|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, List |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from utils.drop_path import DropPath |
|
from autoregressive.models.vit_adapter import ViT_Adapter |
|
from autoregressive.models.dinov2_adapter import Dinov2_Adapter |
|
|
|
|
|
def get_causal_mask(seq_length): |
|
mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).type(torch.bool) |
|
mask = mask.masked_fill(mask, float('-inf')) |
|
mask = mask.masked_fill(~mask, float(0.0)) |
|
return mask |
|
|
|
def find_multiple(n: int, k: int): |
|
if n % k == 0: |
|
return n |
|
return n + k - (n % k) |
|
|
|
@dataclass |
|
class ModelArgs: |
|
dim: int = 4096 |
|
n_layer: int = 32 |
|
n_head: int = 32 |
|
n_kv_head: Optional[int] = None |
|
multiple_of: int = 256 |
|
ffn_dim_multiplier: Optional[float] = None |
|
rope_base: float = 10000 |
|
norm_eps: float = 1e-5 |
|
initializer_range: float = 0.02 |
|
|
|
token_dropout_p: float = 0.1 |
|
attn_dropout_p: float = 0.0 |
|
resid_dropout_p: float = 0.1 |
|
ffn_dropout_p: float = 0.1 |
|
drop_path_rate: float = 0.0 |
|
|
|
num_classes: int = 1000 |
|
caption_dim: int = 2048 |
|
class_dropout_prob: float = 0.1 |
|
model_type: str = 'c2i' |
|
|
|
vocab_size: int = 16384 |
|
cls_token_num: int = 1 |
|
block_size: int = 256 |
|
max_batch_size: int = 32 |
|
max_seq_len: int = 2048 |
|
adapter_size: str = 'small' |
|
condition_type: str = 'canny' |
|
|
|
|
|
|
|
|
|
|
|
|
|
class LabelEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, num_classes, hidden_size, dropout_prob): |
|
super().__init__() |
|
use_cfg_embedding = dropout_prob > 0 |
|
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) |
|
self.num_classes = num_classes |
|
self.dropout_prob = dropout_prob |
|
|
|
def token_drop(self, labels, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
labels = torch.where(drop_ids, self.num_classes, labels) |
|
return labels, drop_ids |
|
|
|
def forward(self, labels, train, force_drop_ids=None): |
|
use_dropout = self.dropout_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
labels,drop_ids = self.token_drop(labels, force_drop_ids) |
|
embeddings = self.embedding_table(labels).unsqueeze(1) |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
return embeddings,drop_ids |
|
else: |
|
return embeddings |
|
|
|
|
|
class ConditionEmbedder(nn.Module): |
|
""" |
|
Embeds Condition into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120, vocab_size=16384): |
|
super().__init__() |
|
self.cap_proj = MLP(in_features=hidden_size, hidden_features=hidden_size, out_features=hidden_size) |
|
self.register_buffer("uncond_embedding", torch.zeros(token_num, hidden_size) / hidden_size ** 0.5) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, caption, force_drop_ids=None, drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
if drop_ids is None: |
|
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
|
|
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding[:caption.shape[1]], caption) |
|
return caption |
|
|
|
def forward(self, caption, train, force_drop_ids=None, drop_ids=None): |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
caption = self.token_drop(caption, force_drop_ids, drop_ids) |
|
embeddings = self.cap_proj(caption) |
|
return embeddings |
|
|
|
|
|
|
|
|
|
class CaptionEmbedder(nn.Module): |
|
""" |
|
Embeds text caption into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120): |
|
super().__init__() |
|
self.cap_proj = MLP(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size) |
|
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5)) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding, caption) |
|
return caption, drop_ids |
|
|
|
def forward(self, caption, train, force_drop_ids=None): |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
caption, drop_ids = self.token_drop(caption, force_drop_ids) |
|
embeddings = self.cap_proj(caption) |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
return embeddings,drop_ids |
|
else: |
|
return embeddings |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, in_features, hidden_features, out_features): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=False) |
|
self.act = nn.GELU(approximate='tanh') |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=False) |
|
|
|
nn.init.zeros_(self.fc1.weight) |
|
nn.init.zeros_(self.fc2.weight) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-5): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, config: ModelArgs): |
|
super().__init__() |
|
hidden_dim = 4 * config.dim |
|
hidden_dim = int(2 * hidden_dim / 3) |
|
|
|
if config.ffn_dim_multiplier is not None: |
|
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim) |
|
hidden_dim = find_multiple(hidden_dim, config.multiple_of) |
|
|
|
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False) |
|
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False) |
|
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False) |
|
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p) |
|
|
|
def forward(self, x): |
|
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) |
|
|
|
|
|
class KVCache(nn.Module): |
|
def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype): |
|
super().__init__() |
|
cache_shape = (max_batch_size, n_head, max_seq_length, head_dim) |
|
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype)) |
|
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype)) |
|
|
|
def update(self, input_pos, k_val, v_val): |
|
|
|
assert input_pos.shape[0] == k_val.shape[2] |
|
k_out = self.k_cache |
|
v_out = self.v_cache |
|
k_out[:, :, input_pos] = k_val |
|
v_out[:, :, input_pos] = v_val |
|
|
|
return k_out, v_out |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, config: ModelArgs): |
|
super().__init__() |
|
assert config.dim % config.n_head == 0 |
|
self.dim = config.dim |
|
self.head_dim = config.dim // config.n_head |
|
self.n_head = config.n_head |
|
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head |
|
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim |
|
|
|
|
|
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False) |
|
self.wo = nn.Linear(config.dim, config.dim, bias=False) |
|
self.kv_cache = None |
|
|
|
|
|
self.attn_dropout_p = config.attn_dropout_p |
|
self.resid_dropout = nn.Dropout(config.resid_dropout_p) |
|
|
|
def forward( |
|
self, x: torch.Tensor, freqs_cis: torch.Tensor = None, |
|
input_pos: Optional[torch.Tensor] = None, |
|
mask: Optional[torch.Tensor] = None |
|
): |
|
bsz, seqlen, _ = x.shape |
|
kv_size = self.n_kv_head * self.head_dim |
|
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) |
|
|
|
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim) |
|
xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim) |
|
xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim) |
|
|
|
xq = apply_rotary_emb(xq, freqs_cis) |
|
xk = apply_rotary_emb(xk, freqs_cis) |
|
|
|
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv)) |
|
|
|
if self.kv_cache is not None: |
|
keys, values = self.kv_cache.update(input_pos, xk, xv) |
|
else: |
|
keys, values = xk, xv |
|
keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1) |
|
values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1) |
|
|
|
output = F.scaled_dot_product_attention( |
|
xq, keys, values, |
|
attn_mask=mask, |
|
is_causal=True if mask is None else False, |
|
dropout_p=self.attn_dropout_p if self.training else 0) |
|
|
|
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) |
|
|
|
output = self.resid_dropout(self.wo(output)) |
|
return output |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, config: ModelArgs, drop_path: float): |
|
super().__init__() |
|
self.attention = Attention(config) |
|
self.feed_forward = FeedForward(config) |
|
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward( |
|
self, x: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None): |
|
h = x + self.drop_path(self.attention(self.attention_norm(x), freqs_cis, start_pos, mask)) |
|
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h))) |
|
return out |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, config: ModelArgs): |
|
super().__init__() |
|
self.config = config |
|
self.vocab_size = config.vocab_size |
|
self.n_layer = config.n_layer |
|
self.block_size = config.block_size |
|
self.num_classes = config.num_classes |
|
self.model_type = config.model_type |
|
self.cls_token_num = config.cls_token_num |
|
self.layer_internal = config.n_layer // 3 |
|
|
|
|
|
|
|
self.adapter = Dinov2_Adapter(adapter_size=config.adapter_size, condition_type=config.condition_type) |
|
|
|
if config.adapter_size == "small": |
|
self.adapter_mlp = MLP(384, config.dim, config.dim) |
|
elif config.adapter_size == 'base': |
|
self.adapter_mlp = MLP(768, config.dim, config.dim) |
|
|
|
if self.model_type == 'c2i': |
|
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob) |
|
elif self.model_type == 't2i': |
|
self.cls_embedding = CaptionEmbedder(config.caption_dim, config.dim, config.class_dropout_prob) |
|
else: |
|
raise Exception("please check model type") |
|
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) |
|
self.tok_dropout = nn.Dropout(config.token_dropout_p) |
|
|
|
self.condition_embeddings = nn.Embedding(config.vocab_size, config.dim) |
|
self.condition_mlp = ConditionEmbedder(self.block_size, config.dim, config.class_dropout_prob, self.block_size, config.vocab_size) |
|
self.condition_layers = torch.nn.ModuleList() |
|
for layer_id in range(3): |
|
self.condition_layers.append(MLP(config.dim,config.dim,config.dim)) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)] |
|
self.layers = torch.nn.ModuleList() |
|
for layer_id in range(config.n_layer): |
|
self.layers.append(TransformerBlock(config, dpr[layer_id])) |
|
|
|
|
|
self.norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
self.output = nn.Linear(config.dim, config.vocab_size, bias=False) |
|
|
|
|
|
grid_size = int(self.block_size ** 0.5) |
|
assert grid_size * grid_size == self.block_size |
|
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num) |
|
|
|
|
|
self.max_batch_size = -1 |
|
self.max_seq_length = -1 |
|
|
|
self.initialize_weights() |
|
self.condition_token = None |
|
self.mask = get_causal_mask(256) |
|
self.global_token = None |
|
|
|
self.control_strength = 1 |
|
|
|
def initialize_weights(self): |
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
nn.init.constant_(self.output.weight, 0) |
|
|
|
|
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
|
|
|
def setup_caches(self, max_batch_size, max_seq_length, dtype): |
|
|
|
|
|
head_dim = self.config.dim // self.config.n_head |
|
max_seq_length = find_multiple(max_seq_length, 8) |
|
self.max_seq_length = max_seq_length |
|
self.max_batch_size = max_batch_size |
|
for b in self.layers: |
|
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype) |
|
|
|
causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)) |
|
self.causal_mask = causal_mask.unsqueeze(0).repeat(self.max_batch_size, 1, 1) |
|
grid_size = int(self.config.block_size ** 0.5) |
|
assert grid_size * grid_size == self.block_size |
|
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num) |
|
|
|
|
|
|
|
def forward( |
|
self, |
|
idx: torch.Tensor, |
|
cond_idx: torch.Tensor, |
|
input_pos: Optional[torch.Tensor] = None, |
|
targets: Optional[torch.Tensor] = None, |
|
mask: Optional[torch.Tensor] = None, |
|
valid: Optional[torch.Tensor] = None, |
|
condition: Optional[torch.Tensor] = None, |
|
control_strength: Optional[int] = 1 |
|
): |
|
if idx is not None and cond_idx is not None: |
|
cond_embeddings,drop_ids = self.cls_embedding(cond_idx, train=self.training) |
|
cond_embeddings = cond_embeddings[:,:self.cls_token_num] |
|
token_embeddings = self.tok_embeddings(idx) |
|
if condition is not None: |
|
condition_embeddings = self.adapter(condition) |
|
condition_embeddings = self.adapter_mlp(condition_embeddings) |
|
self.condition_token = self.condition_mlp(condition_embeddings,train=self.training, drop_ids=drop_ids) |
|
token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1) |
|
|
|
h = self.tok_dropout(token_embeddings) |
|
self.freqs_cis = self.freqs_cis.to(h.device) |
|
else: |
|
if cond_idx is not None: |
|
self.control_strength = control_strength |
|
token_embeddings = self.cls_embedding(cond_idx, train=self.training) |
|
token_embeddings = token_embeddings[:,:self.cls_token_num] |
|
if condition is not None: |
|
condition_embeddings = self.condition_mlp(condition, train=self.training) |
|
self.condition_token = condition_embeddings |
|
self.condition_token = [self.condition_layers[0](self.condition_token), |
|
self.condition_layers[1](self.condition_token), |
|
self.condition_layers[2](self.condition_token)] |
|
|
|
else: |
|
token_embeddings = self.tok_embeddings(idx) |
|
bs = token_embeddings.shape[0] |
|
mask = self.causal_mask[:bs, None, input_pos] |
|
h = self.tok_dropout(token_embeddings) |
|
self.freqs_cis = self.freqs_cis |
|
|
|
if self.training: |
|
freqs_cis = self.freqs_cis[:token_embeddings.shape[1]] |
|
else: |
|
freqs_cis = self.freqs_cis[input_pos] |
|
|
|
for i, layer in enumerate(self.layers): |
|
if i%self.layer_internal == 0: |
|
if self.training: |
|
h[:, self.cls_token_num-1:] = h[:, self.cls_token_num-1:] + self.condition_layers[i//self.layer_internal](self.condition_token) |
|
else: |
|
if len(input_pos)>1: |
|
|
|
h[:,-1:] = h[:, -1:] + self.control_strength*self.condition_token[i//self.layer_internal][:,0:1] |
|
else: |
|
|
|
h = h + self.control_strength*self.condition_token[i//self.layer_internal][:,input_pos-self.cls_token_num+1] |
|
h = layer(h, freqs_cis, input_pos, mask) |
|
|
|
h = self.norm(h) |
|
logits = self.output(h).float() |
|
|
|
if self.training: |
|
logits = logits[:, self.cls_token_num - 1:].contiguous() |
|
|
|
loss = None |
|
if valid is not None: |
|
loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none') |
|
valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1) |
|
loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1) |
|
elif targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
|
|
|
|
return logits, loss |
|
|
|
|
|
def get_fsdp_wrap_module_list(self) -> List[nn.Module]: |
|
return list(self.layers) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120): |
|
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) |
|
t = torch.arange(seq_len, device=freqs.device) |
|
freqs = torch.outer(t, freqs) |
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) |
|
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) |
|
return cond_cache |
|
|
|
|
|
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120): |
|
|
|
half_dim = n_elem // 2 |
|
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim)) |
|
t = torch.arange(grid_size, device=freqs.device) |
|
freqs = torch.outer(t, freqs) |
|
freqs_grid = torch.concat([ |
|
freqs[:, None, :].expand(-1, grid_size, -1), |
|
freqs[None, :, :].expand(grid_size, -1, -1), |
|
], dim=-1) |
|
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) |
|
cache = cache_grid.flatten(0, 1) |
|
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) |
|
return cond_cache |
|
|
|
|
|
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor): |
|
|
|
|
|
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) |
|
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) |
|
x_out2 = torch.stack([ |
|
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], |
|
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], |
|
], dim=-1) |
|
x_out2 = x_out2.flatten(3) |
|
return x_out2.type_as(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def GPT_7B(**kwargs): |
|
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) |
|
|
|
def GPT_3B(**kwargs): |
|
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) |
|
|
|
def GPT_1B(**kwargs): |
|
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) |
|
|
|
|
|
def GPT_XXXL(**kwargs): |
|
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) |
|
|
|
def GPT_XXL(**kwargs): |
|
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) |
|
|
|
def GPT_XL(**kwargs): |
|
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) |
|
|
|
def GPT_L(**kwargs): |
|
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) |
|
|
|
def GPT_B(**kwargs): |
|
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) |
|
|
|
|
|
GPT_models = { |
|
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL, |
|
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B, |
|
} |
|
|