wxy-ControlAR / tools /push_gpt_to_hf.py
slz1's picture
Add files using upload-large-folder tool
33b03a3 verified
# Modified from:
# DiT: https://github.com/facebookresearch/DiT/blob/main/sample_ddp.py
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import argparse
from tokenizer.tokenizer_image.vq_model import VQ_models
from autoregressive.models.gpt_hf import GPT_models_HF, TransformerHF
device = "cuda" if torch.cuda_is_available() else "cpu"
def main(args):
# Setup PyTorch:
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
# create and load gpt model
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
latent_size = args.image_size // args.downsample_size
gpt_model = GPT_models_HF[args.gpt_model](
vocab_size=args.codebook_size,
block_size=latent_size ** 2,
num_classes=args.num_classes,
cls_token_num=args.cls_token_num,
model_type=args.gpt_type,
).to(device=device, dtype=precision)
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
if args.from_fsdp: # fsdp
model_weight = checkpoint
elif "model" in checkpoint: # ddp
model_weight = checkpoint["model"]
elif "module" in checkpoint: # deepspeed
model_weight = checkpoint["module"]
elif "state_dict" in checkpoint:
model_weight = checkpoint["state_dict"]
else:
raise Exception("please check model weight, maybe add --from-fsdp to run command")
# load weights
gpt_model.load_state_dict(model_weight, strict=False)
gpt_model.eval()
del checkpoint
# push to hub
repo_id = f"FoundationVision/{args.gpt_model}-{args.image_size}"
gpt_model.push_to_hub(repo_id)
# reload
model = TransformerHF.from_pretrained(repo_id)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
parser.add_argument("--gpt-ckpt", type=str, default=None)
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
parser.add_argument("--from-fsdp", action='store_true')
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
parser.add_argument("--compile", action='store_true', default=True)
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384)
parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256)
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
parser.add_argument("--num-classes", type=int, default=1000)
args = parser.parse_args()
main(args)