|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
torch.set_float32_matmul_precision('high') |
|
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) |
|
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
|
|
import os |
|
import math |
|
import json |
|
import argparse |
|
import pandas as pd |
|
from tqdm import tqdm |
|
from PIL import Image |
|
|
|
from tokenizer.tokenizer_image.vq_model import VQ_models |
|
from language.t5 import T5Embedder |
|
from autoregressive.models.gpt import GPT_models |
|
from autoregressive.models.generate import generate |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
|
|
|
|
def main(args): |
|
|
|
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage" |
|
torch.set_grad_enabled(False) |
|
|
|
|
|
dist.init_process_group("nccl") |
|
rank = dist.get_rank() |
|
device = rank % torch.cuda.device_count() |
|
seed = args.global_seed * dist.get_world_size() + rank |
|
torch.manual_seed(seed) |
|
torch.cuda.set_device(device) |
|
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") |
|
|
|
|
|
vq_model = VQ_models[args.vq_model]( |
|
codebook_size=args.codebook_size, |
|
codebook_embed_dim=args.codebook_embed_dim) |
|
vq_model.to(device) |
|
vq_model.eval() |
|
checkpoint = torch.load(args.vq_ckpt, map_location="cpu") |
|
vq_model.load_state_dict(checkpoint["model"]) |
|
del checkpoint |
|
print(f"image tokenizer is loaded") |
|
|
|
|
|
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] |
|
latent_size = args.image_size // args.downsample_size |
|
gpt_model = GPT_models[args.gpt_model]( |
|
block_size=latent_size ** 2, |
|
cls_token_num=args.cls_token_num, |
|
model_type=args.gpt_type, |
|
).to(device=device, dtype=precision) |
|
|
|
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu") |
|
|
|
if "model" in checkpoint: |
|
model_weight = checkpoint["model"] |
|
elif "module" in checkpoint: |
|
model_weight = checkpoint["module"] |
|
elif "state_dict" in checkpoint: |
|
model_weight = checkpoint["state_dict"] |
|
else: |
|
raise Exception("please check model weight") |
|
gpt_model.load_state_dict(model_weight, strict=False) |
|
gpt_model.eval() |
|
del checkpoint |
|
print(f"gpt model is loaded") |
|
|
|
if args.compile: |
|
print(f"compiling the model...") |
|
gpt_model = torch.compile( |
|
gpt_model, |
|
mode="reduce-overhead", |
|
fullgraph=True |
|
) |
|
else: |
|
print(f"no need to compile model in demo") |
|
|
|
assert os.path.exists(args.t5_path) |
|
t5_model = T5Embedder( |
|
device=device, |
|
local_cache=True, |
|
cache_dir=args.t5_path, |
|
dir_or_name=args.t5_model_type, |
|
torch_dtype=precision, |
|
model_max_length=args.t5_feature_max_len, |
|
) |
|
print(f"t5 model is loaded") |
|
|
|
|
|
model_string_name = args.gpt_model.replace("/", "-") |
|
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "") |
|
prompt_name = args.prompt_csv.split('/')[-1].split('.')[0].lower() |
|
folder_name = f"{model_string_name}-{ckpt_string_name}-{prompt_name}-size-{args.image_size}-size-{args.image_size}-{args.vq_model}-" \ |
|
f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \ |
|
f"cfg-{args.cfg_scale}-seed-{args.global_seed}" |
|
sample_folder_dir = f"{args.sample_dir}/{folder_name}" |
|
if rank == 0: |
|
os.makedirs(f"{sample_folder_dir}/images", exist_ok=True) |
|
print(f"Saving .png samples at {sample_folder_dir}/images") |
|
dist.barrier() |
|
|
|
df = pd.read_csv(args.prompt_csv, delimiter='\t') |
|
prompt_list = df['Prompt'].tolist() |
|
|
|
|
|
n = args.per_proc_batch_size |
|
global_batch_size = n * dist.get_world_size() |
|
num_fid_samples = min(args.num_fid_samples, len(prompt_list)) |
|
|
|
total_samples = int(math.ceil(num_fid_samples / global_batch_size) * global_batch_size) |
|
if rank == 0: |
|
print(f"Total number of images that will be sampled: {total_samples}") |
|
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size" |
|
samples_needed_this_gpu = int(total_samples // dist.get_world_size()) |
|
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size" |
|
iterations = int(samples_needed_this_gpu // n) |
|
pbar = range(iterations) |
|
pbar = tqdm(pbar) if rank == 0 else pbar |
|
total = 0 |
|
for _ in pbar: |
|
|
|
prompt_batch = [] |
|
for i in range(n): |
|
index = i * dist.get_world_size() + rank + total |
|
prompt_batch.append(prompt_list[index] if index < len(prompt_list) else "a cute dog") |
|
|
|
|
|
caption_embs, emb_masks = t5_model.get_text_embeddings(prompt_batch) |
|
|
|
if not args.no_left_padding: |
|
new_emb_masks = torch.flip(emb_masks, dims=[-1]) |
|
new_caption_embs = [] |
|
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)): |
|
valid_num = int(emb_mask.sum().item()) |
|
|
|
|
|
new_caption_emb = torch.cat([caption_emb[valid_num:], caption_emb[:valid_num]]) |
|
new_caption_embs.append(new_caption_emb) |
|
new_caption_embs = torch.stack(new_caption_embs) |
|
|
|
else: |
|
new_caption_embs, new_emb_masks = caption_embs, emb_masks |
|
|
|
c_indices = new_caption_embs * new_emb_masks[:,:, None] |
|
c_emb_masks = new_emb_masks |
|
|
|
qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size] |
|
index_sample = generate( |
|
gpt_model, c_indices, latent_size ** 2, |
|
c_emb_masks, |
|
cfg_scale=args.cfg_scale, |
|
temperature=args.temperature, top_k=args.top_k, |
|
top_p=args.top_p, sample_logits=True, |
|
) |
|
|
|
samples = vq_model.decode_code(index_sample, qzshape) |
|
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy() |
|
|
|
|
|
for i, sample in enumerate(samples): |
|
index = i * dist.get_world_size() + rank + total |
|
Image.fromarray(sample).save(f"{sample_folder_dir}/images/{index:06d}.png") |
|
total += global_batch_size |
|
|
|
|
|
dist.barrier() |
|
if rank == 0: |
|
|
|
json_items = [] |
|
for idx, prompt in enumerate(prompt_list): |
|
image_path = os.path.join(sample_folder_dir, "images", f"{idx:06d}.png") |
|
json_items.append({"text": prompt, "image_path": image_path}) |
|
res_jsonl_path = os.path.join(sample_folder_dir, "result.jsonl") |
|
print(f"Save jsonl to {res_jsonl_path}...") |
|
with open(res_jsonl_path, "w") as f: |
|
for item in json_items: |
|
f.write(json.dumps(item) + "\n") |
|
|
|
|
|
caption_path = os.path.join(sample_folder_dir, "captions.txt") |
|
print(f"Save captions to {caption_path}...") |
|
with open(caption_path, "w") as f: |
|
for item in prompt_list: |
|
f.write(f"{item}\n") |
|
print("Done.") |
|
|
|
dist.barrier() |
|
dist.destroy_process_group() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--prompt-csv", type=str, default='evaluations/t2i/PartiPrompts.tsv') |
|
parser.add_argument("--t5-path", type=str, default='pretrained_models/t5-ckpt') |
|
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl') |
|
parser.add_argument("--t5-feature-max-len", type=int, default=120) |
|
parser.add_argument("--t5-feature-dim", type=int, default=2048) |
|
parser.add_argument("--no-left-padding", action='store_true', default=False) |
|
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL") |
|
parser.add_argument("--gpt-ckpt", type=str, default=None) |
|
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class->image or text->image") |
|
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input") |
|
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) |
|
parser.add_argument("--compile", action='store_true', default=False) |
|
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") |
|
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") |
|
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") |
|
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") |
|
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=512) |
|
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) |
|
parser.add_argument("--num-classes", type=int, default=1000) |
|
parser.add_argument("--cfg-scale", type=float, default=7.5) |
|
parser.add_argument("--sample-dir", type=str, default="samples_parti", help="samples_coco or samples_parti") |
|
parser.add_argument("--per-proc-batch-size", type=int, default=32) |
|
parser.add_argument("--num-fid-samples", type=int, default=30000) |
|
parser.add_argument("--global-seed", type=int, default=0) |
|
parser.add_argument("--top-k", type=int, default=1000, help="top-k value to sample with") |
|
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with") |
|
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with") |
|
args = parser.parse_args() |
|
main(args) |
|
|