File size: 10,262 Bytes
6f99c6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import json
import onnxruntime as rt
import transformers
from qdrant_client import QdrantClient, models
import queue
from threading import Thread, Lock
import time
from pyatomix import AtomicInt
# adjust these settings as needed
TOKENIZER_PATH = "."
ORIG_MODEL_PATH = "model_uint8.onnx"
ORIG_DATATYPE = models.Datatype.FLOAT32
ORIG_COLLECTION_NAME = "baseline"
COMPARE_MODEL_PATH = "snowflake2_m_uint8.onnx"
COMPARE_DATATYPE = models.Datatype.UINT8
COMPARE_COLLECTION_NAME = "compare"
EMBEDDING_DIM = 768 # size of the model output
STAT_RANGES = [
10,
20,
50,
] # stats will be calculated for each range: top 10, top 20, etc.
STATS = {}
STAT_LOCK = Lock()
BATCH_SIZE = 1000 # this many token/id pairs will be processed at a time
THREADS = 8 # number of threads to use
# Qdrant client settings here
CLIENT_URL = "http://127.0.0.1"
CLIENT_PORT = 6333
CLIENT_GRPC_PORT = 6334
CLIENT_USE_GRPC = True
FINISHED = AtomicInt(0)
def collect_tokens() -> list[str] | None:
print("Attempting to grab tokens from tokenizer...")
with open(f"{TOKENIZER_PATH}/tokenizer.json", "r") as f:
t = f.read()
j = json.loads(t)
v = j["model"]["vocab"]
toks = [x[0] for x in v]
print(f"Found {len(toks)} tokens.")
return toks
def init_worker(q: queue.Queue, model_path: str, collection_name: str):
try:
session = rt.InferenceSession(model_path, providers=["CPUExecutionProvider"])
except Exception as e:
print(f"Error loading ONNX model: {e}")
return
tokenizer = transformers.AutoTokenizer.from_pretrained(TOKENIZER_PATH)
client = QdrantClient(
url=CLIENT_URL,
port=CLIENT_PORT,
grpc_port=CLIENT_GRPC_PORT,
prefer_grpc=CLIENT_USE_GRPC,
)
global FINISHED
while True:
try:
chunk = q.get(False)
except queue.Empty:
return
batch = []
for c in chunk:
FINISHED += 1
# c[0] == id, c[1] == token, we want id to always be associated with the same token across models
enc = tokenizer(c[1]) # this could've been batched...
embeddings = session.run(
None,
{
"input_ids": [enc.input_ids],
"attention_mask": [enc.attention_mask],
},
)
batch.append( # [1][0] == sentence_embedding
models.PointStruct(id=c[0], vector={"dense": embeddings[1][0]})
)
client.batch_update_points(
collection_name=collection_name,
update_operations=[models.UpsertOperation(upsert=models.PointsList(points=batch))],
wait=False,
)
def init_collection(collection_name: str, model_path: str, datatype: models.Datatype) -> bool:
client = QdrantClient(
url=CLIENT_URL,
port=CLIENT_PORT,
grpc_port=CLIENT_GRPC_PORT,
prefer_grpc=CLIENT_USE_GRPC,
)
if client.collection_exists(collection_name):
info = client.get_collection(collection_name)
print(f"Collection '{collection_name}' already exists, skipping init.")
print(f"{info.points_count} points in collection.")
return True
res = client.create_collection(
collection_name=collection_name,
vectors_config={
"dense": models.VectorParams(
size=EMBEDDING_DIM,
distance=models.Distance.COSINE,
on_disk=False,
datatype=datatype,
),
},
hnsw_config=models.HnswConfigDiff(m=0), # no index
on_disk_payload=False,
)
if not res:
print(f"Error creating collection.")
return False
else:
print("Collection created.")
toks = collect_tokens()
FINISHED.store(0)
if toks:
ids = [x for x in range(len(toks))]
# align Qdrant IDs with the token for later analysis
pairs = list(zip(ids, toks))
# lists of (Qdrant ID, token)
chunks = [pairs[i : i + BATCH_SIZE] for i in range(0, len(pairs), BATCH_SIZE)]
q = queue.Queue()
for c in chunks:
q.put(c)
for _ in range(THREADS):
t = Thread(target=init_worker, args=[q, model_path, collection_name])
t.start()
count = 0
while FINISHED.load() < len(toks):
time.sleep(0.5)
count += 1
if count == 20: # update every 10 seconds or so
print(f"approximately {q.qsize() * BATCH_SIZE} items left in queue...")
count = 0
print(f"Done with collection init, {len(toks)} tokens upserted.")
# enable indexing
client.update_collection(collection_name=collection_name, hnsw_config=models.HnswConfigDiff(m=16))
return True
else:
print("Failed to grab tokens from tokenizer.")
return False
def count_mismatches(list1, list2) -> int:
count = 0
assert len(list1) == len(list2)
for i in range(len(list1)):
if list1[i] != list2[i]:
count += 1
return count
def score_results(
list1: list,
list2: list,
):
assert len(list1) == len(list2)
global STATS
for x in STAT_RANGES:
with STAT_LOCK:
# STATS = { range, {"exact": AtomicInt, ... }}
d = STATS.get(x)
if d is None:
d = {
"exact": AtomicInt(0),
"off_by_1": AtomicInt(0),
"off_by_2": AtomicInt(0),
"off_by_3": AtomicInt(0),
"off_by_4": AtomicInt(0),
"off_by_5": AtomicInt(0),
"missing": AtomicInt(0),
}
STATS[x] = d
for i in range(x):
if list1[i] == list2[i]:
d["exact"] += 1
else:
if list1[i] in list2:
i2 = list2.index(list1[i])
val = abs(i2 - i)
if val == 1:
d["off_by_1"] += 1
elif val == 2:
d["off_by_2"] += 1
elif val == 3:
d["off_by_3"] += 1
elif val == 4:
d["off_by_4"] += 1
else:
d["off_by_5"] += 1
else:
d["missing"] += 1
def main_worker(q: queue.Queue, limit: int):
global FINISHED
tokenizer = transformers.AutoTokenizer.from_pretrained(TOKENIZER_PATH)
orig_session = rt.InferenceSession(ORIG_MODEL_PATH, providers=["CPUExecutionProvider"])
compare_session = rt.InferenceSession(COMPARE_MODEL_PATH, providers=["CPUExecutionProvider"])
client = QdrantClient(
url=CLIENT_URL,
port=CLIENT_PORT,
grpc_port=CLIENT_GRPC_PORT,
prefer_grpc=CLIENT_USE_GRPC,
)
while True:
try:
chunk = q.get(False)
except queue.Empty:
return
# c[0] == id, c[1] == token, we want id to always be associated with the same token across models
for c in chunk:
enc = tokenizer(c)
oe = orig_session.run(
None,
{"input_ids": [enc.input_ids], "attention_mask": [enc.attention_mask]},
)
ce = compare_session.run(
None,
{"input_ids": [enc.input_ids], "attention_mask": [enc.attention_mask]},
)
oresult = client.query_points(
collection_name=ORIG_COLLECTION_NAME,
using="dense",
query=oe[1][0],
limit=limit + 5, # for our scoring metric we want to look slightly past the end
)
cresult = client.query_points(
collection_name=COMPARE_COLLECTION_NAME,
using="dense",
query=ce[1][0],
limit=limit + 5,
)
oids = [p.id for p in oresult.points]
cids = [p.id for p in cresult.points]
score_results(
oids,
cids,
)
FINISHED += 1
def main():
if not init_collection(ORIG_COLLECTION_NAME, ORIG_MODEL_PATH, ORIG_DATATYPE):
print("Failed to initialize original model values, exiting.")
return
if not init_collection(COMPARE_COLLECTION_NAME, COMPARE_MODEL_PATH, COMPARE_DATATYPE):
print("Failed to initialize secondary model values, exiting.")
return
toks = collect_tokens()
limit = 0
for x in STAT_RANGES:
if x > limit:
limit = x
FINISHED.store(0)
if toks:
chunks = [toks[i : i + BATCH_SIZE] for i in range(0, len(toks), BATCH_SIZE)]
q = queue.Queue()
for c in chunks:
q.put(c)
print("Starting analysis.")
for _ in range(THREADS):
t = Thread(
target=main_worker,
args=[q, limit],
)
t.start()
count = 0
while FINISHED.load() < len(toks):
time.sleep(0.5)
count += 1
if count == 20: # update every 10 seconds or so
print(f"approximately {q.qsize() * BATCH_SIZE} items left in queue...")
count = 0
print(f"Done with analysis.")
with STAT_LOCK:
for k, v in STATS.items():
print(f"Stats for top {k} query results across entire token range:")
print(f"exact : {(float(v["exact"].load()) / (len(toks) * k)) * 100:.2f}%")
print(f"off by 1 : {(float(v["off_by_1"].load()) / (len(toks) * k)) * 100:.2f}%")
print(f"off by 2 : {(float(v["off_by_2"].load()) / (len(toks) * k)) * 100:.2f}%")
print(f"off by 3 : {(float(v["off_by_3"].load()) / (len(toks) * k)) * 100:.2f}%")
print(f"off by 4 : {(float(v["off_by_4"].load()) / (len(toks) * k)) * 100:.2f}%")
print(f"off by 5+: {(float(v["off_by_5"].load()) / (len(toks) * k)) * 100:.2f}%")
print(f"missing : {(float(v["missing"].load()) / (len(toks) * k)) * 100:.2f}%\n")
main()
|