In this project - notebook, I utilized LoRA (Low-Rank Adaptation) to fine-tune DistilGPT2, a foundation model, for a sequence classification task using the SST-2 dataset from the GLUE benchmark. The following steps were performed to implement and adapt the model efficiently:

1.1.Model and Tokenizer Setup:

I started by loading DistilGPT2, a compact variant of GPT-2, using the Hugging Face AutoModelForSequenceClassification class. This base model was configured for a binary classification task with two labels: positive and negative.

I also loaded the corresponding DistilGPT2 tokenizer, ensuring proper tokenization and padding, especially since GPT-2 models typically do not have a padding token by default.

1.2. Dataset: SST-2 from GLUE Benchmark:

The Stanford Sentiment Treebank (SST-2) dataset from the GLUE benchmark was used for training and evaluation. SST-2 is a sentiment classification dataset consisting of movie reviews, where each review is labeled as either positive (1) or negative (0). Given that the dataset exhibited a slight imbalance between the number of positive and negative samples, additional steps were taken to mitigate this imbalance. In essence , I used the F2 score that gives more relevance to false negatives. The next articles were crucial to handle imbalance classes.

https://machinelearningmastery.com/types-of-classification-in-machine-learning/ https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/ https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/

1.3 Applying LoRA for Parameter-Efficient Fine-Tuning:

To efficiently fine-tune the model with minimal trainable parameters, I applied LoRA using the PEFT (Parameter-Efficient Fine-Tuning) library. LoRA was specifically applied to the attention layers of the base model, introducing low-rank adaptations that allow the model to be fine-tuned without updating all of its parameters. This reduces the memory and computational requirements compared to traditional fine-tuning.

1.4 Training the LoRA-Adapted Model:

I used Hugging Face’s Trainer API to fine-tune the LoRA-enhanced DistilGPT2 model on the SST-2 dataset. The training loop was configured to evaluate F2 Score at each epoch, and I ensured efficient memory usage by utilizing GPU acceleration when available.

1.5 Evaluation and Saving the Fine-Tuned Model:

After training, I evaluated the model’s performance on the validation set, focusing on F2-score to measure how well the model handled false negatives. Finally, I saved the fine-tuned LoRA model using the PeftModel.save_pretrained() method, making it available for further inference or fine-tuning tasks.

  • PEFT 0.5.0
Downloads last month
28
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support text-classification models for peft library.

Model tree for etechoptimist/polarityclassifier-distilgpt2-lora

Adapter
(21)
this model