whisper-turbo-fo-100h-8k-steps
This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0638
- Wer: 4.9169
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- training_steps: 8000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2843 | 0.2438 | 1000 | 0.2948 | 21.5976 |
0.1829 | 0.4877 | 2000 | 0.1854 | 14.3235 |
0.1112 | 0.7315 | 3000 | 0.1511 | 11.5918 |
0.1323 | 0.9754 | 4000 | 0.1185 | 9.4021 |
0.0602 | 1.2192 | 5000 | 0.1017 | 7.7587 |
0.0416 | 1.4631 | 6000 | 0.0870 | 6.9128 |
0.0399 | 1.7069 | 7000 | 0.0717 | 5.4853 |
0.0318 | 1.9507 | 8000 | 0.0638 | 4.9169 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 18
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for davidilag/whisper-turbo-fo-100h-8k-steps
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo