Example

from sentence_transformers import CrossEncoder

model = CrossEncoder('ddobokki/electra-small-sts-cross-encoder')
model.predict(["그녀는 행복해서 웃었다.", "그녀는 웃겨서 눈물이 났다."])
-> 0.8206561

Dataset

  • KorSTS
    • Train
    • Test
  • KLUE STS
    • Train
    • Test

Performance

Dataset Pearson corr. Spearman corr.
KorSTS(test) + KLUE STS(test) 0.8528 0.8504

TODO

Using KLUE 1.1 train, dev data

Downloads last month
253
Safetensors
Model size
14.1M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support