You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Model Card for KEByT5-base (580M #params)

KEByT5: Korean-Enhanced/Enriched Byte-level Text-to-Text Transfer Transformer(T5)

크로스모달 및 다국어 친화적인 한국어 중심의 토큰-프리 언어 이해 생성 모델 (EN=Cross-modal, Multilingual Friendly, Token-free Encoder-Decoder Pretrained Language Model for Korean)

  • 본 사전학습 언어모델은 시각, 청각과 같은 텍스트 이외의 모달리티와 교차언어 지식 교환에 용이한 토큰-프리 사전학습 언어모델을 목표로 합니다.
  • 별도의 tokenizer가 필요없지만, 편의를 위해 AutoTokenizer.from_pretrained()를 사용하여 다른 토크나이저 기반 인코더-디코더 모델과 동일하게 처리할 수 있습니다. 토크나이저를 생략하고 싶은 경우, UTF-8 입력을 바이트 단위로 쪼개어, 각 바이트에 +3을 하여 Token ID를 생성합니다. (즉, ASCII value 0 == Token ID 3, ASCII value 255 == Token ID 258)
  • 현재 Preview 스테이지에 있는 모델이며, 활용에는 fine-tuning이 필요합니다.

Acknowledgements

  • 본 사전학습 언어모델은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. RS-2022-00187238, 효율적 사전학습이 가능한 한국어 대형 언어모델 사전학습 기술 개발) (EN=This pretrained language model was supported by the Institute of Information & communication Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. RS-2022-00187238, Development of Large Korean Language Model Technology for Efficient Pre-training))

Model Details

본 사전학습 언어모델은 다음과 같은 규모를 가집니다:

  • kebyt5-small : 330M link
  • kebyt5-base : 580M (this model)
  • kebyt5-large : 1.23B link

이들 모델은 google/byt5-small, google/byt5-base, google/byt5-large 모델과 동일한 신경망 구조와 크기를 가지며, 토크나이저(ByT5Tokenizer)와 구현 상 두 모델은 별도의 수정없이 바로 교환하여 사용할 수 있습니다. huggingface transformers에서의 사용법 역시, T5ForConditionalGeneration을 동일하게 사용할 수 있습니다.

Model Description

  • Developed by: Language Intelligence Research Section, Electronics and Telecommunications Research Institute(ETRI)
  • Model type: Encoder-Decoder Transformer, specifically, ByT5.
  • Language(s) (NLP): Korean, English(partially for translation task), Chinese(partially for translation task), Japanese(partially for translation task).
  • License: Apache 2.0 License
  • Finetuned from model: kebyt5-small/-base/-xl model weights were initialized by google/byt5-* for Warm-start pretraining.

Model Sources

  • Repository: 다운스트림 태스크 학습을 위해, https://github.com/etri-crossmodal/llm-downstream-s2s
  • Paper: 신종훈 외, "한국어 중심의 토큰-프리 언어 이해-생성 모델 사전학습 연구", 제35회 한글 및 한국어 정보처리 학술대회 논문집, pp.711-715. 2023. (EN=Shin et al., "Towards Korean-Centric Token-free Pretrained Language Model", in Procs. of the 35th Annual Conference on Human and Cognitive Language Technology. pp. 711-715. 2023.)

Uses

해당 사전학습 언어모델은 연구 및 교육 목적의 활용으로 그 사용 목적이 제한됩니다.

Direct Use

현재 공개되는 모델은 T5 모델 학습에 사용된 Corrupted span denoising 만으로 학습되어 있어, 실제 응용 태스크에 적용하기 위해서는 fine-tuning 과정이 필요합니다.

Sentinel Token(token id 258, 257, 256, ...)을 사용하여 Masked Token Prediction을 수행할 수 있으나, 예측된 내용에는 부적절한 내용이 있을 수 있습니다.

Downstream Use

Token-free 모델의 특성 상, 복잡하거나 Noisy한 입력에 강건하며, 짧은 시퀀스 길이의 생성에 적합합니다. (예: 언어 이해, 대화 응답 생성)

사전학습은 1024 bytes 길이의 데이터를 학습했기 때문에, 이를 초과하는 긴 시퀀스를 다루는 문제에 적합하지 않을 수 있습니다.

더 긴 시퀀스를 다뤄야 하는 문제에서는, GBST 기반의 토큰-프리 언어모델을 사용하는 것을 권장합니다.

Bias, Risks, Limitations, and Recommendations

Masked Token Prediction을 통해 획득될 수 있는 정보에는 다른 생성형 언어모델과 같은 위험을 가지고 있을 수 있습니다. 학습에 사용된 데이터는 욕설, 음란, 정치적 내용 및 기타 거친 언어들에 대한 별도의 처리가 이루어지지 않았습니다. 따라서, 사회적으로 용인되지 않은 토큰이나 텍스트를 생성할 수 있으며, 주변 문맥에 따라서 공격적인 입력에 어떠한 결과를 생성할 수 있을지 쉽게 예상할 수 없습니다.

한편, 본 언어모델은 주로 한국어 텍스트로 학습되었으며, 이들의 특성을 전이할 수 있는 다운스트림 태스크, 그 중에서도 분류, 요약, 짧은 문장 생성에 적합할 수 있습니다. 입출력 수준에서 미등록어(Out-of-Vocabulary)가 존재할 수 없으나, 사전학습되지 않은 텍스트 시퀀스에 대해서는 추가의 도메인 적응 학습 및 다운스트림 태스크의 미세조정이 필요합니다.

[More Information Needed]

How to Get Started with the Model

Transformers 4.27.0 이상의 버전에서, 다음의 파이썬 코드를 사용하여 모델과 tokenizer를 사용할 수 있습니다:

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("etri-lirs/kebyt5-small-preview")
model = AutoModelForSeq2SeqLM.from_pretrained("etri-lirs/kebyt5-small-preview")

Training Details

Training Data

본 사전학습에는 아래의 공개 데이터가 사용되었습니다:

  • 국립국어원, 모두의 말뭉치. 신문 v2.0
  • 국립국어원, 모두의 말뭉치. 구어 말뭉치 v1.2
  • 국립국어원, 모두의 말뭉치. 문어 말뭉치 v1.0
  • 국립국어원, 모두의 말뭉치. 신문 2020 v1.0
  • 국립국어원, 모두의 말뭉치. 신문 2021 v1.0
  • 한국어 위키피디어 덤프, v2020.09.20
  • 나무위키 덤프
  • 한국정보화진흥원, AIHub. 전문분야 말뭉치, 법률/특허 지식베이스, 논문/도서/대화/대본 요약, 한영/한일/한중 번역 말뭉치, 콜센터/주문/뉴스기사/시각정보 질의응답, 방송/회의/상담 음성인식 데이터.
  • 한국정보화진흥원, AIHub. 대규모 웹데이터 기반 한국어 말뭉치 데이터
  • 한국정보화진흥원, AIHub. 온라인 구어체 말뭉치 데이터.
  • KcBERT 말뭉치, v2022.3Q

또한, 소량의 자체 구축된 데이터 및 합성 데이터 일부를 사용, 전체 약 ~220GB 가량의 데이터로 학습되었습니다.

Evaluation

Testing Data, Factors & Metrics & Results

한국어 언어 이해 태스크에 사용되는 KLUE dataset, v1.1의 dev set을 사용하여 평가되었습니다. 생성은 모두 seq2seq을 이용한 출력 레이블 직접 생성 방법을 사용했습니다.

models KLUE-TC(YNAT) (F1) KLUE-NER (Entity, Char F1) KLUE-DP (UAS, LAS) KLUE-MRC (EM, ROUGE-W)
google/byt5-large (1.23B) 78.52 48.81, 63.95 44.26, 7.805 NOT TESTED
KEByT5-Base (580M) 84.99 86.75, 91.05 88.70, 85.90 62.28, 68.38
KEByT5-Large (1.23B) 85.68 88.09, 92.40 87.18, 85.52 70.07, 75.81
GBST-KEByT5-Base (584M) 85.29 87.35, 92.09 88.33, 85.00 59.69, 66.44

대화 상태 추적(DST; Dialogue State Tracking) 태스크인 KLUE-WOS-v1.1 결과는 다음과 같습니다. 평가는 모두 seq2seq을 이용한 다이얼로그 상태 직접 생성을 사용했습니다:

models WOS (JGA, %) WOS (F1, %)
klue/klue-roberta-large 50.22 92.23
KEByT5-Base (580M) 77.15 96.92
KEByT5-Large (1.23B) 78.54 97.28

관계 추출(RE; Relation Extraction) 태스크인 KLUE-RE-v1.1 결과는 다음과 같습니다. no_relation을 제외한 29개의 관계 클래스에 대한 Micro F1 결과입니다:

models KLUE-RE (F1, %)
klue/klue-roberta-base 65.90
KEByT5-Base (580M) 65.48
KEByT5-Large (1.23B) 68.95

Compute Infrastructure

  • Trained on nVidia A100 80GB * 4EA

Citation

  • 허정 외, "생성형 언어모델을 이용한 관계 추출", 제35회 한글 및 한국어 정보처리 학술대회 논문집. pp.708-710. 2023.
  • 이기영 외, "한국어 토큰-프리 사전학습 언어모델 KeByT5를 이용한 한국어 생성 기반 대화 상태 추적", 제35회 한글 및 한국어 정보처리 학술대회 논문집. pp.644-647. 2023.

Model Card Authors/Contacts

Jong-hun Shin(ETRI), e-mail=jhshin82 AT etri DOT re DOT kr.

Downloads last month
12
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including etri-lirs/kebyt5-base-preview