|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
torch.set_float32_matmul_precision('high') |
|
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) |
|
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) |
|
from torchvision.utils import save_image |
|
|
|
import os |
|
import sys |
|
current_directory = os.getcwd() |
|
sys.path.append(current_directory) |
|
import time |
|
import argparse |
|
from tokenizer.tokenizer_image.vq_model import VQ_models |
|
from language.t5 import T5Embedder |
|
from autoregressive.models.gpt import GPT_models |
|
from autoregressive.models.gpt_t2i import GPT_models |
|
from autoregressive.models.generate import generate |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
from dataset.t2i_control import build_t2i_control_code |
|
from accelerate import Accelerator |
|
from dataset.build import build_dataset |
|
from pathlib import Path |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
import torch.nn.functional as F |
|
from condition.canny import CannyDetector |
|
from condition.hed import HEDdetector |
|
import numpy as np |
|
from PIL import Image |
|
from condition.lineart import LineArt |
|
import cv2 |
|
from transformers import DPTImageProcessor, DPTForDepthEstimation |
|
from condition.midas.depth import MidasDetector |
|
|
|
|
|
def resize_image_to_16_multiple(image_path, condition_type='seg'): |
|
image = Image.open(image_path) |
|
width, height = image.size |
|
|
|
if condition_type == 'depth': |
|
new_width = (width + 31) // 32 * 32 |
|
new_height = (height + 31) // 32 * 32 |
|
else: |
|
new_width = (width + 15) // 16 * 16 |
|
new_height = (height + 15) // 16 * 16 |
|
|
|
resized_image = image.resize((new_width, new_height)) |
|
return resized_image |
|
|
|
def main(args): |
|
|
|
torch.manual_seed(args.seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
torch.set_grad_enabled(False) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
vq_model = VQ_models[args.vq_model]( |
|
codebook_size=args.codebook_size, |
|
codebook_embed_dim=args.codebook_embed_dim) |
|
vq_model.to(device) |
|
vq_model.eval() |
|
checkpoint = torch.load(args.vq_ckpt, map_location="cpu") |
|
vq_model.load_state_dict(checkpoint["model"]) |
|
del checkpoint |
|
print(f"image tokenizer is loaded") |
|
|
|
|
|
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] |
|
latent_size = args.image_size // args.downsample_size |
|
gpt_model = GPT_models[args.gpt_model]( |
|
block_size=latent_size ** 2, |
|
cls_token_num=args.cls_token_num, |
|
model_type=args.gpt_type, |
|
condition_type=args.condition_type, |
|
).to(device=device, dtype=precision) |
|
|
|
_, file_extension = os.path.splitext(args.gpt_ckpt) |
|
if file_extension.lower() == '.safetensors': |
|
from safetensors.torch import load_file |
|
model_weight = load_file(args.gpt_ckpt) |
|
gpt_model.load_state_dict(model_weight, strict=False) |
|
gpt_model.eval() |
|
else: |
|
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu") |
|
if "model" in checkpoint: |
|
model_weight = checkpoint["model"] |
|
elif "module" in checkpoint: |
|
model_weight = checkpoint["module"] |
|
elif "state_dict" in checkpoint: |
|
model_weight = checkpoint["state_dict"] |
|
else: |
|
raise Exception("please check model weight") |
|
gpt_model.load_state_dict(model_weight, strict=False) |
|
gpt_model.eval() |
|
del checkpoint |
|
print(f"gpt model is loaded") |
|
|
|
if args.compile: |
|
print(f"compiling the model...") |
|
gpt_model = torch.compile( |
|
gpt_model, |
|
mode="reduce-overhead", |
|
fullgraph=True |
|
) |
|
else: |
|
print(f"no need to compile model in demo") |
|
|
|
assert os.path.exists(args.t5_path) |
|
t5_model = T5Embedder( |
|
device=device, |
|
local_cache=True, |
|
cache_dir=args.t5_path, |
|
dir_or_name=args.t5_model_type, |
|
torch_dtype=precision, |
|
model_max_length=args.t5_feature_max_len, |
|
) |
|
|
|
|
|
if args.condition_type == 'canny': |
|
get_control = CannyDetector() |
|
elif args.condition_type == 'hed': |
|
get_control = HEDdetector().to(device).eval() |
|
elif args.condition_type == 'lineart': |
|
get_control = LineArt() |
|
get_control.load_state_dict(torch.load('condition/ckpts/model.pth', map_location=torch.device('cpu'))) |
|
get_control.to(device) |
|
elif args.condition_type == 'depth': |
|
processor = DPTImageProcessor.from_pretrained("condition/ckpts/dpt_large") |
|
model_large = DPTForDepthEstimation.from_pretrained("condition/ckpts/dpt_large").to(device) |
|
model = MidasDetector(device=device) |
|
with torch.no_grad(): |
|
|
|
condition_img = resize_image_to_16_multiple(args.condition_path, args.condition_type) |
|
W, H = condition_img.size |
|
print(H,W) |
|
if args.condition_type == 'seg': |
|
condition_img = torch.from_numpy(np.array(condition_img)) |
|
condition_img = condition_img.permute(2,0,1).unsqueeze(0).repeat(2,1,1,1) |
|
elif args.condition_type == 'canny': |
|
condition_img = get_control(np.array(condition_img)) |
|
condition_img = torch.from_numpy(condition_img[None,None,...]).repeat(2,3,1,1) |
|
elif args.condition_type == 'hed': |
|
condition_img = get_control(torch.from_numpy(np.array(condition_img)).permute(2,0,1).unsqueeze(0).to(device)) |
|
condition_img = condition_img.unsqueeze(1).repeat(2,3,1,1) |
|
elif args.condition_type == 'lineart': |
|
condition_img = get_control(torch.from_numpy(np.array(condition_img)).permute(2,0,1).unsqueeze(0).to(device).float()) |
|
condition_img = condition_img.repeat(2,3,1,1) * 255 |
|
elif args.condition_type == 'depth': |
|
images = condition_img |
|
if H == W: |
|
inputs = processor(images=images, return_tensors="pt", size=(H,W)).to(device) |
|
outputs = model_large(**inputs) |
|
condition_img = outputs.predicted_depth |
|
condition_img = (condition_img * 255 / condition_img.max()) |
|
else: |
|
condition_img = torch.from_numpy(model(torch.from_numpy(np.array(condition_img)).to(device))).unsqueeze(0) |
|
condition_img = condition_img.unsqueeze(0).repeat(2,3,1,1) |
|
condition_img = condition_img.to(device) |
|
condition_img = 2*(condition_img/255 - 0.5) |
|
prompts = [args.prompt if args.prompt is not None else "a high-quality image"] |
|
prompts = prompts * 2 |
|
caption_embs, emb_masks = t5_model.get_text_embeddings(prompts) |
|
|
|
if not args.no_left_padding: |
|
print(f"processing left-padding...") |
|
|
|
new_emb_masks = torch.flip(emb_masks, dims=[-1]) |
|
new_caption_embs = [] |
|
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)): |
|
valid_num = int(emb_mask.sum().item()) |
|
print(f' prompt {idx} token len: {valid_num}') |
|
new_caption_emb = torch.cat([caption_emb[valid_num:],caption_emb[:valid_num]]) |
|
new_caption_embs.append(new_caption_emb) |
|
new_caption_embs = torch.stack(new_caption_embs) |
|
else: |
|
new_caption_embs, new_emb_masks = caption_embs, emb_masks |
|
c_indices = new_caption_embs * new_emb_masks[:,:, None] |
|
c_emb_masks = new_emb_masks |
|
qzshape = [len(c_indices), args.codebook_embed_dim, H//args.downsample_size, W//args.downsample_size] |
|
t1 = time.time() |
|
index_sample = generate( |
|
gpt_model, c_indices, (H//args.downsample_size)*(W//args.downsample_size), |
|
c_emb_masks, condition=condition_img.to(precision), |
|
cfg_scale=args.cfg_scale, |
|
temperature=args.temperature, top_k=args.top_k, |
|
top_p=args.top_p, sample_logits=True, |
|
) |
|
sampling_time = time.time() - t1 |
|
print(f"Full sampling takes about {sampling_time:.2f} seconds.") |
|
|
|
t2 = time.time() |
|
print(index_sample.shape) |
|
samples = vq_model.decode_code(index_sample, qzshape) |
|
decoder_time = time.time() - t2 |
|
print(f"decoder takes about {decoder_time:.2f} seconds.") |
|
|
|
samples = torch.cat((condition_img[0:1], samples), dim=0) |
|
save_image(samples, f"sample/example/sample_t2i_MR_{args.condition_type}.png", nrow=4, normalize=True, value_range=(-1, 1)) |
|
print(f"image is saved to sample/example/sample_t2i_MR_{args.condition_type}.png") |
|
print(prompts) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt') |
|
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl') |
|
parser.add_argument("--t5-feature-max-len", type=int, default=120) |
|
parser.add_argument("--t5-feature-dim", type=int, default=2048) |
|
parser.add_argument("--no-left-padding", action='store_true', default=False) |
|
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL") |
|
parser.add_argument("--gpt-ckpt", type=str, default=None) |
|
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class->image or text->image") |
|
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input") |
|
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) |
|
parser.add_argument("--compile", action='store_true', default=False) |
|
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") |
|
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") |
|
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") |
|
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") |
|
parser.add_argument("--image-size", type=int, choices=[256, 320, 384, 400, 448, 512, 576, 640, 704, 768], default=768) |
|
parser.add_argument("--image-H", type=int, default=512) |
|
parser.add_argument("--image-W", type=int, default=512) |
|
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) |
|
parser.add_argument("--cfg-scale", type=float, default=4) |
|
parser.add_argument("--seed", type=int, default=0) |
|
parser.add_argument("--top-k", type=int, default=2000, help="top-k value to sample with") |
|
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with") |
|
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with") |
|
|
|
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) |
|
parser.add_argument("--condition-type", type=str, choices=['seg', 'canny', 'hed', 'lineart', 'depth'], default="canny") |
|
parser.add_argument("--prompt", type=str, default='a high-quality image') |
|
parser.add_argument("--condition-path", type=str, default='condition/example/t2i/multigen/landscape.png') |
|
args = parser.parse_args() |
|
main(args) |
|
|