t5-gpt_par_bert_large_uncased_finetuned_v2

This model is a fine-tuned version of bert-large-uncased on the None dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.0019
  • eval_f1_micro: 0.9984
  • eval_roc_auc_micro: 1.0000
  • eval_accuracy: 0.9967
  • eval_precision_micro: 0.9990
  • eval_recall_micro: 0.9978
  • eval_f1_macro: 0.9985
  • eval_roc_auc_macro: 1.0000
  • eval_accuracy1: 0.9967
  • eval_precision_macro: 0.9992
  • eval_recall_macro: 0.9978
  • eval_pr_auc_micro: 1.0000
  • eval_pr_auc_macro: 1.0000
  • eval_runtime: 57.9074
  • eval_samples_per_second: 41.929
  • eval_steps_per_second: 5.25
  • epoch: 3.4250
  • step: 4158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
47
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for etham13/t5-gpt_par_bert_large_uncased_finetuned_v2

Finetuned
(125)
this model