t5-base-squad-qag-c

This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
15.4767 0.5714 1 18.0250
20.3032 1.5714 2 15.4582
18.4399 2.5714 3 13.1504
17.1036 3.5714 4 11.2818
15.6848 4.5714 5 9.9161
13.6358 5.5714 6 8.8008
11.9557 6.5714 7 7.8137
11.0088 7.5714 8 6.8813
9.0408 8.5714 9 6.0711
7.8859 9.5714 10 5.3071
6.9191 10.5714 11 4.8648
6.0631 11.5714 12 4.8851
4.7754 12.5714 13 4.9477
4.1728 13.5714 14 4.9322
3.5864 14.5714 15 4.5304
2.9632 15.5714 16 3.4513
2.7396 16.5714 17 2.1034
2.3785 17.5714 18 1.1440
2.193 18.5714 19 0.6816
2.1194 19.5714 20 0.5207
1.8983 20.5714 21 0.4698
1.8579 21.5714 22 0.4504
1.7537 22.5714 23 0.4418
1.6646 23.5714 24 0.4355
1.5684 24.5714 25 0.4285
1.5147 25.5714 26 0.4223
1.3791 26.5714 27 0.4167
1.2843 27.5714 28 0.4123
1.2089 28.5714 29 0.4094
1.1636 29.5714 30 0.4085
1.0997 30.5714 31 0.4075
1.0206 31.5714 32 0.4064
0.9747 32.5714 33 0.4038
0.9332 33.5714 34 0.4009
0.9319 34.5714 35 0.3970
0.8823 35.5714 36 0.3917
0.8401 36.5714 37 0.3856
0.8527 37.5714 38 0.3770
0.7512 38.5714 39 0.3655
0.797 39.5714 40 0.3536
0.765 40.5714 41 0.3407
0.7556 41.5714 42 0.3280
0.7198 42.5714 43 0.3157
0.7115 43.5714 44 0.3064
0.7074 44.5714 45 0.2981
0.639 45.5714 46 0.2905
0.6821 46.5714 47 0.2846
0.6098 47.5714 48 0.2789
0.6467 48.5714 49 0.2736
0.6593 49.5714 50 0.2677
0.5884 50.5714 51 0.2619
0.6107 51.5714 52 0.2562
0.6082 52.5714 53 0.2512
0.5592 53.5714 54 0.2470
0.6085 54.5714 55 0.2429
0.5684 55.5714 56 0.2396
0.5467 56.5714 57 0.2360
0.5505 57.5714 58 0.2335
0.5196 58.5714 59 0.2307
0.5306 59.5714 60 0.2280
0.5087 60.5714 61 0.2253
0.5083 61.5714 62 0.2229
0.5099 62.5714 63 0.2208
0.4928 63.5714 64 0.2186
0.4974 64.5714 65 0.2166
0.4766 65.5714 66 0.2144
0.4764 66.5714 67 0.2119
0.4599 67.5714 68 0.2091
0.496 68.5714 69 0.2066
0.3969 69.5714 70 0.2042
0.4769 70.5714 71 0.2018
0.4399 71.5714 72 0.1997
0.4417 72.5714 73 0.1977
0.4203 73.5714 74 0.1958
0.4459 74.5714 75 0.1942
0.3907 75.5714 76 0.1927
0.4548 76.5714 77 0.1917
0.3993 77.5714 78 0.1908
0.439 78.5714 79 0.1901
0.4249 79.5714 80 0.1893
0.4237 80.5714 81 0.1886
0.4178 81.5714 82 0.1881
0.4076 82.5714 83 0.1876
0.4216 83.5714 84 0.1870
0.3817 84.5714 85 0.1864
0.3956 85.5714 86 0.1861
0.4046 86.5714 87 0.1858
0.3896 87.5714 88 0.1855
0.3933 88.5714 89 0.1854
0.4152 89.5714 90 0.1852
0.3682 90.5714 91 0.1850
0.4242 91.5714 92 0.1848
0.3866 92.5714 93 0.1847
0.3844 93.5714 94 0.1846
0.3922 94.5714 95 0.1845
0.3621 95.5714 96 0.1844
0.3854 96.5714 97 0.1843
0.3991 97.5714 98 0.1842
0.3591 98.5714 99 0.1841
0.3664 99.5714 100 0.1841

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for devagonal/t5-base-squad-qag-c

Base model

google-t5/t5-base
Finetuned
(484)
this model