|
|
|
|
|
|
|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
import torch.distributed as dist |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
from glob import glob |
|
from copy import deepcopy |
|
import os |
|
import time |
|
import inspect |
|
import argparse |
|
import sys |
|
current_directory = os.getcwd() |
|
sys.path.append(current_directory) |
|
from utils.logger import create_logger |
|
from utils.distributed import init_distributed_mode |
|
from utils.ema import update_ema, requires_grad |
|
from dataset.build import build_dataset |
|
from autoregressive.models.gpt import GPT_models |
|
|
|
from tokenizer.tokenizer_image.vq_model import VQ_models |
|
from autoregressive.models.generate import sample |
|
from condition.hed import HEDdetector |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
def creat_optimizer(model, weight_decay, learning_rate, betas, logger): |
|
|
|
param_dict = {pn: p for pn, p in model.named_parameters()} |
|
|
|
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} |
|
|
|
|
|
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] |
|
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] |
|
optim_groups = [ |
|
{'params': decay_params, 'weight_decay': weight_decay}, |
|
{'params': nodecay_params, 'weight_decay': 0.0} |
|
] |
|
num_decay_params = sum(p.numel() for p in decay_params) |
|
num_nodecay_params = sum(p.numel() for p in nodecay_params) |
|
logger.info(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") |
|
logger.info(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") |
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters |
|
extra_args = dict(fused=True) if fused_available else dict() |
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) |
|
logger.info(f"using fused AdamW: {fused_available}") |
|
return optimizer |
|
|
|
|
|
|
|
|
|
def main(args): |
|
assert torch.cuda.is_available(), "Training currently requires at least one GPU." |
|
|
|
|
|
init_distributed_mode(args) |
|
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size." |
|
rank = dist.get_rank() |
|
device = rank % torch.cuda.device_count() |
|
seed = args.global_seed * dist.get_world_size() + rank |
|
torch.manual_seed(seed) |
|
torch.cuda.set_device(device) |
|
|
|
|
|
if rank == 0: |
|
os.makedirs(args.results_dir, exist_ok=True) |
|
experiment_index = len(glob(f"{args.results_dir}/*")) |
|
model_string_name = args.gpt_model.replace("/", "-") |
|
experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}" |
|
checkpoint_dir = f"{experiment_dir}/checkpoints" |
|
os.makedirs(checkpoint_dir, exist_ok=True) |
|
logger = create_logger(experiment_dir) |
|
logger.info(f"Experiment directory created at {experiment_dir}") |
|
|
|
time_record = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) |
|
cloud_results_dir = f"{args.cloud_save_path}/{time_record}" |
|
cloud_checkpoint_dir = f"{cloud_results_dir}/{experiment_index:03d}-{model_string_name}/checkpoints" |
|
os.makedirs(cloud_checkpoint_dir, exist_ok=True) |
|
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}") |
|
|
|
else: |
|
logger = create_logger(None) |
|
|
|
|
|
logger.info(f"{args}") |
|
|
|
|
|
logger.info(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") |
|
|
|
|
|
|
|
if args.drop_path_rate > 0.0: |
|
dropout_p = 0.0 |
|
else: |
|
dropout_p = args.dropout_p |
|
latent_size = args.image_size // args.downsample_size |
|
model = GPT_models[args.gpt_model]( |
|
vocab_size=args.vocab_size, |
|
block_size=latent_size ** 2, |
|
num_classes=args.num_classes, |
|
cls_token_num=args.cls_token_num, |
|
model_type=args.gpt_type, |
|
resid_dropout_p=dropout_p, |
|
ffn_dropout_p=dropout_p, |
|
drop_path_rate=args.drop_path_rate, |
|
token_dropout_p=args.token_dropout_p, |
|
condition_token_num=args.condition_token_num, |
|
image_size=args.image_size, |
|
).to(device) |
|
logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}") |
|
|
|
if args.ema: |
|
ema = deepcopy(model).to(device) |
|
requires_grad(ema, False) |
|
logger.info(f"EMA Parameters: {sum(p.numel() for p in ema.parameters()):,}") |
|
|
|
|
|
|
|
optimizer = creat_optimizer(model, args.weight_decay, args.lr, (args.beta1, args.beta2), logger) |
|
|
|
|
|
dataset = build_dataset(args) |
|
sampler = DistributedSampler( |
|
dataset, |
|
num_replicas=dist.get_world_size(), |
|
rank=rank, |
|
shuffle=True, |
|
seed=args.global_seed |
|
) |
|
loader = DataLoader( |
|
dataset, |
|
batch_size=int(args.global_batch_size // dist.get_world_size()), |
|
shuffle=False, |
|
sampler=sampler, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=True |
|
) |
|
flip_info = 'with' if dataset.flip else 'without' |
|
aug_info = 10 if 'ten_crop' in dataset.feature_dir else 1 |
|
aug_info = 2 * aug_info if dataset.aug_feature_dir is not None else aug_info |
|
logger.info(f"Dataset contains {len(dataset):,} images ({args.code_path}) " |
|
f"{flip_info} flip augmentation and {aug_info} crop augmentation") |
|
|
|
|
|
if args.gpt_ckpt: |
|
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu") |
|
model.load_state_dict(checkpoint["model"],strict=False) |
|
if args.ema: |
|
ema.load_state_dict(checkpoint["ema"] if "ema" in checkpoint else checkpoint["model"]) |
|
train_steps = 0 |
|
start_epoch = 0 |
|
train_steps = 0 |
|
del checkpoint |
|
logger.info(f"Resume training from checkpoint: {args.gpt_ckpt}") |
|
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}") |
|
else: |
|
train_steps = 0 |
|
start_epoch = 0 |
|
if args.ema: |
|
update_ema(ema, model, decay=0) |
|
|
|
if not args.no_compile: |
|
logger.info("compiling the model... (may take several minutes)") |
|
model = torch.compile(model) |
|
|
|
|
|
|
|
model = DDP(model.to(device), device_ids=[args.gpu],find_unused_parameters=True) |
|
model.train() |
|
if args.ema: |
|
ema.eval() |
|
|
|
ptdtype = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.mixed_precision] |
|
|
|
scaler = torch.cuda.amp.GradScaler(enabled=(args.mixed_precision =='fp16')) |
|
|
|
log_steps = 0 |
|
running_loss = 0 |
|
start_time = time.time() |
|
initial_params = copy.deepcopy(model.module.condition_embeddings.weight) |
|
logger.info(f"Training for {args.epochs} epochs...") |
|
|
|
|
|
for epoch in range(start_epoch, args.epochs): |
|
sampler.set_epoch(epoch) |
|
logger.info(f"Beginning epoch {epoch}...") |
|
for batch in loader: |
|
x = batch['img_code'] |
|
y = batch['labels'] |
|
condition_img = batch['condition_imgs'] |
|
x = x.to(device, non_blocking=True) |
|
y = y.to(device, non_blocking=True) |
|
condition_img = condition_img.to(device, non_blocking=True).repeat(1,3,1,1) |
|
z_indices = x.reshape(x.shape[0], -1) |
|
c_indices = y.reshape(-1) |
|
batchsize = y.shape[0] |
|
assert z_indices.shape[0] == c_indices.shape[0] |
|
with torch.cuda.amp.autocast(dtype=ptdtype): |
|
pred, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices, condition=condition_img.to(ptdtype)) |
|
|
|
|
|
scaler.scale(loss).backward() |
|
if args.max_grad_norm != 0.0: |
|
scaler.unscale_(optimizer) |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
scaler.step(optimizer) |
|
scaler.update() |
|
|
|
optimizer.zero_grad(set_to_none=True) |
|
if args.ema: |
|
update_ema(ema, model.module._orig_mod if not args.no_compile else model.module) |
|
|
|
|
|
running_loss += loss.item() |
|
log_steps += 1 |
|
train_steps += 1 |
|
if train_steps % args.log_every == 0: |
|
|
|
torch.cuda.synchronize() |
|
end_time = time.time() |
|
steps_per_sec = log_steps / (end_time - start_time) |
|
|
|
avg_loss = torch.tensor(running_loss / log_steps, device=device) |
|
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM) |
|
avg_loss = avg_loss.item() / dist.get_world_size() |
|
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}") |
|
|
|
running_loss = 0 |
|
log_steps = 0 |
|
start_time = time.time() |
|
|
|
|
|
if train_steps % args.ckpt_every == 0 and train_steps > 0: |
|
if rank == 0: |
|
if not args.no_compile: |
|
model_weight = model.module._orig_mod.state_dict() |
|
else: |
|
model_weight = model.module.state_dict() |
|
checkpoint = { |
|
"model": model_weight, |
|
"steps": train_steps, |
|
"args": args |
|
} |
|
if args.ema: |
|
checkpoint["ema"] = ema.state_dict() |
|
|
|
|
|
|
|
|
|
|
|
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}.pt" |
|
torch.save(checkpoint, cloud_checkpoint_path) |
|
logger.info(f"Saved checkpoint to {cloud_checkpoint_path}") |
|
dist.barrier() |
|
model.eval() |
|
|
|
|
|
logger.info("Done!") |
|
dist.destroy_process_group() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--code-path", type=str, required=True) |
|
parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path') |
|
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume') |
|
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B") |
|
parser.add_argument("--gpt-ckpt", type=str, default=None, help="ckpt path for resume training") |
|
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional") |
|
parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer") |
|
parser.add_argument("--ema", action='store_true', help="whether using ema training") |
|
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input") |
|
parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p") |
|
parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p") |
|
parser.add_argument("--drop-path-rate", type=float, default=0.0, help="using stochastic depth decay") |
|
parser.add_argument("--no-compile", action='store_true', default=True) |
|
parser.add_argument("--results-dir", type=str, default="results") |
|
parser.add_argument("--dataset", type=str, default='imagenet_code') |
|
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256) |
|
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) |
|
parser.add_argument("--num-classes", type=int, default=1000) |
|
parser.add_argument("--epochs", type=int, default=15) |
|
parser.add_argument("--lr", type=float, default=1e-4) |
|
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use") |
|
parser.add_argument("--beta1", type=float, default=0.9, help="beta1 parameter for the Adam optimizer") |
|
parser.add_argument("--beta2", type=float, default=0.95, help="beta2 parameter for the Adam optimizer") |
|
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--global-batch-size", type=int, default=256) |
|
parser.add_argument("--global-seed", type=int, default=0) |
|
parser.add_argument("--num-workers", type=int, default=24) |
|
parser.add_argument("--log-every", type=int, default=100) |
|
parser.add_argument("--ckpt-every", type=int, default=25000) |
|
parser.add_argument("--gradient-accumulation-steps", type=int, default=1) |
|
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) |
|
parser.add_argument("--condition-type", type=str, default='depth', choices=["canny", "depth"]) |
|
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") |
|
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") |
|
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") |
|
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for resume training") |
|
parser.add_argument("--condition-token-num", type=int, default=0) |
|
parser.add_argument("--get-condition-img", type=bool, default=False) |
|
args = parser.parse_args() |
|
main(args) |
|
|