################################################
#                                  Training Loop                                #
#################################################################################
def main(args):
    assert torch.cuda.is_available(), "Training currently requires at least one GPU."
    
    # Setup DDP:
    init_distributed_mode(args)
    assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
    rank = dist.get_rank()
    device = rank % torch.cuda.device_count()
    seed = args.global_seed * dist.get_world_size() + rank
    torch.manual_seed(seed)
    torch.cuda.set_device(device)

    # Setup an experiment folder:
    if rank == 0:
        os.makedirs(args.results_dir, exist_ok=True)  # Make results folder (holds all experiment subfolders)
        experiment_index = len(glob(f"{args.results_dir}/*"))
        model_string_name = args.gpt_model.replace("/", "-")  # e.g., GPT-XL/2 --> GPT-XL-2 (for naming folders)
        experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}"  # Create an experiment folder
        checkpoint_dir = f"{experiment_dir}/checkpoints"  # Stores saved model checkpoints
        os.makedirs(checkpoint_dir, exist_ok=True)
        logger = create_logger(experiment_dir)
        logger.info(f"Experiment directory created at {experiment_dir}")

        time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
        cloud_results_dir = f"{args.cloud_save_path}/{time_record}"
        cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints"
        os.makedirs(cloud_checkpoint_dir, exist_ok=True)
        logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}")
    
    else:
        logger = create_logger(None)

    # training args
    logger.info(f"{args}")

    # training env
    logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")


    # Setup model
    if args.drop_path_rate > 0.0:
        dropout_p = 0.0
    else:
        dropout_p = args.dropout_p
    latent_size = args.image_size // args.downsample_size
    model = GPT_models[args.gpt_model](
        vocab_size=args.vocab_size,
        block_size=latent_size ** 2,
        num_classes=args.num_classes,
        cls_token_num=args.cls_token_num,
        model_type=args.gpt_type,
        resid_dropout_p=dropout_p,
        ffn_dropout_p=dropout_p,
        drop_path_rate=args.drop_path_rate,
        token_dropout_p=args.token_dropout_p,
    ).to(device)
    logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}")

    if args.ema:
        ema = deepcopy(model).to(device)  # Create an EMA of the model for use after training
        requires_grad(ema, False)
        logger.info(f"EMA Parameters: {sum(p.numel() for p in ema.parameters()):,}")

    # Setup optimizer
    optimizer = creat_optimizer(model, args.weight_decay, args.lr, (args.beta1, args.beta2), logger)

    # Setup data:
    dataset = build_dataset(args)
    sampler = DistributedSampler(
        dataset,
        num_replicas=dist.get_world_size(),
        rank=rank,
        shuffle=True,
        seed=args.global_seed
    )
    loader = DataLoader(
        dataset,
        batch_size=int(args.global_batch_size // dist.get_world_size()),
        shuffle=False,
        sampler=sampler,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=True
    )
    flip_info = 'with' if dataset.flip else 'without'
    aug_info = 10 if 'ten_crop' in dataset.feature_dir else 1
    aug_info = 2 * aug_info if dataset.aug_feature_dir is not None else aug_info
    logger.info(f"Dataset contains {len(dataset):,} images ({args.code_path}) "
                f"{flip_info} flip augmentation and {aug_info} crop augmentation")

    # Prepare models for training:
    if args.gpt_ckpt:
        checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
        model.load_state_dict(checkpoint["model"])
        if args.ema:
            ema.load_state_dict(checkpoint["ema"] if "ema" in checkpoint else checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        train_steps = checkpoint["steps"] if "steps" in checkpoint else int(args.gpt_ckpt.split('/')[-1].split('.')[0])
        start_epoch = int(train_steps / int(len(dataset) / args.global_batch_size))
        train_steps = int(start_epoch * int(len(dataset) / args.global_batch_size))
        del checkpoint
        logger.info(f"Resume training from checkpoint: {args.gpt_ckpt}")
        logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}")
    else:
        train_steps = 0
        start_epoch = 0
        if args.ema:
            update_ema(ema, model, decay=0)  # Ensure EMA is initialized with synced weights

    if not args.no_compile:
        logger.info("compiling the model... (may take several minutes)")
        model = torch.compile(model) # requires PyTorch 2.0        
    
    model = DDP(model.to(device), device_ids=[args.gpu])
    model.train()  # important! This enables embedding dropout for classifier-free guidance
    if args.ema:
        ema.eval()  # EMA model should always be in eval mode

    ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision]
    # initialize a GradScaler. If enabled=False scaler is a no-op
    scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16'))
    # Variables for monitoring/logging purposes:
    log_steps = 0
    running_loss = 0
    start_time = time.time()

    logger.info(f"Training for {args.epochs} epochs...")
    for epoch in range(start_epoch, args.epochs):
        sampler.set_epoch(epoch)
        logger.info(f"Beginning epoch {epoch}...")
        for x, y in loader:
            x = x.to(device, non_blocking=True)
            y = y.to(device, non_blocking=True)
            z_indices = x.reshape(x.shape[0], -1)
            c_indices = y.reshape(-1)
            assert z_indices.shape[0] == c_indices.shape[0]
            with torch.cuda.amp.autocast(dtype=ptdtype):  
                _, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices)
            # backward pass, with gradient scaling if training in fp16         
            scaler.scale(loss).backward()
            if args.max_grad_norm != 0.0:
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
            # step the optimizer and scaler if training in fp16
            scaler.step(optimizer)
            scaler.update()
            # flush the gradients as soon as we can, no need for this memory anymore
            optimizer.zero_grad(set_to_none=True)
            if args.ema:
                update_ema(ema, model.module._orig_mod if not args.no_compile else model.module)

            # Log loss values:
            running_loss += loss.item()
            log_steps += 1
            train_steps += 1
            if train_steps % args.log_every == 0:
                # Measure training speed:
                torch.cuda.synchronize()
                end_time = time.time()
                steps_per_sec = log_steps / (end_time - start_time)
                # Reduce loss history over all processes:
                avg_loss = torch.tensor(running_loss / log_steps, device=device)
                dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
                avg_loss = avg_loss.item() / dist.get_world_size()
                logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
                # Reset monitoring variables:
                running_loss = 0
                log_steps = 0
                start_time = time.time()

            # Save checkpoint:
            if train_steps % args.ckpt_every == 0 and train_steps > 0:
                if rank == 0:
                    if not args.no_compile:
                        model_weight = model.module._orig_mod.state_dict()
                    else:
                        model_weight = model.module.state_dict()  
                    checkpoint = {
                        "model": model_weight,
                        "optimizer": optimizer.state_dict(),
                        "steps": train_steps,
                        "args": args
                    }
                    if args.ema:
                        checkpoint["ema"] = ema.state_dict()
                    if not args.no_local_save:
                        checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
                        torch.save(checkpoint, checkpoint_path)
                        logger.info(f"Saved checkpoint to {checkpoint_path}")
                    
                    cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt"
                    torch.save(checkpoint, cloud_checkpoint_path)
                    logger.info(f"Saved checkpoint in cloud to {cloud_checkpoint_path}")
                dist.barrier()

    model.eval()  # important! This disables randomized embedding dropout
    # do any sampling/FID calculation/etc. with ema (or model) in eval mode ...

    logger.info("Done!")
    dist.destroy_process_group()



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--code-path", type=str, required=True)
    parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path')
    parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume')
    parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
    parser.add_argument("--gpt-ckpt", type=str, default=None, help="ckpt path for resume training")
    parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
    parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer")
    parser.add_argument("--ema", action='store_true', help="whether using ema training")
    parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
    parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p")
    parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p")
    parser.add_argument("--drop-path-rate", type=float, default=0.0, help="using stochastic depth decay")
    parser.add_argument("--no-compile", action='store_true')
    parser.add_argument("--results-dir", type=str, default="results")
    parser.add_argument("--dataset", type=str, default='imagenet_code')
    parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256)
    parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
    parser.add_argument("--num-classes", type=int, default=1000)
    parser.add_argument("--epochs", type=int, default=300)
    parser.add_argument("--lr", type=float, default=1e-4)
    parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use")
    parser.add_argument("--beta1", type=float, default=0.9, help="beta1 parameter for the Adam optimizer")
    parser.add_argument("--beta2", type=float, default=0.95, help="beta2 parameter for the Adam optimizer")
    parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--global-batch-size", type=int, default=256)
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--num-workers", type=int, default=24)
    parser.add_argument("--log-every", type=int, default=100)
    parser.add_argument("--ckpt-every", type=int, default=5000)
    parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
    parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) 
    args = parser.parse_args()
    main(args)