CCIP

CCIP(Contrastive Anime Character Image Pre-Training) is a model to calculuate the visual similarity between anime characters in two images. (limited to images containing only a single anime character). More similar the characters between two images are, higher score it should have.

Usage

Using CCIP with imgutils

Calculuate character similarity between images:

from imgutils.metrics import ccip_batch_differences

ccip_batch_differences(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg', 'ccip/7.jpg'])
array([[6.5350548e-08, 1.6583106e-01, 4.2947042e-01, 4.0375218e-01],
       [1.6583106e-01, 9.8025822e-08, 4.3715334e-01, 4.0748104e-01],
       [4.2947042e-01, 4.3715334e-01, 3.2675274e-08, 3.9229470e-01],
       [4.0375218e-01, 4.0748104e-01, 3.9229470e-01, 6.5350548e-08]],
      dtype=float32)

More detailed instruction

Performence

Model F1 Score Precision Recall Threshold Cluster_2 Cluster_Free
ccip-caformer_b36-24 0.940925 0.938254 0.943612 0.213231 0.89508 0.957017
ccip-caformer-24-randaug-pruned 0.917211 0.933481 0.901499 0.178475 0.890366 0.922375
ccip-v2-caformer_s36-10 0.906422 0.932779 0.881513 0.207757 0.874592 0.89241
ccip-caformer-6-randaug-pruned_fp32 0.878403 0.893648 0.863669 0.195122 0.810176 0.897904
ccip-caformer-5_fp32 0.864363 0.90155 0.830121 0.183973 0.792051 0.862289
ccip-caformer-4_fp32 0.844967 0.870553 0.820842 0.18367 0.795565 0.868133
ccip-caformer_query-12 0.823928 0.871122 0.781585 0.141308 0.787237 0.809426
ccip-caformer-23_randaug_fp32 0.81625 0.854134 0.781585 0.136797 0.745697 0.8068
ccip-caformer-2-randaug-pruned_fp32 0.78561 0.800148 0.771592 0.171053 0.686617 0.728195
ccip-caformer-2_fp32 0.755125 0.790172 0.723055 0.141275 0.64977 0.718516
  • The calculation of F1 Score, Precision, and Recall considers "the characters in both images are the same" as a positive case. Threshold is determined by finding the maximum value on the F1 Score curve.
  • Cluster_2 represents the approximate optimal clustering solution obtained by tuning the eps value in DBSCAN clustering algorithm with min_samples set to 2, and evaluating the similarity between the obtained clusters and the true distribution using the random_adjust_score.
  • Cluster_Free represents the approximate optimal solution obtained by tuning the max_eps and min_samples values in the OPTICS clustering algorithm, and evaluating the similarity between the obtained clusters and the true distribution using the random_adjust_score.

operations benchmark

Citation

@misc{CCIP,
  title={Contrastive Anime Character Image Pre-Training},
  author={Ziyi Dong and narugo1992},
  year={2024},
  howpublished={\url{https://huggingface.co/deepghs/ccip}}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support zero-shot-image-classification models for dghs-imgutils library.

Model tree for deepghs/ccip

Quantizations
1 model

Datasets used to train deepghs/ccip