|
|
|
|
|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
|
|
from tqdm import tqdm |
|
import os |
|
from PIL import Image |
|
import numpy as np |
|
import math |
|
import argparse |
|
|
|
from tokenizer.tokenizer_image.vq_model import VQ_models |
|
from autoregressive.models.gpt import GPT_models |
|
from autoregressive.models.generate import generate |
|
|
|
|
|
def create_npz_from_sample_folder(sample_dir, num=50_000): |
|
""" |
|
Builds a single .npz file from a folder of .png samples. |
|
""" |
|
samples = [] |
|
for i in tqdm(range(num), desc="Building .npz file from samples"): |
|
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png") |
|
sample_np = np.asarray(sample_pil).astype(np.uint8) |
|
samples.append(sample_np) |
|
samples = np.stack(samples) |
|
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3) |
|
npz_path = f"{sample_dir}.npz" |
|
np.savez(npz_path, arr_0=samples) |
|
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].") |
|
return npz_path |
|
|
|
|
|
def main(args): |
|
|
|
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage" |
|
torch.set_grad_enabled(False) |
|
|
|
|
|
dist.init_process_group("nccl") |
|
rank = dist.get_rank() |
|
device = rank % torch.cuda.device_count() |
|
seed = args.global_seed * dist.get_world_size() + rank |
|
torch.manual_seed(seed) |
|
torch.cuda.set_device(device) |
|
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") |
|
|
|
|
|
vq_model = VQ_models[args.vq_model]( |
|
codebook_size=args.codebook_size, |
|
codebook_embed_dim=args.codebook_embed_dim) |
|
vq_model.to(device) |
|
vq_model.eval() |
|
checkpoint = torch.load(args.vq_ckpt, map_location="cpu") |
|
vq_model.load_state_dict(checkpoint["model"]) |
|
del checkpoint |
|
|
|
|
|
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] |
|
latent_size = args.image_size // args.downsample_size |
|
gpt_model = GPT_models[args.gpt_model]( |
|
vocab_size=args.codebook_size, |
|
block_size=latent_size ** 2, |
|
num_classes=args.num_classes, |
|
cls_token_num=args.cls_token_num, |
|
model_type=args.gpt_type, |
|
).to(device=device, dtype=precision) |
|
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu") |
|
if args.from_fsdp: |
|
model_weight = checkpoint |
|
elif "model" in checkpoint: |
|
model_weight = checkpoint["model"] |
|
elif "module" in checkpoint: |
|
model_weight = checkpoint["module"] |
|
elif "state_dict" in checkpoint: |
|
model_weight = checkpoint["state_dict"] |
|
else: |
|
raise Exception("please check model weight, maybe add --from-fsdp to run command") |
|
|
|
|
|
gpt_model.load_state_dict(model_weight, strict=False) |
|
gpt_model.eval() |
|
del checkpoint |
|
|
|
if args.compile: |
|
print(f"compiling the model...") |
|
gpt_model = torch.compile( |
|
gpt_model, |
|
mode="reduce-overhead", |
|
fullgraph=True |
|
) |
|
else: |
|
print(f"no model compile") |
|
|
|
|
|
model_string_name = args.gpt_model.replace("/", "-") |
|
if args.from_fsdp: |
|
ckpt_string_name = args.gpt_ckpt.split('/')[-2] |
|
else: |
|
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "") |
|
folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-size-{args.image_size_eval}-{args.vq_model}-" \ |
|
f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \ |
|
f"cfg-{args.cfg_scale}-seed-{args.global_seed}" |
|
sample_folder_dir = f"{args.sample_dir}/{folder_name}" |
|
if rank == 0: |
|
os.makedirs(sample_folder_dir, exist_ok=True) |
|
print(f"Saving .png samples at {sample_folder_dir}") |
|
dist.barrier() |
|
|
|
|
|
n = args.per_proc_batch_size |
|
global_batch_size = n * dist.get_world_size() |
|
|
|
total_samples = int(math.ceil(args.num_fid_samples / global_batch_size) * global_batch_size) |
|
if rank == 0: |
|
print(f"Total number of images that will be sampled: {total_samples}") |
|
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size" |
|
samples_needed_this_gpu = int(total_samples // dist.get_world_size()) |
|
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size" |
|
iterations = int(samples_needed_this_gpu // n) |
|
pbar = range(iterations) |
|
pbar = tqdm(pbar) if rank == 0 else pbar |
|
total = 0 |
|
for _ in pbar: |
|
|
|
c_indices = torch.randint(0, args.num_classes, (n,), device=device) |
|
qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size] |
|
|
|
index_sample = generate( |
|
gpt_model, c_indices, latent_size ** 2, |
|
cfg_scale=args.cfg_scale, cfg_interval=args.cfg_interval, |
|
temperature=args.temperature, top_k=args.top_k, |
|
top_p=args.top_p, sample_logits=True, |
|
) |
|
|
|
samples = vq_model.decode_code(index_sample, qzshape) |
|
if args.image_size_eval != args.image_size: |
|
samples = F.interpolate(samples, size=(args.image_size_eval, args.image_size_eval), mode='bicubic') |
|
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy() |
|
|
|
|
|
for i, sample in enumerate(samples): |
|
index = i * dist.get_world_size() + rank + total |
|
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png") |
|
total += global_batch_size |
|
|
|
|
|
dist.barrier() |
|
if rank == 0: |
|
create_npz_from_sample_folder(sample_folder_dir, args.num_fid_samples) |
|
print("Done.") |
|
dist.barrier() |
|
dist.destroy_process_group() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B") |
|
parser.add_argument("--gpt-ckpt", type=str, default=None) |
|
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional") |
|
parser.add_argument("--from-fsdp", action='store_true') |
|
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input") |
|
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) |
|
parser.add_argument("--compile", action='store_true', default=True) |
|
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") |
|
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") |
|
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") |
|
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") |
|
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384) |
|
parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256) |
|
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) |
|
parser.add_argument("--num-classes", type=int, default=1000) |
|
parser.add_argument("--cfg-scale", type=float, default=1.5) |
|
parser.add_argument("--cfg-interval", type=float, default=-1) |
|
parser.add_argument("--sample-dir", type=str, default="samples") |
|
parser.add_argument("--per-proc-batch-size", type=int, default=32) |
|
parser.add_argument("--num-fid-samples", type=int, default=5000) |
|
parser.add_argument("--global-seed", type=int, default=0) |
|
parser.add_argument("--top-k", type=int, default=0,help="top-k value to sample with") |
|
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with") |
|
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with") |
|
args = parser.parse_args() |
|
main(args) |