whisper-tiny-en / README.md
dlantonia's picture
End of training
922e0a7 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: Whisper tiny en - dlantonia
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 22.64957264957265

Whisper tiny en - dlantonia

This model is a fine-tuned version of openai/whisper-small on the minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6625
  • Wer Ortho: 22.5602
  • Wer: 22.6496

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0012 17.8571 500 0.6625 22.5602 22.6496

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1