deepdml's picture
Update README.md
92fa7d2 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - fleurs
  - deepdml/igbo-dict-expansion
  - deepdml/igbo-dict-expansion-16khz
metrics:
  - wer
model-index:
  - name: wav2vec2-large-mms-1b-igbo
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: ig_ng
          split: test
          args: ig_ng
        metrics:
          - name: Wer
            type: wer
            value: 0.444900640499261
language:
  - ig

wav2vec2-large-mms-1b-igbo

This model is a fine-tuned version of facebook/mms-1b-all on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4649
  • Wer: 0.4449

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.464 0.0731 1000 0.7265 0.5768
0.4324 0.1463 2000 0.7455 0.6102
0.4307 0.2194 3000 1.1129 0.6445
0.3982 0.2925 4000 0.7999 0.5870
0.3915 0.3657 5000 0.7252 0.5210
0.3834 0.4388 6000 0.7565 0.5677
0.376 0.5120 7000 0.7596 0.6294
0.388 0.5851 8000 0.6784 0.5679
0.3687 0.6582 9000 0.7597 0.5916
0.374 0.7314 10000 0.6482 0.5023
0.3576 0.8045 11000 0.6486 0.5572
0.3621 0.8776 12000 0.5482 0.4869
0.363 0.9508 13000 0.6543 0.5082
0.3549 1.0239 14000 0.5477 0.4849
0.342 1.0971 15000 0.5505 0.5079
0.3296 1.1702 16000 0.5701 0.5211
0.3363 1.2433 17000 0.5565 0.5281
0.3265 1.3165 18000 0.6660 0.5794
0.327 1.3896 19000 0.5414 0.4854
0.3319 1.4627 20000 0.5677 0.5181
0.3273 1.5359 21000 0.5482 0.4901
0.3209 1.6090 22000 0.5475 0.5019
0.3153 1.6821 23000 0.5278 0.4723
0.3214 1.7553 24000 0.5232 0.4809
0.3227 1.8284 25000 0.5419 0.4950
0.306 1.9016 26000 0.5120 0.4653
0.2956 1.9747 27000 0.5043 0.4790
0.2875 2.0478 28000 0.5111 0.4592
0.3158 2.1210 29000 0.4959 0.4582
0.2906 2.1941 30000 0.4857 0.4577
0.2985 2.2672 31000 0.4897 0.4625
0.2877 2.3404 32000 0.4869 0.4667
0.2832 2.4135 33000 0.4877 0.4541
0.2815 2.4867 34000 0.4869 0.4598
0.28 2.5598 35000 0.4935 0.4624
0.2904 2.6329 36000 0.4859 0.4540
0.2767 2.7061 37000 0.4879 0.4550
0.2801 2.7792 38000 0.4855 0.4536
0.2711 2.8523 39000 0.5059 0.4674
0.2652 2.9255 40000 0.4715 0.4512
0.276 2.9986 41000 0.4804 0.4568
0.2556 3.0717 42000 0.4869 0.4572
0.275 3.1449 43000 0.4761 0.4536
0.2615 3.2180 44000 0.4848 0.4679
0.264 3.2912 45000 0.4722 0.4518
0.2554 3.3643 46000 0.4747 0.4551
0.2632 3.4374 47000 0.4695 0.4507
0.2565 3.5106 48000 0.4761 0.4506
0.2555 3.5837 49000 0.4802 0.4619
0.2397 3.6568 50000 0.4687 0.4497
0.2599 3.7300 51000 0.4684 0.4506
0.2451 3.8031 52000 0.4678 0.4504
0.2623 3.8763 53000 0.4642 0.4461
0.2475 3.9494 54000 0.4649 0.4449

Framework versions

  • Transformers 4.54.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0