File size: 4,993 Bytes
33b03a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import matplotlib.pyplot as plt
import numpy as np

font_size = 14

def fid_scaling_law_no_cfg():
    # data
    steps = np.array([50, 100, 200, 300,])
    loss_b = np.array([41.025, 33.442, 32.105, 32.196])
    loss_l = np.array([25.889, 24.654, 19.742, 19.070])
    loss_xl = np.array([19.820, 18.037, 14.772, 15.549])

    steps_ = np.array([50, 200, 300,])
    loss_xxl = np.array([17.195, 13.997, 14.648])
    loss_3b = np.array([16.431, 9.949, 9.380])
    # Plot
    plt.figure(figsize=(6, 4))

    plt.plot(steps, loss_b, 'o-', label='B', color='red')
    plt.plot(steps, loss_l, 'o-', label='L', color='orange')
    plt.plot(steps, loss_xl, 'o-', label='XL', color='green')
    plt.plot(steps_, loss_xxl, 'o-', label='XXL', color='blue')
    plt.plot(steps_, loss_3b, 'o-', label='3B', color='purple')

    plt.xlabel('Training Epochs', fontsize=font_size)
    plt.ylabel('FID', fontsize=font_size)
    # plt.grid(True)
    # plt.yscale('log')

    # Customize the plot to match the appearance of the provided figure
    plt.legend(loc='upper right', framealpha=0.5, fontsize=font_size, facecolor='white')

    # Customizing the x and y axis ticks (to match the example's steps)
    # plt.xticks(np.linspace(0, 800000, 5), ['0', '200K', '400K', '600K', '800K'])
    plt.yticks(np.arange(5, 50, step=5))

    # Show plot
    plt.tight_layout()
    plt.savefig('fid_scaling_law_no_cfg.png', dpi=600)



def fid_scaling_law_cfg():
    # data
    steps = np.array([50, 100, 200, 300,])
    loss_b_cfg = np.array([8.309, 7.256, 6.542, 6.249])
    loss_l_cfg = np.array([4.240, 3.705, 3.220, 3.075])
    loss_xl_cfg = np.array([3.420, 3.089, 2.617, 2.629])

    steps_ = np.array([50, 200, 300,])
    loss_xxl_cfg = np.array([2.893, 2.331, 2.340])
    loss_3b_cfg = np.array([2.611, 2.381, 2.329])
    # Plot
    plt.figure(figsize=(6, 4))

    plt.plot(steps, loss_b_cfg, 'o-', label='B', color='red')
    plt.plot(steps, loss_l_cfg, 'o-', label='L', color='orange')
    plt.plot(steps, loss_xl_cfg, 'o-', label='XL', color='green')
    plt.plot(steps_, loss_xxl_cfg, 'o-', label='XXL', color='blue')
    plt.plot(steps_, loss_3b_cfg, 'o-', label='3B', color='purple')

    plt.xlabel('Training Epochs', fontsize=font_size)
    plt.ylabel('FID', fontsize=font_size)
    # plt.grid(True)
    # plt.yscale('log')

    # Customize the plot to match the appearance of the provided figure
    plt.legend(loc='upper right', framealpha=0.5, fontsize=font_size, facecolor='white')

    # Customizing the x and y axis ticks (to match the example's steps)
    # plt.xticks(np.linspace(0, 800000, 5), ['0', '200K', '400K', '600K', '800K'])
    plt.yticks(np.arange(2, 9, step=1))

    # Show plot
    plt.tight_layout()
    plt.savefig('fid_scaling_law_cfg.png', dpi=600)



def sample_topk():
    # Data
    top_k = np.array([16384, 10000, 8000, 6000, 4000, 2000, 1000])
    fid_values = np.array([3.075, 3.369, 3.643, 3.969, 4.635, 5.998, 7.428])
    inception_scores = np.array([256.067, 265.222, 268.237, 270.159, 271.455, 267.278, 251.268])

    fig, ax1 = plt.subplots()
    # Create first y-axis
    ax1.set_xlabel('top-k', fontsize=font_size)
    ax1.set_ylabel('FID', color='teal', fontsize=font_size)
    ax1.plot(top_k, fid_values, 'o-', color='teal', label="FID")
    ax1.tick_params(axis='y', labelcolor='teal')
    ax1.tick_params(axis='x')

    # Create second y-axis
    ax2 = ax1.twinx()
    ax2.set_ylabel('Inception Score', color='brown', fontsize=font_size)
    ax2.plot(top_k, inception_scores, 'o-', color='brown', label="Inception Score")
    ax2.tick_params(axis='y', labelcolor='brown')

    # Adding a legend
    fig.legend(loc='upper right', bbox_to_anchor=(1.0, 1.0), bbox_transform=ax1.transAxes, fontsize=font_size)

    fig.tight_layout()  # Adjust layout to prevent overlap
    plt.savefig('effect_topk.png', dpi=600)



def sample_cfg():
    # Data
    cfg = np.array([1.5, 1.75, 2.00, 2.25])
    fid_values = np.array([4.743, 3.151, 3.075, 3.620])
    inception_scores = np.array([165.381, 214.152, 256.067, 291.695])

    plt.figure(figsize=(10, 4))
    fig, ax1 = plt.subplots()
    # Create first y-axis
    ax1.set_xlabel('cfg', fontsize=font_size)
    ax1.set_ylabel('FID', color='teal', fontsize=font_size)
    ax1.plot(cfg, fid_values, 'o-', color='teal', label="FID")
    ax1.tick_params(axis='y', labelcolor='teal')
    ax1.tick_params(axis='x')

    # Create second y-axis
    ax2 = ax1.twinx()
    ax2.set_ylabel('Inception Score', color='brown', fontsize=font_size)
    ax2.plot(cfg, inception_scores, 'o-', color='brown', label="Inception Score")
    ax2.tick_params(axis='y', labelcolor='brown')

    # Adding a legend
    fig.legend(loc='upper right', bbox_to_anchor=(1.0, 1.0), bbox_transform=ax1.transAxes, fontsize=font_size)

    fig.tight_layout()  # Adjust layout to prevent overlap
    plt.savefig('effect_cfg.png', dpi=600)



if __name__ == "__main__":
    fid_scaling_law_no_cfg()
    fid_scaling_law_cfg()
    sample_cfg()
    sample_topk()