|
|
|
import os |
|
import csv |
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.data import Dataset, DataLoader |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
get_linear_schedule_with_warmup |
|
) |
|
from peft import PeftModel |
|
from torch.cuda.amp import autocast, GradScaler |
|
from tqdm.auto import tqdm |
|
from multiprocessing import freeze_support |
|
|
|
class TripletDataset(Dataset): |
|
def __init__(self, path): |
|
self.samples = [] |
|
with open(path, newline="") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
a_ids = torch.tensor(list(map(int, row["a_ids"].split())), dtype=torch.long) |
|
a_mask = torch.tensor(list(map(int, row["a_mask"].split())), dtype=torch.long) |
|
p_ids = torch.tensor(list(map(int, row["p_ids"].split())), dtype=torch.long) |
|
p_mask = torch.tensor(list(map(int, row["p_mask"].split())), dtype=torch.long) |
|
n_ids = torch.tensor(list(map(int, row["n_ids"].split())), dtype=torch.long) |
|
n_mask = torch.tensor(list(map(int, row["n_mask"].split())), dtype=torch.long) |
|
self.samples.append((a_ids, a_mask, p_ids, p_mask, n_ids, n_mask)) |
|
|
|
def __len__(self): |
|
return len(self.samples) |
|
|
|
def __getitem__(self, idx): |
|
return self.samples[idx] |
|
|
|
class GemmaTripletModel(nn.Module): |
|
def __init__(self, peft_model): |
|
super().__init__() |
|
self.peft = peft_model |
|
H = peft_model.config.hidden_size |
|
self.proj = nn.Sequential( |
|
nn.Linear(H, 512), |
|
nn.ReLU(), |
|
nn.Linear(512, 256), |
|
) |
|
|
|
def forward(self, ids, mask): |
|
out = self.peft.base_model( |
|
input_ids=ids, |
|
attention_mask=mask, |
|
output_hidden_states=True, |
|
return_dict=True |
|
) |
|
last = out.hidden_states[-1] |
|
pooled = last.mean(dim=1) |
|
z = self.proj(pooled) |
|
norm = z.norm(p=2, dim=1, keepdim=True).clamp_min(1e-6) |
|
return z / norm |
|
|
|
def collate_fn(batch): |
|
return tuple(torch.stack(x) for x in zip(*batch)) |
|
|
|
def main(): |
|
|
|
MODEL_NAME = "google/gemma-3-1b-pt" |
|
STAGE1_DIR = "stage1_simcse/final" |
|
TRAIN_FILE = "train.csv" |
|
VAL_FILE = "val.csv" |
|
BATCH_SIZE = 12 |
|
LR = 1e-5 |
|
WEIGHT_DECAY = 0.01 |
|
NUM_EPOCHS = 3 |
|
MARGIN = 0.2 |
|
OUTPUT_DIR = "phase2_triplet_amp" |
|
SEED = 42 |
|
|
|
os.makedirs(OUTPUT_DIR, exist_ok=True) |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
torch.manual_seed(SEED) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) |
|
base = AutoModelForCausalLM.from_pretrained(MODEL_NAME, attn_implementation="eager") |
|
peft_model = PeftModel.from_pretrained(base, STAGE1_DIR) |
|
|
|
|
|
model = GemmaTripletModel(peft_model).to(device) |
|
|
|
|
|
train_ds = TripletDataset(TRAIN_FILE) |
|
val_ds = TripletDataset(VAL_FILE) |
|
train_loader = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn) |
|
val_loader = DataLoader(val_ds, batch_size=BATCH_SIZE, shuffle=False, collate_fn=collate_fn) |
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=LR, weight_decay=WEIGHT_DECAY) |
|
total_steps = len(train_loader) * NUM_EPOCHS |
|
scheduler = get_linear_schedule_with_warmup( |
|
optimizer, |
|
num_warmup_steps=int(0.1 * total_steps), |
|
num_training_steps=total_steps |
|
) |
|
scaler = GradScaler() |
|
|
|
|
|
triplet_loss = nn.TripletMarginLoss(margin=MARGIN, p=2) |
|
|
|
|
|
for epoch in range(1, NUM_EPOCHS + 1): |
|
model.train() |
|
running_loss = 0.0 |
|
for a_ids, a_mask, p_ids, p_mask, n_ids, n_mask in tqdm(train_loader, desc=f"Train {epoch}", unit="batch"): |
|
a_ids, a_mask = a_ids.to(device), a_mask.to(device) |
|
p_ids, p_mask = p_ids.to(device), p_mask.to(device) |
|
n_ids, n_mask = n_ids.to(device), n_mask.to(device) |
|
|
|
optimizer.zero_grad() |
|
with autocast(): |
|
emb_a = model(a_ids, a_mask) |
|
emb_p = model(p_ids, p_mask) |
|
emb_n = model(n_ids, n_mask) |
|
loss = triplet_loss(emb_a, emb_p, emb_n) |
|
|
|
scaler.scale(loss).backward() |
|
scaler.step(optimizer) |
|
scaler.update() |
|
scheduler.step() |
|
running_loss += loss.item() |
|
|
|
print(f"Epoch {epoch} Train Loss: {running_loss/len(train_loader):.6f}") |
|
|
|
|
|
model.eval() |
|
val_loss = 0.0 |
|
with torch.no_grad(): |
|
for a_ids, a_mask, p_ids, p_mask, n_ids, n_mask in tqdm(val_loader, desc=f"Val {epoch}", unit="batch"): |
|
a_ids, a_mask = a_ids.to(device), a_mask.to(device) |
|
p_ids, p_mask = p_ids.to(device), p_mask.to(device) |
|
n_ids, n_mask = n_ids.to(device), n_mask.to(device) |
|
with autocast(): |
|
emb_a = model(a_ids, a_mask) |
|
emb_p = model(p_ids, p_mask) |
|
emb_n = model(n_ids, n_mask) |
|
val_loss += triplet_loss(emb_a, emb_p, emb_n).item() |
|
|
|
print(f"Epoch {epoch} Val Loss: {val_loss/len(val_loader):.6f}") |
|
|
|
|
|
ckpt_dir = os.path.join(OUTPUT_DIR, f"epoch{epoch}") |
|
peft_model.save_pretrained(ckpt_dir) |
|
tokenizer.save_pretrained(ckpt_dir) |
|
|
|
|
|
final_dir = os.path.join(OUTPUT_DIR, "final") |
|
os.makedirs(final_dir, exist_ok=True) |
|
peft_model.save_pretrained(final_dir) |
|
tokenizer.save_pretrained(final_dir) |
|
print("Phase 2 complete. Checkpoints in", OUTPUT_DIR) |
|
|
|
if __name__ == "__main__": |
|
freeze_support() |
|
main() |
|
|