|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from tokenizer.vqgan.layer import Encoder, Decoder |
|
|
from tokenizer.vqgan.quantize import VectorQuantizer2 as VectorQuantizer |
|
|
|
|
|
|
|
|
VQGAN_FROM_TAMING = { |
|
|
'vqgan_imagenet_f16_1024': ( |
|
|
'tokenizer/vqgan/configs/vqgan_imagenet_f16_1024.yaml', |
|
|
'pretrained_models/vqgan_imagenet_f16_1024/ckpts/last.pth'), |
|
|
'vqgan_imagenet_f16_16384': ( |
|
|
'tokenizer/vqgan/configs/vqgan_imagenet_f16_16384.yaml', |
|
|
'pretrained_models/vqgan_imagenet_f16_16384/ckpts/last.pth'), |
|
|
'vqgan_openimage_f8_256': ( |
|
|
'tokenizer/vqgan/configs/vqgan_openimage_f8_256.yaml', |
|
|
'pretrained_models/vq-f8-n256/model.pth'), |
|
|
'vqgan_openimage_f8_16384': ( |
|
|
'tokenizer/vqgan/configs/vqgan_openimage_f8_16384.yaml', |
|
|
'pretrained_models/vq-f8/model.pth'), |
|
|
} |
|
|
|
|
|
class VQModel(nn.Module): |
|
|
def __init__(self, |
|
|
ddconfig, |
|
|
n_embed, |
|
|
embed_dim, |
|
|
ckpt_path=None, |
|
|
ignore_keys=[], |
|
|
image_key="image", |
|
|
colorize_nlabels=None, |
|
|
monitor=None, |
|
|
remap=None, |
|
|
sane_index_shape=False, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__() |
|
|
self.image_key = image_key |
|
|
self.encoder = Encoder(**ddconfig) |
|
|
self.decoder = Decoder(**ddconfig) |
|
|
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, |
|
|
remap=remap, sane_index_shape=sane_index_shape) |
|
|
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) |
|
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
|
if ckpt_path is not None: |
|
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) |
|
|
self.image_key = image_key |
|
|
if colorize_nlabels is not None: |
|
|
assert type(colorize_nlabels)==int |
|
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) |
|
|
if monitor is not None: |
|
|
self.monitor = monitor |
|
|
|
|
|
def init_from_ckpt(self, path, ignore_keys=list(), logging=True): |
|
|
model_weight = torch.load(path, map_location="cpu")["state_dict"] |
|
|
keys = list(model_weight.keys()) |
|
|
for k in keys: |
|
|
for ik in ignore_keys: |
|
|
if k.startswith(ik): |
|
|
print("Deleting key {} from state_dict.".format(k)) |
|
|
del model_weight[k] |
|
|
missing, unexpected = self.load_state_dict(model_weight, strict=False) |
|
|
if logging: |
|
|
print(f"Restored from {path}") |
|
|
print(f"Missing Keys in State Dict: {missing}") |
|
|
print(f"Unexpected Keys in State Dict: {unexpected}") |
|
|
|
|
|
def encode(self, x): |
|
|
h = self.encoder(x) |
|
|
h = self.quant_conv(h) |
|
|
quant, emb_loss, info = self.quantize(h) |
|
|
return quant, emb_loss, info |
|
|
|
|
|
def decode(self, quant): |
|
|
quant = self.post_quant_conv(quant) |
|
|
dec = self.decoder(quant) |
|
|
return dec |
|
|
|
|
|
def decode_code(self, code_b, shape, channel_first=True): |
|
|
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first) |
|
|
dec = self.decode(quant_b) |
|
|
return dec |
|
|
|
|
|
def forward(self, input): |
|
|
quant, diff, _ = self.encode(input) |
|
|
dec = self.decode(quant) |
|
|
return dec, diff |
|
|
|