|
|
|
|
|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
import torch.distributed as dist |
|
from torch.utils.data import Dataset, DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torchvision import transforms |
|
import numpy as np |
|
from PIL import Image |
|
import glob |
|
import argparse |
|
import os |
|
import json |
|
|
|
from utils.distributed import init_distributed_mode |
|
from dataset.augmentation import center_crop_arr |
|
from tokenizer.tokenizer_image.vq_model import VQ_models |
|
|
|
|
|
|
|
|
|
|
|
class CustomDataset(Dataset): |
|
def __init__(self, lst_dir, start, end, transform): |
|
img_path_list = [] |
|
for lst_name in sorted(os.listdir(lst_dir))[start: end+1]: |
|
if not lst_name.endswith('.jsonl'): |
|
continue |
|
file_path = os.path.join(lst_dir, lst_name) |
|
with open(file_path, 'r') as file: |
|
for line_idx, line in enumerate(file): |
|
data = json.loads(line) |
|
img_path = data['image_path'] |
|
code_dir = file_path.split('/')[-1].split('.')[0] |
|
img_path_list.append((img_path, code_dir, line_idx)) |
|
self.img_path_list = img_path_list |
|
self.transform = transform |
|
|
|
def __len__(self): |
|
return len(self.img_path_list) |
|
|
|
def __getitem__(self, index): |
|
img_path, code_dir, code_name = self.img_path_list[index] |
|
img = Image.open(img_path).convert("RGB") |
|
if self.transform is not None: |
|
img = self.transform(img) |
|
return img, code_dir, code_name |
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(args): |
|
""" |
|
Trains a new DiT model. |
|
""" |
|
assert torch.cuda.is_available(), "Training currently requires at least one GPU." |
|
|
|
|
|
|
|
init_distributed_mode(args) |
|
rank = dist.get_rank() |
|
device = rank % torch.cuda.device_count() |
|
seed = args.global_seed * dist.get_world_size() + rank |
|
torch.manual_seed(seed) |
|
torch.cuda.set_device(device) |
|
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") |
|
|
|
|
|
if rank == 0: |
|
os.makedirs(args.code_path, exist_ok=True) |
|
|
|
|
|
|
|
vq_model = VQ_models[args.vq_model]( |
|
codebook_size=args.codebook_size, |
|
codebook_embed_dim=args.codebook_embed_dim) |
|
vq_model.to(device) |
|
vq_model.eval() |
|
checkpoint = torch.load(args.vq_ckpt, map_location="cpu") |
|
vq_model.load_state_dict(checkpoint["model"]) |
|
del checkpoint |
|
|
|
|
|
|
|
transform = transforms.Compose([ |
|
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) |
|
]) |
|
print(f"Dataset is preparing...") |
|
dataset = CustomDataset(args.data_path, args.data_start, args.data_end, transform=transform) |
|
sampler = DistributedSampler( |
|
dataset, |
|
num_replicas=dist.get_world_size(), |
|
rank=rank, |
|
shuffle=False, |
|
seed=args.global_seed |
|
) |
|
loader = DataLoader( |
|
dataset, |
|
batch_size=1, |
|
shuffle=False, |
|
sampler=sampler, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=False |
|
) |
|
print(f"Dataset contains {len(dataset):,} images") |
|
|
|
|
|
for img, code_dir, code_name in loader: |
|
img = img.to(device) |
|
with torch.no_grad(): |
|
_, _, [_, _, indices] = vq_model.encode(img) |
|
codes = indices.reshape(img.shape[0], -1) |
|
x = codes.detach().cpu().numpy() |
|
os.makedirs(os.path.join(args.code_path, code_dir[0]), exist_ok=True) |
|
np.save(os.path.join(args.code_path, code_dir[0], '{}.npy'.format(code_name.item())), x) |
|
|
|
|
|
print(code_name.item()) |
|
|
|
dist.destroy_process_group() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--data-path", type=str, required=True) |
|
parser.add_argument("--code-path", type=str, required=True) |
|
parser.add_argument("--data-start", type=int, required=True) |
|
parser.add_argument("--data-end", type=int, required=True) |
|
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") |
|
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") |
|
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") |
|
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") |
|
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=512) |
|
parser.add_argument("--global-seed", type=int, default=0) |
|
parser.add_argument("--num-workers", type=int, default=24) |
|
args = parser.parse_args() |
|
main(args) |
|
|