|
|
|
|
|
import os |
|
|
|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
import torch.distributed as dist |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torchvision import transforms |
|
import numpy as np |
|
import argparse |
|
import os |
|
import sys |
|
current_directory = os.getcwd() |
|
sys.path.append(current_directory) |
|
from utils.distributed import init_distributed_mode |
|
from dataset.augmentation import center_crop_arr |
|
from dataset.build import build_dataset |
|
from tokenizer.tokenizer_image.vq_model import VQ_models |
|
from condition.hed import HEDdetector, ControlNetHED_Apache2 |
|
import cv2 |
|
from torch.nn.parallel import DataParallel |
|
from einops import rearrange |
|
from datasets import load_dataset |
|
from torchvision import transforms |
|
from PIL import Image |
|
from language.t5 import T5Embedder |
|
|
|
|
|
|
|
resolution = (512, 512) |
|
image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
conditioning_image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), |
|
transforms.ToTensor(), |
|
] |
|
) |
|
label_image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(resolution, interpolation=transforms.InterpolationMode.NEAREST, antialias=True), |
|
] |
|
) |
|
|
|
def collate_fn(examples): |
|
|
|
pil_images = [example['image'].convert("RGB") for example in examples] |
|
images = [image_transforms(image) for image in pil_images] |
|
images = torch.stack(images) |
|
|
|
conditioning_images = [example['control_seg'].convert("RGB") for example in examples] |
|
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images] |
|
conditioning_images = torch.stack(conditioning_images) |
|
|
|
captions = [example['prompt'] for example in examples] |
|
|
|
dtype = torch.long |
|
|
|
|
|
|
|
labels = [example['panoptic_seg_map'] for example in examples] |
|
|
|
|
|
return { |
|
"images": images, |
|
"conditioning_images": conditioning_images, |
|
"captions": captions, |
|
"labels": labels |
|
} |
|
|
|
def main(args): |
|
|
|
assert torch.cuda.is_available(), "Training currently requires at least one GPU." |
|
|
|
if not args.debug: |
|
init_distributed_mode(args) |
|
rank = dist.get_rank() |
|
device = rank % torch.cuda.device_count() |
|
seed = args.global_seed * dist.get_world_size() + rank |
|
torch.manual_seed(seed) |
|
torch.cuda.set_device(device) |
|
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") |
|
else: |
|
device = 'cuda' |
|
rank = 0 |
|
|
|
|
|
if args.debug or rank == 0: |
|
os.makedirs(args.code_path, exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'code'), exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'image'), exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'control'), exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'caption_emb'), exist_ok=True) |
|
if args.split == 'validation': |
|
os.makedirs(os.path.join(args.code_path, f'label'), exist_ok=True) |
|
|
|
vq_model = VQ_models[args.vq_model]( |
|
codebook_size=args.codebook_size, |
|
codebook_embed_dim=args.codebook_embed_dim) |
|
vq_model.to(device) |
|
vq_model.eval() |
|
checkpoint = torch.load(args.vq_ckpt, map_location="cpu") |
|
vq_model.load_state_dict(checkpoint["model"]) |
|
del checkpoint |
|
|
|
t5_model = T5Embedder( |
|
device=device, |
|
local_cache=True, |
|
cache_dir=args.t5_path, |
|
dir_or_name=args.t5_model_type, |
|
model_max_length=args.t5_feature_max_len, |
|
) |
|
|
|
|
|
if args.ten_crop: |
|
crop_size = int(args.image_size * args.crop_range) |
|
transform = transforms.Compose([ |
|
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)), |
|
transforms.TenCrop(args.image_size), |
|
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) |
|
]) |
|
else: |
|
crop_size = args.image_size |
|
transform = transforms.Compose([ |
|
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) |
|
]) |
|
dataset = load_dataset( |
|
args.data_path, |
|
cache_dir=None, |
|
) |
|
if not args.debug: |
|
sampler = DistributedSampler( |
|
dataset[args.split], |
|
num_replicas=dist.get_world_size(), |
|
rank=rank, |
|
shuffle=False, |
|
seed=args.global_seed |
|
) |
|
else: |
|
sampler = None |
|
loader = DataLoader( |
|
dataset[args.split], |
|
batch_size=1, |
|
shuffle=False, |
|
sampler=sampler, |
|
num_workers=args.num_workers, |
|
collate_fn=collate_fn, |
|
pin_memory=True, |
|
drop_last=False |
|
) |
|
|
|
from tqdm import tqdm |
|
total = 0 |
|
code_len = 1024 |
|
t5_feature_max_len = 120 |
|
t5_feature_dim = 2048 |
|
max_seq_length = t5_feature_max_len + code_len |
|
for batch in tqdm(loader): |
|
|
|
captions = batch['captions'] |
|
|
|
train_steps = rank + total |
|
img_save_path = f'{args.code_path}/image/{train_steps}.png' |
|
cond_save_path = f'{args.code_path}/control/{train_steps}.png' |
|
label_save_path = f'{args.code_path}/label/{train_steps}.png' |
|
Image.fromarray((255*(batch['images'][0].numpy().transpose(1,2,0)*0.5+0.5)).astype('uint8'), mode='RGB').save(img_save_path) |
|
Image.fromarray((255*batch['conditioning_images'][0].numpy().transpose(1,2,0)).astype('uint8'), mode='RGB').save(cond_save_path) |
|
|
|
label = Image.fromarray(np.array(batch['labels'][0]).astype('uint8')) |
|
label.resize((512,512), Image.Resampling.NEAREST).save(label_save_path) |
|
with torch.no_grad(): |
|
_, _, [_, _, indices] = vq_model.encode(batch['images'].to(device)) |
|
|
|
caption_emb, emb_mask = t5_model.get_text_embeddings(captions) |
|
valid_num = int(emb_mask.sum().item()) |
|
caption_emb = caption_emb[:, :valid_num] |
|
|
|
codes = indices.reshape(1, 1, -1) |
|
x = codes.detach().cpu().numpy() |
|
np.save(f'{args.code_path}/code/{train_steps}.npy', x) |
|
|
|
caption_emb = caption_emb.to(torch.float32).detach().cpu().numpy() |
|
caption_dict = {} |
|
caption_dict['prompt'] = captions |
|
caption_dict['caption_emb'] = caption_emb |
|
np.savez(f'{args.code_path}/caption_emb/{train_steps}.npz', **caption_dict) |
|
if not args.debug: |
|
total += dist.get_world_size() |
|
else: |
|
total += 1 |
|
|
|
dist.destroy_process_group() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--code-path", type=str, required=True) |
|
parser.add_argument("--data-path", type=str, required=True) |
|
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") |
|
parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model") |
|
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") |
|
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") |
|
parser.add_argument("--dataset", type=str, default='imagenet') |
|
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256) |
|
parser.add_argument("--ten-crop", action='store_true', help="whether using random crop") |
|
parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop") |
|
parser.add_argument("--global-seed", type=int, default=0) |
|
parser.add_argument("--num-workers", type=int, default=24) |
|
parser.add_argument("--debug", action='store_true') |
|
parser.add_argument("--min-threshold", type=int, default=200) |
|
parser.add_argument("--max-threshold", type=int, default=400) |
|
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt') |
|
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl') |
|
parser.add_argument("--t5-feature-max-len", type=int, default=120) |
|
parser.add_argument("--split", type=str, default='train') |
|
args = parser.parse_args() |
|
main(args) |
|
|