|
|
|
|
|
import os |
|
|
|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
import torch.distributed as dist |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torchvision import transforms |
|
import numpy as np |
|
import argparse |
|
import os |
|
import sys |
|
current_directory = os.getcwd() |
|
sys.path.append(current_directory) |
|
from utils.distributed import init_distributed_mode |
|
from dataset.augmentation import center_crop_arr |
|
from dataset.build import build_dataset |
|
from tokenizer.tokenizer_image.vq_model import VQ_models |
|
from condition.canny import CannyDetector |
|
import cv2 |
|
from condition.midas.depth import MidasDetector |
|
|
|
|
|
|
|
|
|
def main(args): |
|
|
|
assert torch.cuda.is_available(), "Training currently requires at least one GPU." |
|
|
|
if not args.debug: |
|
init_distributed_mode(args) |
|
rank = dist.get_rank() |
|
device = rank % torch.cuda.device_count() |
|
seed = args.global_seed * dist.get_world_size() + rank |
|
torch.manual_seed(seed) |
|
torch.cuda.set_device(device) |
|
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") |
|
else: |
|
device = 'cuda' |
|
rank = 0 |
|
|
|
|
|
if args.debug or rank == 0: |
|
os.makedirs(args.code_path, exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_codes'), exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_labels'), exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_canny_imagesnpy'), exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_canny_images'), exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_depth_imagesnpy'), exist_ok=True) |
|
os.makedirs(os.path.join(args.code_path, f'{args.dataset}{args.image_size}_depth_images'), exist_ok=True) |
|
|
|
vq_model = VQ_models[args.vq_model]( |
|
codebook_size=args.codebook_size, |
|
codebook_embed_dim=args.codebook_embed_dim) |
|
vq_model.to(device) |
|
vq_model.eval() |
|
checkpoint = torch.load(args.vq_ckpt, map_location="cpu") |
|
vq_model.load_state_dict(checkpoint["model"]) |
|
del checkpoint |
|
|
|
|
|
if args.ten_crop: |
|
crop_size = int(args.image_size * args.crop_range) |
|
transform = transforms.Compose([ |
|
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)), |
|
transforms.TenCrop(args.image_size), |
|
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) |
|
]) |
|
else: |
|
crop_size = args.image_size |
|
transform = transforms.Compose([ |
|
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, crop_size)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) |
|
]) |
|
dataset = build_dataset(args, transform=transform) |
|
if not args.debug: |
|
sampler = DistributedSampler( |
|
dataset, |
|
num_replicas=dist.get_world_size(), |
|
rank=rank, |
|
shuffle=False, |
|
seed=args.global_seed |
|
) |
|
else: |
|
sampler = None |
|
loader = DataLoader( |
|
dataset, |
|
batch_size=1, |
|
shuffle=False, |
|
sampler=sampler, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=False |
|
) |
|
apply_canny = CannyDetector() |
|
depth_model = MidasDetector(device=device) |
|
|
|
from tqdm import tqdm |
|
total = 0 |
|
for x, y in tqdm(loader): |
|
x = x.to(device) |
|
batch_size_per_gpu = x.shape[0] |
|
if args.ten_crop: |
|
x_all = x.flatten(0, 1) |
|
num_aug = 10 |
|
else: |
|
x_flip = torch.flip(x, dims=[-1]) |
|
x_all = torch.cat([x, x_flip]) |
|
num_aug = 2 |
|
y = y.to(device) |
|
|
|
canny = [] |
|
depths = [] |
|
for i in range(x_all.shape[0]): |
|
canny.append(apply_canny((255*(x_all[i]*0.5 + 0.5)).cpu().numpy().transpose(1,2,0).astype(np.uint8),low_threshold=args.min_threshold, high_threshold=args.max_threshold)[None,None,...]) |
|
img = (255*(x_all[i]*0.5 + 0.5)).permute(1,2,0) |
|
depth = depth_model(img) |
|
depths.append(depth[None,None,...]) |
|
depths = np.concatenate(depths, axis=0) |
|
cannys = np.concatenate(canny, axis=0) |
|
train_steps = rank + total |
|
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_canny_imagesnpy/{train_steps}.npy', cannys) |
|
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_depth_imagesnpy/{train_steps}.npy', depths) |
|
with torch.no_grad(): |
|
_, _, [_, _, indices] = vq_model.encode(x_all) |
|
|
|
codes = indices.reshape(x.shape[0], num_aug, -1) |
|
x = codes.detach().cpu().numpy() |
|
y = y.detach().cpu().numpy() |
|
|
|
train_steps = rank + total |
|
|
|
cv2.imwrite(f'{args.code_path}/{args.dataset}{args.image_size}_canny_images/{train_steps}.png', cannys[0,0]) |
|
cv2.imwrite(f'{args.code_path}/{args.dataset}{args.image_size}_depth_images/{train_steps}.png', depths[0,0]) |
|
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_codes/{train_steps}.npy', x) |
|
np.save(f'{args.code_path}/{args.dataset}{args.image_size}_labels/{train_steps}.npy', y) |
|
if not args.debug: |
|
total += dist.get_world_size() |
|
else: |
|
total += 1 |
|
|
|
dist.destroy_process_group() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--data-path", type=str, required=True) |
|
parser.add_argument("--code-path", type=str, required=True) |
|
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") |
|
parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model") |
|
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") |
|
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") |
|
parser.add_argument("--dataset", type=str, default='imagenet') |
|
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256) |
|
parser.add_argument("--ten-crop", action='store_true', help="whether using random crop") |
|
parser.add_argument("--crop-range", type=float, default=1.1, help="expanding range of center crop") |
|
parser.add_argument("--global-seed", type=int, default=0) |
|
parser.add_argument("--num-workers", type=int, default=24) |
|
parser.add_argument("--debug", action='store_true') |
|
parser.add_argument("--min-threshold", type=int, default=100) |
|
parser.add_argument("--max-threshold", type=int, default=200) |
|
args = parser.parse_args() |
|
main(args) |
|
|