|
import argparse |
|
import torch |
|
import numpy as np |
|
|
|
from tokenizer.tokenizer_image.vq_model import VQ_models |
|
from torchvision.utils import save_image |
|
|
|
|
|
def main(args): |
|
|
|
torch.manual_seed(args.seed) |
|
torch.set_grad_enabled(False) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
vq_model = VQ_models[args.vq_model]( |
|
codebook_size=args.codebook_size, |
|
codebook_embed_dim=args.codebook_embed_dim) |
|
vq_model.to(device) |
|
vq_model.eval() |
|
checkpoint = torch.load(args.vq_ckpt, map_location="cpu") |
|
vq_model.load_state_dict(checkpoint["model"]) |
|
del checkpoint |
|
|
|
|
|
latent_dim = args.codebook_embed_dim |
|
latent_size = args.image_size // args.downsample_size |
|
codes = torch.from_numpy(np.load(args.code_path)).to(device) |
|
if codes.ndim == 3: |
|
qzshape = (codes.shape[1], latent_dim, latent_size, latent_size) |
|
else: |
|
qzshape = (1, latent_dim, latent_size, latent_size) |
|
index_sample = codes.reshape(-1) |
|
samples = vq_model.decode_code(index_sample, qzshape) |
|
|
|
|
|
out_path = "sample_image_code.png" |
|
nrow = max(4, int(codes.shape[1]//2)) |
|
save_image(samples, out_path, nrow=nrow, normalize=True, value_range=(-1, 1)) |
|
print("Reconstructed image is saved to {}".format(out_path)) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--code-path", type=str, required=True) |
|
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") |
|
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") |
|
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") |
|
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") |
|
parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512], default=256) |
|
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) |
|
parser.add_argument("--seed", type=int, default=0) |
|
args = parser.parse_args() |
|
main(args) |