|
|
|
|
|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
import torch.nn as nn |
|
import torch.distributed as dist |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torch.distributed.fsdp import ( |
|
FullyShardedDataParallel as FSDP, |
|
ShardingStrategy, MixedPrecision, StateDictType, FullStateDictConfig |
|
) |
|
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy, size_based_auto_wrap_policy |
|
|
|
import os |
|
import time |
|
import inspect |
|
import functools |
|
import argparse |
|
import contextlib |
|
from glob import glob |
|
import wandb |
|
|
|
from utils.logger import create_logger |
|
from dataset.build import build_dataset |
|
from autoregressive.models.gpt import GPT_models |
|
|
|
|
|
|
|
def setup_fsdp_sync(model: nn.Module, args: argparse.Namespace, device) -> FSDP: |
|
model = FSDP( |
|
model, |
|
auto_wrap_policy=functools.partial( |
|
lambda_auto_wrap_policy, |
|
lambda_fn=lambda m: m in model.get_fsdp_wrap_module_list(), |
|
), |
|
|
|
|
|
device_id=device, |
|
sharding_strategy={ |
|
"fsdp": ShardingStrategy.FULL_SHARD, |
|
"sdp": ShardingStrategy.SHARD_GRAD_OP, |
|
"hsdp": ShardingStrategy.HYBRID_SHARD, |
|
}[args.data_parallel], |
|
mixed_precision=MixedPrecision( |
|
param_dtype={ |
|
"fp32": torch.float, "tf32": torch.float, |
|
"bf16": torch.bfloat16, "fp16": torch.float16, |
|
}[args.mixed_precision], |
|
reduce_dtype={ |
|
"fp32": torch.float, "tf32": torch.float, |
|
"bf16": torch.bfloat16, "fp16": torch.float16, |
|
}[args.grad_precision or args.mixed_precision], |
|
), |
|
sync_module_states=True, |
|
limit_all_gathers=True, |
|
use_orig_params=True, |
|
) |
|
|
|
torch.cuda.synchronize() |
|
|
|
return model |
|
|
|
|
|
|
|
def creat_optimizer_by_name(model, weight_decay, learning_rate, betas, global_rank, logger): |
|
|
|
all_param_dict = {pn: p for pn, p in model.named_parameters()} |
|
|
|
param_dict = {pn: p for pn, p in all_param_dict.items() if p.requires_grad} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
decay_params = [p for n, p in param_dict.items() if 'norm' not in n] |
|
nodecay_params = [p for n, p in param_dict.items() if 'norm' in n] |
|
optim_groups = [ |
|
{'params': decay_params, 'weight_decay': weight_decay}, |
|
{'params': nodecay_params, 'weight_decay': 0.0} |
|
] |
|
num_decay_params = sum(p.numel() for p in decay_params) |
|
num_nodecay_params = sum(p.numel() for p in nodecay_params) |
|
logger.info(f"(rank {global_rank}) num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") |
|
logger.info(f"(rank {global_rank}) num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") |
|
print(f"(rank {global_rank}) num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") |
|
print(f"(rank {global_rank}) num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") |
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters |
|
extra_args = dict(fused=True) if fused_available else dict() |
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) |
|
logger.info(f"using fused AdamW: {fused_available}") |
|
return optimizer |
|
|
|
|
|
|
|
def main(args): |
|
assert torch.cuda.is_available(), "Training currently requires at least one GPU." |
|
assert args.gpt_type == 'c2i', "FSDP only supports c2i currently." |
|
|
|
|
|
|
|
dist.init_process_group("nccl") |
|
|
|
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size." |
|
global_rank = dist.get_rank() |
|
device = global_rank % torch.cuda.device_count() |
|
seed = args.global_seed * dist.get_world_size() + global_rank |
|
torch.manual_seed(seed) |
|
torch.cuda.set_device(device) |
|
print(f"Starting rank={global_rank}, device={device}, seed={seed}, world_size={dist.get_world_size()}.") |
|
|
|
|
|
|
|
|
|
|
|
timestamp = None |
|
if global_rank == 0: |
|
timestamp = time.localtime() |
|
timestamp = int(time.strftime("%Y%m%d%H%M%S", timestamp)) |
|
|
|
timestamp_tensor = torch.tensor([timestamp] if timestamp is not None else [0.0], dtype=torch.double).to(device) |
|
|
|
dist.broadcast(timestamp_tensor, src=0) |
|
|
|
timestamp = int(timestamp_tensor.item()) |
|
model_string_name = args.gpt_model.replace("/", "-") |
|
experiment_dir = f"{args.results_dir}/{timestamp}-{model_string_name}" |
|
cloud_checkpoint_dir = f"{args.cloud_save_path}/{timestamp}-{model_string_name}" |
|
if global_rank == 0: |
|
os.makedirs(experiment_dir, exist_ok=True) |
|
os.makedirs(cloud_checkpoint_dir, exist_ok=True) |
|
logger = create_logger(experiment_dir) |
|
else: |
|
logger = create_logger(None) |
|
logger.info(f"Experiment directory created at {experiment_dir}") |
|
logger.info(f"Experiment directory created in cloud at {cloud_checkpoint_dir}") |
|
|
|
|
|
logger.info(f"{args}") |
|
|
|
|
|
if not args.no_wandb and global_rank == 0: |
|
os.environ["WANDB_DIR"] = experiment_dir |
|
wandb.init( |
|
project=args.wandb_project, |
|
name = f"{timestamp}-{model_string_name}", |
|
config=vars(args) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if args.drop_path_rate > 0.0: |
|
dropout_p = 0.0 |
|
else: |
|
dropout_p = args.dropout_p |
|
latent_size = args.image_size // args.downsample_size |
|
model = GPT_models[args.gpt_model]( |
|
vocab_size=args.vocab_size, |
|
block_size=latent_size ** 2, |
|
num_classes=args.num_classes, |
|
cls_token_num=args.cls_token_num, |
|
model_type=args.gpt_type, |
|
resid_dropout_p=dropout_p, |
|
ffn_dropout_p=dropout_p, |
|
drop_path_rate=args.drop_path_rate, |
|
token_dropout_p=args.token_dropout_p, |
|
).to(device) |
|
logger.info(f"GPT Parameters: {sum(p.numel() for p in model.parameters()):,}") |
|
|
|
if args.gpt_resume: |
|
if global_rank == 0: |
|
logger.info(f"Resuming model weights from: {args.gpt_resume}") |
|
model.load_state_dict(torch.load(os.path.join( |
|
args.gpt_resume, "consolidated.pth", |
|
), map_location="cpu"), strict=True) |
|
|
|
model = setup_fsdp_sync(model, args, device) |
|
|
|
|
|
|
|
|
|
|
|
optimizer = creat_optimizer_by_name(model, args.weight_decay, args.lr, (args.beta1, args.beta2), global_rank, logger) |
|
if args.gpt_resume: |
|
opt_state_world_size = len([ |
|
x for x in os.listdir(args.gpt_resume) |
|
if x.startswith("optimizer.") and x.endswith(".pth") |
|
]) |
|
assert opt_state_world_size == dist.get_world_size(), ( |
|
f"Resuming from a checkpoint with unmatched world size " |
|
f"({dist.get_world_size()} vs. {opt_state_world_size}) " |
|
f"is currently not supported." |
|
) |
|
logger.info(f"Resuming optimizer states from: {args.gpt_resume}") |
|
optimizer.load_state_dict(torch.load(os.path.join( |
|
args.gpt_resume, |
|
f"optimizer.{dist.get_rank():05d}-of-" |
|
f"{dist.get_world_size():05d}.pth", |
|
), map_location="cpu")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset = build_dataset(args) |
|
sampler = DistributedSampler( |
|
dataset, |
|
num_replicas=dist.get_world_size(), |
|
rank=global_rank, |
|
shuffle=True, |
|
seed=args.global_seed |
|
) |
|
loader = DataLoader( |
|
dataset, |
|
batch_size=int(args.global_batch_size // dist.get_world_size()), |
|
shuffle=False, |
|
sampler=sampler, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=True |
|
) |
|
flip_info = 'with' if dataset.flip else 'without' |
|
aug_info = 10 if 'ten_crop' in dataset.feature_dir else 1 |
|
aug_info = 2 * aug_info if dataset.aug_feature_dir is not None else aug_info |
|
logger.info(f"Dataset contains {len(dataset):,} images ({args.code_path}) " |
|
f"{flip_info} flip augmentation and {aug_info} crop augmentation") |
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.gpt_resume: |
|
with open(os.path.join(args.gpt_resume, "resume_step.txt")) as f: |
|
train_steps = int(f.read().strip()) |
|
start_epoch = int(train_steps / int(len(dataset) / args.global_batch_size)) |
|
train_steps = int(start_epoch * int(len(dataset) / args.global_batch_size)) |
|
logger.info(f"Initial state: steps={train_steps}, epochs={start_epoch}") |
|
else: |
|
train_steps = 0 |
|
start_epoch = 0 |
|
|
|
model.train() |
|
|
|
|
|
log_steps = 0 |
|
running_loss = 0 |
|
start_time = time.time() |
|
|
|
logger.info(f"Training for {args.epochs} epochs...") |
|
for epoch in range(start_epoch, args.epochs): |
|
sampler.set_epoch(epoch) |
|
logger.info(f"Beginning epoch {epoch}...") |
|
for x, y in loader: |
|
x = x.to(device, non_blocking=True) |
|
y = y.to(device, non_blocking=True) |
|
z_indices = x.reshape(x.shape[0], -1) |
|
c_indices = y.reshape(-1) |
|
assert z_indices.shape[0] == c_indices.shape[0] |
|
|
|
optimizer.zero_grad() |
|
with { |
|
"bf16": torch.cuda.amp.autocast(dtype=torch.bfloat16), |
|
"fp16": torch.cuda.amp.autocast(dtype=torch.float16), |
|
"fp32": contextlib.nullcontext(), |
|
"tf32": contextlib.nullcontext(), |
|
}[args.mixed_precision]: |
|
_, loss = model(cond_idx=c_indices, idx=z_indices[:,:-1], targets=z_indices) |
|
loss.backward() |
|
|
|
if args.max_grad_norm != 0.0: |
|
|
|
|
|
model.clip_grad_norm_(args.max_grad_norm) |
|
optimizer.step() |
|
|
|
|
|
|
|
running_loss += loss.item() |
|
log_steps += 1 |
|
train_steps += 1 |
|
if train_steps % args.log_every == 0: |
|
|
|
torch.cuda.synchronize() |
|
end_time = time.time() |
|
steps_per_sec = log_steps / (end_time - start_time) |
|
|
|
avg_loss = torch.tensor(running_loss / log_steps, device=device) |
|
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM) |
|
avg_loss = avg_loss.item() / dist.get_world_size() |
|
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}") |
|
if not args.no_wandb and global_rank == 0: |
|
wandb.log({"train_loss": avg_loss}, step=train_steps) |
|
|
|
|
|
running_loss = 0 |
|
log_steps = 0 |
|
start_time = time.time() |
|
|
|
|
|
|
|
if train_steps % args.ckpt_every == 0 and train_steps > 0: |
|
cloud_checkpoint_path = f"{cloud_checkpoint_dir}/{train_steps:07d}" |
|
os.makedirs(cloud_checkpoint_path, exist_ok=True) |
|
|
|
|
|
with FSDP.state_dict_type( |
|
model, |
|
StateDictType.FULL_STATE_DICT, |
|
FullStateDictConfig(rank0_only=True, offload_to_cpu=True), |
|
): |
|
consolidated_model_state_dict = model.state_dict() |
|
if global_rank == 0: |
|
consolidated_fn = "consolidated.pth" |
|
torch.save(consolidated_model_state_dict, |
|
os.path.join(cloud_checkpoint_path, consolidated_fn)) |
|
dist.barrier() |
|
del consolidated_model_state_dict |
|
logger.info(f"Saved consolidated to {cloud_checkpoint_path}") |
|
|
|
|
|
opt_state_fn = ( |
|
f"optimizer.{dist.get_rank():05d}-of-" |
|
f"{dist.get_world_size():05d}.pth" |
|
) |
|
torch.save(optimizer.state_dict(), os.path.join(cloud_checkpoint_path, opt_state_fn)) |
|
dist.barrier() |
|
logger.info(f"Saved optimizer to {cloud_checkpoint_path}") |
|
|
|
|
|
if global_rank == 0: |
|
with open(os.path.join(cloud_checkpoint_path, "resume_step.txt"), "w") as f: |
|
print(train_steps, file=f) |
|
dist.barrier() |
|
logger.info(f"Saved training step to {cloud_checkpoint_path}") |
|
|
|
model.eval() |
|
|
|
|
|
logger.info("Done!") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--code-path", type=str, required=True) |
|
parser.add_argument("--cloud-save-path", type=str, required=True, help='please specify a cloud disk path, if not, local path') |
|
parser.add_argument("--no-local-save", action='store_true', help='no save checkpoints to local path for limited disk volume') |
|
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B") |
|
parser.add_argument("--gpt-resume", type=str, default=None, help="model, optimizer and argument path for resume training") |
|
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional") |
|
parser.add_argument("--vocab-size", type=int, default=16384, help="vocabulary size of visual tokenizer") |
|
parser.add_argument("--ema", action='store_true', help="whether using ema training") |
|
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input") |
|
parser.add_argument("--dropout-p", type=float, default=0.1, help="dropout_p of resid_dropout_p and ffn_dropout_p") |
|
parser.add_argument("--token-dropout-p", type=float, default=0.1, help="dropout_p of token_dropout_p") |
|
parser.add_argument("--drop-path-rate", type=float, default=0.0, help="using stochastic depth decay") |
|
parser.add_argument("--results-dir", type=str, default="results") |
|
parser.add_argument("--dataset", type=str, default='imagenet_code') |
|
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256) |
|
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) |
|
parser.add_argument("--num-classes", type=int, default=1000) |
|
parser.add_argument("--epochs", type=int, default=300) |
|
parser.add_argument("--lr", type=float, default=1e-4) |
|
parser.add_argument("--weight-decay", type=float, default=5e-2, help="Weight decay to use") |
|
parser.add_argument("--beta1", type=float, default=0.9, help="beta1 parameter for the Adam optimizer") |
|
parser.add_argument("--beta2", type=float, default=0.95, help="beta2 parameter for the Adam optimizer") |
|
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--global-batch-size", type=int, default=256) |
|
parser.add_argument("--global-seed", type=int, default=0) |
|
parser.add_argument("--num-workers", type=int, default=24) |
|
parser.add_argument("--log-every", type=int, default=100) |
|
parser.add_argument("--ckpt-every", type=int, default=5000) |
|
parser.add_argument("--gradient-accumulation-steps", type=int, default=1) |
|
parser.add_argument("--mixed-precision", type=str, choices=["fp32", "tf32", "fp16", "bf16"], default='bf16') |
|
parser.add_argument("--data-parallel", type=str, choices=["sdp", "fsdp", "hsdp"], default="fsdp") |
|
parser.add_argument("--grad-precision", type=str, choices=["fp32", "fp16", "bf16"]) |
|
parser.add_argument("--wandb-project", type=str, default='c2i_fsdp') |
|
parser.add_argument("--no-wandb", action='store_true') |
|
args = parser.parse_args() |
|
main(args) |
|
|