tst_fine-tuning-lilt

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 1.2131
  • eval_ANSWER: {'precision': 0.8539976825028969, 'recall': 0.9020807833537332, 'f1': 0.8773809523809523, 'number': 817}
  • eval_HEADER: {'precision': 0.6666666666666666, 'recall': 0.47058823529411764, 'f1': 0.5517241379310345, 'number': 119}
  • eval_QUESTION: {'precision': 0.8663239074550129, 'recall': 0.9387186629526463, 'f1': 0.9010695187165776, 'number': 1077}
  • eval_overall_precision: 0.8534
  • eval_overall_recall: 0.8962
  • eval_overall_f1: 0.8742
  • eval_overall_accuracy: 0.8048
  • eval_runtime: 1.2663
  • eval_samples_per_second: 39.484
  • eval_steps_per_second: 5.528
  • step: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
91
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for doc2txt/tst_fine-tuning-lilt

Finetuned
(48)
this model