Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
100K<n<1M
License:
| # coding=utf-8 | |
| # Copyright 2020 HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" | |
| import os | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @inproceedings{derczynski2016broad, | |
| title={Broad twitter corpus: A diverse named entity recognition resource}, | |
| author={Derczynski, Leon and Bontcheva, Kalina and Roberts, Ian}, | |
| booktitle={Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers}, | |
| pages={1169--1179}, | |
| year={2016} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| This is the Broad Twitter corpus, a dataset of tweets collected over stratified times, places and social uses. | |
| The goal is to represent a broad range of activities, giving a dataset more representative of the language used | |
| in this hardest of social media formats to process. Further, the BTC is annotated for named entities. | |
| For more details see [https://aclanthology.org/C16-1111/](https://aclanthology.org/C16-1111/) | |
| """ | |
| _URL = "https://github.com/GateNLP/broad_twitter_corpus/archive/refs/heads/master.zip" | |
| _subpath = "broad_twitter_corpus-master/" | |
| _A_FILE = _subpath + "a.conll" | |
| _B_FILE = _subpath + "b.conll" | |
| _E_FILE = _subpath + "e.conll" | |
| _F_FILE = _subpath + "f.conll" | |
| _G_FILE = _subpath + "g.conll" | |
| _H_FILE = _subpath + "h.conll" | |
| # _TRAINING_FILE = "train.txt" | |
| _DEV_FILE = _H_FILE | |
| _TEST_FILE = _F_FILE | |
| class BroadTwitterCorpusConfig(datasets.BuilderConfig): | |
| """BuilderConfig for BroadTwitterCorpus""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for BroadTwitterCorpus. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(BroadTwitterCorpusConfig, self).__init__(**kwargs) | |
| class BroadTwitterCorpus(datasets.GeneratorBasedBuilder): | |
| """BroadTwitterCorpus dataset.""" | |
| BUILDER_CONFIGS = [ | |
| BroadTwitterCorpusConfig(name="broad-twitter-corpus", version=datasets.Version("1.0.0"), description="Broad Twitter Corpus"), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "O", | |
| "B-PER", | |
| "I-PER", | |
| "B-ORG", | |
| "I-ORG", | |
| "B-LOC", | |
| "I-LOC", | |
| ] | |
| ) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://aclanthology.org/C16-1111/", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| downloaded_file = dl_manager.download_and_extract(_URL) | |
| data_files = { | |
| "a": os.path.join(downloaded_file, _A_FILE), | |
| "b": os.path.join(downloaded_file, _B_FILE), | |
| "e": os.path.join(downloaded_file, _E_FILE), | |
| "f": os.path.join(downloaded_file, _F_FILE), | |
| "g": os.path.join(downloaded_file, _G_FILE), | |
| "h": os.path.join(downloaded_file, _H_FILE), | |
| "dev": os.path.join(downloaded_file, _DEV_FILE), | |
| "test": os.path.join(downloaded_file, _TEST_FILE), | |
| } | |
| """ | |
| btc_section_a = datasets.SplitGenerator(name="BTC_A", gen_kwargs={"filepath": data_files["a"]}) | |
| btc_section_b = datasets.SplitGenerator(name="BTC_B", gen_kwargs={"filepath": data_files["b"]}) | |
| btc_section_e = datasets.SplitGenerator(name="BTC_E", gen_kwargs={"filepath": data_files["e"]}) | |
| btc_section_f = datasets.SplitGenerator(name="BTC_F", gen_kwargs={"filepath": data_files["f"]}) | |
| btc_section_g = datasets.SplitGenerator(name="BTC_G", gen_kwargs={"filepath": data_files["g"]}) | |
| btc_section_h = datasets.SplitGenerator(name="BTC_H", gen_kwargs={"filepath": data_files["h"]}) | |
| """ | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepaths": [data_files['a'], data_files['b'], data_files['e'], data_files['g']]} | |
| ), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [data_files["dev"]]}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [data_files["test"]]}), | |
| ] | |
| def _generate_examples(self, filepaths): | |
| guid = 0 | |
| for filepath in filepaths: | |
| with open(filepath, encoding="utf-8") as f: | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| tokens = [] | |
| ner_tags = [] | |
| for line in f: | |
| if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n": | |
| if tokens: | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |
| guid += 1 | |
| tokens = [] | |
| ner_tags = [] | |
| else: | |
| # btc entries are tab separated | |
| fields = line.split("\t") | |
| tokens.append(fields[0]) | |
| ner_tags.append(fields[1].rstrip()) | |
| # last example | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |
| guid += 1 # for when files roll over | |