emotion_classification

This model is a fine-tuned version of google/paligemma-3b-pt-224 on the FastJobs/Visual_Emotional_Analysis dataset.

Training Data

This model was trained on the FastJobs/Visual_Emotional_Analysis dataset.

The dataset contains:

  • 800 images annotated with 8 emotion labels:
    • Anger
    • Contempt
    • Disgust
    • Fear
    • Happy
    • Neutral
    • Sad
    • Surprise

Intended uses & limitations

Intended Uses

  • Emotion classification from visual inputs (images).

Limitations

  • May reflect biases from the training dataset.
  • Performance may degrade in domains outside the training data.
  • Not suitable for critical or sensitive decision-making tasks.

How to use this model

from transformers import (PaliGemmaProcessor,PaliGemmaForConditionalGeneration,)
from transformers.image_utils import load_image
import torch
from transformers import BitsAndBytesConfig
from peft import get_peft_model
from huggingface_hub import login
from PIL import Image
login(api_key)

device = "cuda" if torch.cuda.is_available() else "CPU"

bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_type=torch.bfloat16
)

# Load base model
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto")
processor = PaliGemmaProcessor.from_pretrained(model_id)

# Load adapter
adapter_path = "digo-prayudha/emotion_classification" 
model = PeftModel.from_pretrained(model, adapter_path)

image = Image.open("image.jpg").convert("RGB")

prompt = (
    "Classify the emotion expressed in this image."
)

inputs = processor(
    text=prompt,
    images=image,
    return_tensors="pt",
    padding="longest",
    tokenize_newline_separately=False
).to(model.device)

model.eval() 
with torch.no_grad():
    outputs = model.generate(**inputs)

decoded_output = processor.decode(outputs[0], skip_special_tokens=True)

print("Predicted Emotion:", decoded_output)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 5

Training results

Step Validation Loss
100 2.684700
200 1.282700
300 1.085600
400 0.984500
500 0.861300
600 0.822900
700 0.807100
800 0.753300

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
15
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for digo-prayudha/emotion_classification

Adapter
(169)
this model

Dataset used to train digo-prayudha/emotion_classification