sea-small / sea_scenes /loaders.py
alexandros-petkos's picture
first commit
386005a
from pathlib import Path
from typing import Any, List, Tuple
import struct
import numpy as np
import cv2
from .types import Vector3, Quaternion, Keypoint
def load_frames(frames_path: Path) -> List[Tuple[int, np.ndarray]]:
"""Load encoded frames from a SEA stereo .dat file."""
frames: List[Tuple[int, np.ndarray]] = []
header_size = 8 + 8 + 4
with open(frames_path, "rb") as f:
while True:
header = f.read(header_size)
if len(header) < header_size:
break
frame_timestamp, frame_index, frame_size = struct.unpack(">qqi", header)
frame_bytes = f.read(frame_size)
if len(frame_bytes) != frame_size:
raise EOFError("Unexpected EOF while reading frame data")
frame_array = np.frombuffer(frame_bytes, dtype=np.uint8)
frame = cv2.imdecode(frame_array, cv2.IMREAD_COLOR)
if frame is not None:
frames.append((frame_timestamp, frame))
return frames
def load_depth(depth_dir: Path) -> list[tuple[int, np.ndarray]]:
"""Load depth from .npy files: <timestamp>_depth_meter.npy."""
depth_frames: list[tuple[int, np.ndarray]] = []
for path in sorted(depth_dir.glob("*_depth_meter.npy")):
timestamp = int(path.stem.split("_")[0])
depth = np.load(path).astype(np.float32)
depth_frames.append((timestamp, depth))
return depth_frames
def load_trajectory(trajectory_path: Path) -> List[Tuple[int, np.ndarray, np.ndarray]]:
"""Load camera trajectory from SEA binary trajectory file."""
trajectory: List[Tuple[int, np.ndarray, np.ndarray]] = []
trajectory_buffer_size = 8 + 7 * 4
with open(trajectory_path, "rb") as f:
while True:
trajectory_buffer = f.read(trajectory_buffer_size)
if len(trajectory_buffer) < trajectory_buffer_size:
break
timestamp = struct.unpack("<q", trajectory_buffer[:8])[0]
pos_x, pos_y, pos_z, quat_x, quat_y, quat_z, quat_w = struct.unpack("<7f", trajectory_buffer[8:])
pos = np.array([pos_x, pos_y, pos_z], dtype=np.float32)
quat = np.array([quat_x, quat_y, quat_z, quat_w], dtype=np.float32)
trajectory.append((timestamp, pos, quat))
return trajectory
def load_body_data(body_data_path: Path) -> List[Any]:
"""Load body tracking data from SEA binary body_data file."""
body_frames: List[Any] = []
header_size = 8 + 4
with open(body_data_path, "rb") as f:
while True:
header = f.read(header_size)
if len(header) < header_size:
break
timestamp, keypoint_count = struct.unpack("<qi", header)
keypoints = _read_keypoints(f, keypoint_count)[:70]
body_frames.append(
(
timestamp,
keypoints
)
)
return body_frames
def load_hand_data(hand_data_path: Path) -> List[Any]:
"""Load hand tracking data from SEA binary hand_data file."""
hand_frames: List[Any] = []
timestamp_buffer_size = 8
left_count_buffer_size = 4
right_count_buffer_size = 4
with open(hand_data_path, "rb") as f:
while True:
timestamp_buffer = f.read(timestamp_buffer_size)
if len(timestamp_buffer) < timestamp_buffer_size:
break
timestamp = struct.unpack("<q", timestamp_buffer)[0]
left_count_buffer = f.read(left_count_buffer_size)
if len(left_count_buffer) < left_count_buffer_size:
break
left_count = struct.unpack("<i", left_count_buffer)[0]
left_keypoints = _read_keypoints(f, left_count)
right_count_buffer = f.read(right_count_buffer_size)
if len(right_count_buffer) < right_count_buffer_size:
break
right_count = struct.unpack("<i", right_count_buffer)[0]
right_keypoints = _read_keypoints(f, right_count)
hand_frames.append(
(
timestamp,
left_keypoints if left_keypoints else None,
right_keypoints if right_keypoints else None,
)
)
return hand_frames
def _read_keypoints(f: Any, keypoint_count: int) -> List[Keypoint]:
if keypoint_count <= 0:
return []
floats_per_keypoint = 7
total_float_count = keypoint_count * floats_per_keypoint
bytes_per_float = 4
expected_byte_count = total_float_count * bytes_per_float
raw_bytes = f.read(expected_byte_count)
if len(raw_bytes) != expected_byte_count:
raise EOFError("Unexpected EOF while reading keypoint data")
float_values = struct.unpack("<" + "f" * total_float_count, raw_bytes)
keypoints: List[Keypoint] = []
for keypoint_index in range(keypoint_count):
base_index = keypoint_index * floats_per_keypoint
pos_x, pos_y, pos_z, quat_x, quat_y, quat_z, quat_w = float_values[
base_index : base_index + floats_per_keypoint
]
keypoints.append(
Keypoint(
position=Vector3(pos_x, pos_y, pos_z),
rotation=Quaternion(quat_x, quat_y, quat_z, quat_w),
)
)
return keypoints