digo-prayudha commited on
Commit
4e80ea4
·
verified ·
1 Parent(s): 23e55e9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -10
README.md CHANGED
@@ -6,6 +6,7 @@ tags:
6
  - generated_from_trainer
7
  datasets:
8
  - imagefolder
 
9
  model-index:
10
  - name: emotion_classification
11
  results: []
@@ -16,19 +17,69 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # emotion_classification
18
 
19
- This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the imagefolder dataset.
20
 
21
- ## Model description
22
-
23
- More information needed
24
 
25
  ## Intended uses & limitations
26
 
27
- More information needed
28
-
29
- ## Training and evaluation data
30
-
31
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  ## Training procedure
34
 
@@ -47,7 +98,16 @@ The following hyperparameters were used during training:
47
  - num_epochs: 5
48
 
49
  ### Training results
50
-
 
 
 
 
 
 
 
 
 
51
 
52
 
53
  ### Framework versions
 
6
  - generated_from_trainer
7
  datasets:
8
  - imagefolder
9
+ - FastJobs/Visual_Emotional_Analysis
10
  model-index:
11
  - name: emotion_classification
12
  results: []
 
17
 
18
  # emotion_classification
19
 
20
+ This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset.
21
 
 
 
 
22
 
23
  ## Intended uses & limitations
24
 
25
+ ### Intended Uses
26
+ - Emotion classification from visual inputs (images).
27
+
28
+ ### Limitations
29
+ - May reflect biases from the training dataset.
30
+ - Performance may degrade in domains outside the training data.
31
+ - Not suitable for critical or sensitive decision-making tasks.
32
+
33
+ ## How to use this model
34
+ ```python
35
+ from transformers import (PaliGemmaProcessor,PaliGemmaForConditionalGeneration,)
36
+ from transformers.image_utils import load_image
37
+ import torch
38
+ from transformers import BitsAndBytesConfig
39
+ from peft import get_peft_model
40
+ from huggingface_hub import login
41
+ from PIL import Image
42
+ login(api_key)
43
+
44
+ device = "cuda" if torch.cuda.is_available() else "CPU"
45
+
46
+ bnb_config = BitsAndBytesConfig(
47
+ load_in_4bit=True,
48
+ bnb_4bit_quant_type="nf4",
49
+ bnb_4bit_compute_type=torch.bfloat16
50
+ )
51
+
52
+ # Load base model
53
+ model_id = "google/paligemma-3b-pt-224"
54
+ model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto")
55
+ processor = PaliGemmaProcessor.from_pretrained(model_id)
56
+
57
+ # Load adapter
58
+ adapter_path = "digo-prayudha/emotion_classification"
59
+ model = PeftModel.from_pretrained(model, adapter_path)
60
+
61
+ image = Image.open("image.jpg").convert("RGB")
62
+
63
+ prompt = (
64
+ "Classify the emotion expressed in this image."
65
+ )
66
+
67
+ inputs = processor(
68
+ text=prompt,
69
+ images=image,
70
+ return_tensors="pt",
71
+ padding="longest",
72
+ tokenize_newline_separately=False
73
+ ).to(model.device)
74
+
75
+ model.eval()
76
+ with torch.no_grad():
77
+ outputs = model.generate(**inputs)
78
+
79
+ decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
80
+
81
+ print("Predicted Emotion:", decoded_output)
82
+ ```
83
 
84
  ## Training procedure
85
 
 
98
  - num_epochs: 5
99
 
100
  ### Training results
101
+ | Step | Validation Loss |
102
+ |:----:|:---------------:|
103
+ | 100 | 2.684700 |
104
+ | 200 | 1.282700 |
105
+ | 300 | 1.085600 |
106
+ | 400 | 0.984500 |
107
+ | 500 | 0.861300 |
108
+ | 600 | 0.822900 |
109
+ | 700 | 0.807100 |
110
+ | 800 | 0.753300 |
111
 
112
 
113
  ### Framework versions