|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from tokenizer.tokenizer_image.lpips import LPIPS |
|
|
from tokenizer.tokenizer_image.discriminator_patchgan import NLayerDiscriminator as PatchGANDiscriminator |
|
|
from tokenizer.tokenizer_image.discriminator_stylegan import Discriminator as StyleGANDiscriminator |
|
|
|
|
|
|
|
|
|
|
|
def hinge_d_loss(logits_real, logits_fake): |
|
|
loss_real = torch.mean(F.relu(1. - logits_real)) |
|
|
loss_fake = torch.mean(F.relu(1. + logits_fake)) |
|
|
d_loss = 0.5 * (loss_real + loss_fake) |
|
|
return d_loss |
|
|
|
|
|
|
|
|
def vanilla_d_loss(logits_real, logits_fake): |
|
|
loss_real = torch.mean(F.softplus(-logits_real)) |
|
|
loss_fake = torch.mean(F.softplus(logits_fake)) |
|
|
d_loss = 0.5 * (loss_real + loss_fake) |
|
|
return d_loss |
|
|
|
|
|
|
|
|
def non_saturating_d_loss(logits_real, logits_fake): |
|
|
loss_real = torch.mean(F.binary_cross_entropy_with_logits(torch.ones_like(logits_real), logits_real)) |
|
|
loss_fake = torch.mean(F.binary_cross_entropy_with_logits(torch.zeros_like(logits_fake), logits_fake)) |
|
|
d_loss = 0.5 * (loss_real + loss_fake) |
|
|
return d_loss |
|
|
|
|
|
|
|
|
def hinge_gen_loss(logit_fake): |
|
|
return -torch.mean(logit_fake) |
|
|
|
|
|
|
|
|
def non_saturating_gen_loss(logit_fake): |
|
|
return torch.mean(F.binary_cross_entropy_with_logits(torch.ones_like(logit_fake), logit_fake)) |
|
|
|
|
|
|
|
|
def adopt_weight(weight, global_step, threshold=0, value=0.): |
|
|
if global_step < threshold: |
|
|
weight = value |
|
|
return weight |
|
|
|
|
|
|
|
|
class VQLoss(nn.Module): |
|
|
def __init__(self, disc_start, disc_loss="hinge", disc_dim=64, disc_type='patchgan', image_size=256, |
|
|
disc_num_layers=3, disc_in_channels=3, disc_weight=1.0, disc_adaptive_weight = False, |
|
|
gen_adv_loss='hinge', reconstruction_loss='l2', reconstruction_weight=1.0, |
|
|
codebook_weight=1.0, perceptual_weight=1.0, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
assert disc_type in ["patchgan", "stylegan"] |
|
|
assert disc_loss in ["hinge", "vanilla", "non-saturating"] |
|
|
if disc_type == "patchgan": |
|
|
self.discriminator = PatchGANDiscriminator( |
|
|
input_nc=disc_in_channels, |
|
|
n_layers=disc_num_layers, |
|
|
ndf=disc_dim, |
|
|
) |
|
|
elif disc_type == "stylegan": |
|
|
self.discriminator = StyleGANDiscriminator( |
|
|
input_nc=disc_in_channels, |
|
|
image_size=image_size, |
|
|
) |
|
|
else: |
|
|
raise ValueError(f"Unknown GAN discriminator type '{disc_type}'.") |
|
|
if disc_loss == "hinge": |
|
|
self.disc_loss = hinge_d_loss |
|
|
elif disc_loss == "vanilla": |
|
|
self.disc_loss = vanilla_d_loss |
|
|
elif disc_loss == "non-saturating": |
|
|
self.disc_loss = non_saturating_d_loss |
|
|
else: |
|
|
raise ValueError(f"Unknown GAN discriminator loss '{disc_loss}'.") |
|
|
self.discriminator_iter_start = disc_start |
|
|
self.disc_weight = disc_weight |
|
|
self.disc_adaptive_weight = disc_adaptive_weight |
|
|
|
|
|
assert gen_adv_loss in ["hinge", "non-saturating"] |
|
|
|
|
|
if gen_adv_loss == "hinge": |
|
|
self.gen_adv_loss = hinge_gen_loss |
|
|
elif gen_adv_loss == "non-saturating": |
|
|
self.gen_adv_loss = non_saturating_gen_loss |
|
|
else: |
|
|
raise ValueError(f"Unknown GAN generator loss '{gen_adv_loss}'.") |
|
|
|
|
|
|
|
|
self.perceptual_loss = LPIPS().eval() |
|
|
self.perceptual_weight = perceptual_weight |
|
|
|
|
|
|
|
|
if reconstruction_loss == "l1": |
|
|
self.rec_loss = F.l1_loss |
|
|
elif reconstruction_loss == "l2": |
|
|
self.rec_loss = F.mse_loss |
|
|
else: |
|
|
raise ValueError(f"Unknown rec loss '{reconstruction_loss}'.") |
|
|
self.rec_weight = reconstruction_weight |
|
|
|
|
|
|
|
|
self.codebook_weight = codebook_weight |
|
|
|
|
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer): |
|
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] |
|
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] |
|
|
|
|
|
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) |
|
|
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() |
|
|
return d_weight.detach() |
|
|
|
|
|
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx, global_step, last_layer=None, |
|
|
logger=None, log_every=100): |
|
|
|
|
|
if optimizer_idx == 0: |
|
|
|
|
|
rec_loss = self.rec_loss(inputs.contiguous(), reconstructions.contiguous()) |
|
|
|
|
|
|
|
|
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) |
|
|
p_loss = torch.mean(p_loss) |
|
|
|
|
|
|
|
|
logits_fake = self.discriminator(reconstructions.contiguous()) |
|
|
generator_adv_loss = self.gen_adv_loss(logits_fake) |
|
|
|
|
|
if self.disc_adaptive_weight: |
|
|
null_loss = self.rec_weight * rec_loss + self.perceptual_weight * p_loss |
|
|
disc_adaptive_weight = self.calculate_adaptive_weight(null_loss, generator_adv_loss, last_layer=last_layer) |
|
|
else: |
|
|
disc_adaptive_weight = 1 |
|
|
disc_weight = adopt_weight(self.disc_weight, global_step, threshold=self.discriminator_iter_start) |
|
|
|
|
|
loss = self.rec_weight * rec_loss + \ |
|
|
self.perceptual_weight * p_loss + \ |
|
|
disc_adaptive_weight * disc_weight * generator_adv_loss + \ |
|
|
codebook_loss[0] + codebook_loss[1] + codebook_loss[2] |
|
|
|
|
|
if global_step % log_every == 0: |
|
|
rec_loss = self.rec_weight * rec_loss |
|
|
p_loss = self.perceptual_weight * p_loss |
|
|
generator_adv_loss = disc_adaptive_weight * disc_weight * generator_adv_loss |
|
|
logger.info(f"(Generator) rec_loss: {rec_loss:.4f}, perceptual_loss: {p_loss:.4f}, " |
|
|
f"vq_loss: {codebook_loss[0]:.4f}, commit_loss: {codebook_loss[1]:.4f}, entropy_loss: {codebook_loss[2]:.4f}, " |
|
|
f"codebook_usage: {codebook_loss[3]:.4f}, generator_adv_loss: {generator_adv_loss:.4f}, " |
|
|
f"disc_adaptive_weight: {disc_adaptive_weight:.4f}, disc_weight: {disc_weight:.4f}") |
|
|
return loss |
|
|
|
|
|
|
|
|
if optimizer_idx == 1: |
|
|
logits_real = self.discriminator(inputs.contiguous().detach()) |
|
|
logits_fake = self.discriminator(reconstructions.contiguous().detach()) |
|
|
|
|
|
disc_weight = adopt_weight(self.disc_weight, global_step, threshold=self.discriminator_iter_start) |
|
|
d_adversarial_loss = disc_weight * self.disc_loss(logits_real, logits_fake) |
|
|
|
|
|
if global_step % log_every == 0: |
|
|
logits_real = logits_real.detach().mean() |
|
|
logits_fake = logits_fake.detach().mean() |
|
|
logger.info(f"(Discriminator) " |
|
|
f"discriminator_adv_loss: {d_adversarial_loss:.4f}, disc_weight: {disc_weight:.4f}, " |
|
|
f"logits_real: {logits_real:.4f}, logits_fake: {logits_fake:.4f}") |
|
|
return d_adversarial_loss |