|
|
|
import os |
|
import torch |
|
from datasets import DatasetInfo, GeneratorBasedBuilder, BuilderConfig, Split, SplitGenerator |
|
|
|
class LPBFConfig(BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
class LPBFDataset(GeneratorBasedBuilder): |
|
VERSION = "1.0.0" |
|
BUILDER_CONFIGS = [ |
|
LPBFConfig(name="default", version=VERSION, description="Laser powder bed fusion additive manufacturing dataset") |
|
] |
|
|
|
|
|
def _info(self): |
|
return DatasetInfo( |
|
description="Laser powder bed fusion additive manufacturing dataset", |
|
features=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
""" |
|
After extraction, the dataset structure should look like: |
|
LPBF/train/*.pt |
|
LPBF/test/*.pt |
|
""" |
|
data_dir = dl_manager.download_and_extract( |
|
"https://huggingface.co/datasets/vedantpuri/LPBF_FLARE/resolve/main/LPBF.tar.gz" |
|
) |
|
|
|
|
|
|
|
split_train = os.path.join(data_dir, "LPBF", "train") |
|
split_test = os.path.join(data_dir, "LPBF", "test") |
|
|
|
return [ |
|
SplitGenerator(name=Split.TRAIN, gen_kwargs={"data_dir": split_train}), |
|
SplitGenerator(name=Split.TEST, gen_kwargs={"data_dir": split_test}), |
|
] |
|
|
|
|
|
def _generate_examples(self, data_dir): |
|
files = sorted([f for f in os.listdir(data_dir) if f.endswith(".pt")]) |
|
for idx, fname in enumerate(files): |
|
path = os.path.join(data_dir, fname) |
|
obj = torch.load(path, map_location="cpu") |
|
|
|
yield idx, {"graph": obj} |
|
|