SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ethan-ky/bge-base-financial-matryoshka")
# Run inference
sentences = [
"North America's total net revenues for the fiscal year ended October 1, 2023, were $26,569.6 million.",
'What was the total net revenue for North America in fiscal 2023?',
'What are the consequences of impermissible use or disclosure of PHI according to the HITECH Act?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6171 |
cosine_accuracy@3 | 0.7457 |
cosine_accuracy@5 | 0.8114 |
cosine_accuracy@10 | 0.8586 |
cosine_precision@1 | 0.6171 |
cosine_precision@3 | 0.2486 |
cosine_precision@5 | 0.1623 |
cosine_precision@10 | 0.0859 |
cosine_recall@1 | 0.6171 |
cosine_recall@3 | 0.7457 |
cosine_recall@5 | 0.8114 |
cosine_recall@10 | 0.8586 |
cosine_ndcg@10 | 0.7357 |
cosine_mrr@10 | 0.6965 |
cosine_map@100 | 0.7016 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6214 |
cosine_accuracy@3 | 0.74 |
cosine_accuracy@5 | 0.8 |
cosine_accuracy@10 | 0.8643 |
cosine_precision@1 | 0.6214 |
cosine_precision@3 | 0.2467 |
cosine_precision@5 | 0.16 |
cosine_precision@10 | 0.0864 |
cosine_recall@1 | 0.6214 |
cosine_recall@3 | 0.74 |
cosine_recall@5 | 0.8 |
cosine_recall@10 | 0.8643 |
cosine_ndcg@10 | 0.7382 |
cosine_mrr@10 | 0.6983 |
cosine_map@100 | 0.7028 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6 |
cosine_accuracy@3 | 0.7271 |
cosine_accuracy@5 | 0.7929 |
cosine_accuracy@10 | 0.8443 |
cosine_precision@1 | 0.6 |
cosine_precision@3 | 0.2424 |
cosine_precision@5 | 0.1586 |
cosine_precision@10 | 0.0844 |
cosine_recall@1 | 0.6 |
cosine_recall@3 | 0.7271 |
cosine_recall@5 | 0.7929 |
cosine_recall@10 | 0.8443 |
cosine_ndcg@10 | 0.7182 |
cosine_mrr@10 | 0.6783 |
cosine_map@100 | 0.6836 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5729 |
cosine_accuracy@3 | 0.7014 |
cosine_accuracy@5 | 0.7557 |
cosine_accuracy@10 | 0.8157 |
cosine_precision@1 | 0.5729 |
cosine_precision@3 | 0.2338 |
cosine_precision@5 | 0.1511 |
cosine_precision@10 | 0.0816 |
cosine_recall@1 | 0.5729 |
cosine_recall@3 | 0.7014 |
cosine_recall@5 | 0.7557 |
cosine_recall@10 | 0.8157 |
cosine_ndcg@10 | 0.6915 |
cosine_mrr@10 | 0.6522 |
cosine_map@100 | 0.658 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5143 |
cosine_accuracy@3 | 0.6371 |
cosine_accuracy@5 | 0.6729 |
cosine_accuracy@10 | 0.7357 |
cosine_precision@1 | 0.5143 |
cosine_precision@3 | 0.2124 |
cosine_precision@5 | 0.1346 |
cosine_precision@10 | 0.0736 |
cosine_recall@1 | 0.5143 |
cosine_recall@3 | 0.6371 |
cosine_recall@5 | 0.6729 |
cosine_recall@10 | 0.7357 |
cosine_ndcg@10 | 0.6197 |
cosine_mrr@10 | 0.5832 |
cosine_map@100 | 0.5907 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 2 tokens
- mean: 45.35 tokens
- max: 512 tokens
- min: 2 tokens
- mean: 20.67 tokens
- max: 46 tokens
- Samples:
positive anchor Our ability to develop and operate units at the right locations and to deliver a customer-centric omni-channel experience largely determines our competitive position within the retail industry. We believe price leadership is a critical part of our business model and we continue to focus on moving our markets towards an EDLP approach. Additionally, our ability to operate food departments effectively has a significant impact on our competitive position in the markets where we operate.
What factors contribute to Walmart International's competitive position?
tax annual aggregate losses incurred in any year from U.S. hurricane events could be in excess of $3,827 million (or 6.4 percent of total Chubb shareholders’ equity at December 31, 2023).
What is the expected maximum potential loss from hurricane events for Chubb as of the end of 2023?
The 'Glossary of Terms and Acronyms’ is included on pages 315-321.
What is included on pages 315 to 321 of the document?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.3939 | - | - | - | - | - |
0.9746 | 12 | - | 0.658 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
1.6244 | 20 | 1.3574 | - | - | - | - | - |
1.9492 | 24 | - | 0.6580 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
2.4365 | 30 | 1.3485 | - | - | - | - | - |
2.9239 | 36 | - | 0.6580 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
3.2487 | 40 | 1.3606 | - | - | - | - | - |
3.8985 | 48 | - | 0.6580 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ethan-ky/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.617
- Cosine Accuracy@3 on dim 768self-reported0.746
- Cosine Accuracy@5 on dim 768self-reported0.811
- Cosine Accuracy@10 on dim 768self-reported0.859
- Cosine Precision@1 on dim 768self-reported0.617
- Cosine Precision@3 on dim 768self-reported0.249
- Cosine Precision@5 on dim 768self-reported0.162
- Cosine Precision@10 on dim 768self-reported0.086
- Cosine Recall@1 on dim 768self-reported0.617
- Cosine Recall@3 on dim 768self-reported0.746