firework8 commited on
Commit
f46ee13
·
verified ·
1 Parent(s): 9a47fb0

Upload 37 files

Browse files
k400/j_1/20231220_214209.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/j_1/20231220_214209.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/j_1/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da16512966efcb1c3cd4cff6d8bfb6b90f9be7b894d13737ffc602c1a8cf18cf
3
+ size 44885270
k400/j_1/best_top1_acc_epoch_150.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f71b45dd9741828f0cd1ab1940a5d5f5bf687d83231c805e710f9f1b176ef79
3
+ size 35758566
k400/j_1/j_1.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'j'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/k400/j_1'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_2',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_12', num_classes=400, in_channels=384))
16
+ memcached = True
17
+ mc_cfg = ('localhost', 22077)
18
+ dataset_type = 'PoseDataset'
19
+ ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
20
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
21
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
22
+ box_thr = 0.5
23
+ valid_ratio = 0.0
24
+ train_pipeline = [
25
+ dict(type='DecompressPose', squeeze=True),
26
+ dict(type='UniformSampleFrames', clip_len=100),
27
+ dict(type='PoseDecode'),
28
+ dict(
29
+ type='Flip',
30
+ flip_ratio=0.5,
31
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
32
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
33
+ dict(type='Kinetics_Transform'),
34
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
35
+ dict(type='FormatGCNInput', num_person=2),
36
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
37
+ dict(type='ToTensor', keys=['keypoint'])
38
+ ]
39
+ val_pipeline = [
40
+ dict(type='DecompressPose', squeeze=True),
41
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
42
+ dict(type='PoseDecode'),
43
+ dict(type='Kinetics_Transform'),
44
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
45
+ dict(type='FormatGCNInput', num_person=2),
46
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
47
+ dict(type='ToTensor', keys=['keypoint'])
48
+ ]
49
+ test_pipeline = [
50
+ dict(type='DecompressPose', squeeze=True),
51
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
52
+ dict(type='PoseDecode'),
53
+ dict(type='Kinetics_Transform'),
54
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
55
+ dict(type='FormatGCNInput', num_person=2),
56
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
57
+ dict(type='ToTensor', keys=['keypoint'])
58
+ ]
59
+ data = dict(
60
+ videos_per_gpu=32,
61
+ workers_per_gpu=8,
62
+ test_dataloader=dict(videos_per_gpu=1),
63
+ train=dict(
64
+ type='PoseDataset',
65
+ ann_file=
66
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
67
+ split='train',
68
+ pipeline=[
69
+ dict(type='DecompressPose', squeeze=True),
70
+ dict(type='UniformSampleFrames', clip_len=100),
71
+ dict(type='PoseDecode'),
72
+ dict(
73
+ type='Flip',
74
+ flip_ratio=0.5,
75
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
76
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
77
+ dict(type='Kinetics_Transform'),
78
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
79
+ dict(type='FormatGCNInput', num_person=2),
80
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
81
+ dict(type='ToTensor', keys=['keypoint'])
82
+ ],
83
+ box_thr=0.5,
84
+ valid_ratio=0.0,
85
+ memcached=True,
86
+ mc_cfg=('localhost', 22077)),
87
+ val=dict(
88
+ type='PoseDataset',
89
+ ann_file=
90
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
91
+ split='val',
92
+ pipeline=[
93
+ dict(type='DecompressPose', squeeze=True),
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ box_thr=0.5,
103
+ memcached=True,
104
+ mc_cfg=('localhost', 22077)),
105
+ test=dict(
106
+ type='PoseDataset',
107
+ ann_file=
108
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
109
+ split='val',
110
+ pipeline=[
111
+ dict(type='DecompressPose', squeeze=True),
112
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
113
+ dict(type='PoseDecode'),
114
+ dict(type='Kinetics_Transform'),
115
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
116
+ dict(type='FormatGCNInput', num_person=2),
117
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
118
+ dict(type='ToTensor', keys=['keypoint'])
119
+ ],
120
+ box_thr=0.5,
121
+ memcached=True,
122
+ mc_cfg=('localhost', 22077)))
123
+ optimizer = dict(
124
+ type='SGD', lr=0.2, momentum=0.9, weight_decay=0.0005, nesterov=True)
125
+ optimizer_config = dict(grad_clip=None)
126
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
127
+ total_epochs = 150
128
+ checkpoint_config = dict(interval=1)
129
+ evaluation = dict(
130
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
131
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
132
+ dist_params = dict(backend='nccl')
133
+ gpu_ids = range(0, 4)
k400/j_2/20231224_142835.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/j_2/20231224_142835.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/j_2/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ab4243cbcdae7c27466008c740d2574b40e76dbacb47508f8af9142b249c1b6
3
+ size 44886517
k400/j_2/best_top1_acc_epoch_150.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07af82c0113dfe4c7aaca3a224dd0b2983dbcb220334b54afe52848680ab44aa
3
+ size 35758566
k400/j_2/j_2.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'j'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/k400/j_2'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_2',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_12', num_classes=400, in_channels=384))
16
+ memcached = True
17
+ mc_cfg = ('localhost', 22077)
18
+ dataset_type = 'PoseDataset'
19
+ ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
20
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
21
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
22
+ box_thr = 0.5
23
+ valid_ratio = 0.0
24
+ train_pipeline = [
25
+ dict(type='DecompressPose', squeeze=True),
26
+ dict(type='UniformSampleFrames', clip_len=100),
27
+ dict(type='PoseDecode'),
28
+ dict(
29
+ type='Flip',
30
+ flip_ratio=0.5,
31
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
32
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
33
+ dict(type='Kinetics_Transform'),
34
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
35
+ dict(type='FormatGCNInput', num_person=2),
36
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
37
+ dict(type='ToTensor', keys=['keypoint'])
38
+ ]
39
+ val_pipeline = [
40
+ dict(type='DecompressPose', squeeze=True),
41
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
42
+ dict(type='PoseDecode'),
43
+ dict(type='Kinetics_Transform'),
44
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
45
+ dict(type='FormatGCNInput', num_person=2),
46
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
47
+ dict(type='ToTensor', keys=['keypoint'])
48
+ ]
49
+ test_pipeline = [
50
+ dict(type='DecompressPose', squeeze=True),
51
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
52
+ dict(type='PoseDecode'),
53
+ dict(type='Kinetics_Transform'),
54
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
55
+ dict(type='FormatGCNInput', num_person=2),
56
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
57
+ dict(type='ToTensor', keys=['keypoint'])
58
+ ]
59
+ data = dict(
60
+ videos_per_gpu=64,
61
+ workers_per_gpu=16,
62
+ test_dataloader=dict(videos_per_gpu=1),
63
+ train=dict(
64
+ type='PoseDataset',
65
+ ann_file=
66
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
67
+ split='train',
68
+ pipeline=[
69
+ dict(type='DecompressPose', squeeze=True),
70
+ dict(type='UniformSampleFrames', clip_len=100),
71
+ dict(type='PoseDecode'),
72
+ dict(
73
+ type='Flip',
74
+ flip_ratio=0.5,
75
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
76
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
77
+ dict(type='Kinetics_Transform'),
78
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
79
+ dict(type='FormatGCNInput', num_person=2),
80
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
81
+ dict(type='ToTensor', keys=['keypoint'])
82
+ ],
83
+ box_thr=0.5,
84
+ valid_ratio=0.0,
85
+ memcached=True,
86
+ mc_cfg=('localhost', 22077)),
87
+ val=dict(
88
+ type='PoseDataset',
89
+ ann_file=
90
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
91
+ split='val',
92
+ pipeline=[
93
+ dict(type='DecompressPose', squeeze=True),
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ box_thr=0.5,
103
+ memcached=True,
104
+ mc_cfg=('localhost', 22077)),
105
+ test=dict(
106
+ type='PoseDataset',
107
+ ann_file=
108
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
109
+ split='val',
110
+ pipeline=[
111
+ dict(type='DecompressPose', squeeze=True),
112
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
113
+ dict(type='PoseDecode'),
114
+ dict(type='Kinetics_Transform'),
115
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
116
+ dict(type='FormatGCNInput', num_person=2),
117
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
118
+ dict(type='ToTensor', keys=['keypoint'])
119
+ ],
120
+ box_thr=0.5,
121
+ memcached=True,
122
+ mc_cfg=('localhost', 22077)))
123
+ optimizer = dict(
124
+ type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
125
+ optimizer_config = dict(grad_clip=None)
126
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
127
+ total_epochs = 150
128
+ checkpoint_config = dict(interval=1)
129
+ evaluation = dict(
130
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
131
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
132
+ dist_params = dict(backend='nccl')
133
+ gpu_ids = range(0, 1)
k400/j_3/20231229_093455.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/j_3/20231229_093455.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/j_3/20240101_134851.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/j_3/20240101_134851.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/j_3/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:188c23d49554b681923a37a3e7737329ef624370d1af41542586f571bf14008b
3
+ size 44889810
k400/j_3/best_top1_acc_epoch_146.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ba3b39852dd147d52ace5fbb83c8686ebe05a29f4dbf7bd5eab5338ec554537
3
+ size 35763942
k400/j_3/j_3.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'j'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/k400/j_3'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_2',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_12', num_classes=400, in_channels=384))
16
+ memcached = True
17
+ mc_cfg = ('localhost', 22077)
18
+ dataset_type = 'PoseDataset'
19
+ ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
20
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
21
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
22
+ box_thr = 0.5
23
+ valid_ratio = 0.0
24
+ train_pipeline = [
25
+ dict(type='DecompressPose', squeeze=True),
26
+ dict(type='UniformSampleFrames', clip_len=100),
27
+ dict(type='PoseDecode'),
28
+ dict(
29
+ type='Flip',
30
+ flip_ratio=0.5,
31
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
32
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
33
+ dict(type='Kinetics_Transform'),
34
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
35
+ dict(type='FormatGCNInput', num_person=2),
36
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
37
+ dict(type='ToTensor', keys=['keypoint'])
38
+ ]
39
+ val_pipeline = [
40
+ dict(type='DecompressPose', squeeze=True),
41
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
42
+ dict(type='PoseDecode'),
43
+ dict(type='Kinetics_Transform'),
44
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
45
+ dict(type='FormatGCNInput', num_person=2),
46
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
47
+ dict(type='ToTensor', keys=['keypoint'])
48
+ ]
49
+ test_pipeline = [
50
+ dict(type='DecompressPose', squeeze=True),
51
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
52
+ dict(type='PoseDecode'),
53
+ dict(type='Kinetics_Transform'),
54
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
55
+ dict(type='FormatGCNInput', num_person=2),
56
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
57
+ dict(type='ToTensor', keys=['keypoint'])
58
+ ]
59
+ data = dict(
60
+ videos_per_gpu=64,
61
+ workers_per_gpu=16,
62
+ test_dataloader=dict(videos_per_gpu=1),
63
+ train=dict(
64
+ type='PoseDataset',
65
+ ann_file=
66
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
67
+ split='train',
68
+ pipeline=[
69
+ dict(type='DecompressPose', squeeze=True),
70
+ dict(type='UniformSampleFrames', clip_len=100),
71
+ dict(type='PoseDecode'),
72
+ dict(
73
+ type='Flip',
74
+ flip_ratio=0.5,
75
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
76
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
77
+ dict(type='Kinetics_Transform'),
78
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
79
+ dict(type='FormatGCNInput', num_person=2),
80
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
81
+ dict(type='ToTensor', keys=['keypoint'])
82
+ ],
83
+ box_thr=0.5,
84
+ valid_ratio=0.0,
85
+ memcached=True,
86
+ mc_cfg=('localhost', 22077)),
87
+ val=dict(
88
+ type='PoseDataset',
89
+ ann_file=
90
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
91
+ split='val',
92
+ pipeline=[
93
+ dict(type='DecompressPose', squeeze=True),
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ box_thr=0.5,
103
+ memcached=True,
104
+ mc_cfg=('localhost', 22077)),
105
+ test=dict(
106
+ type='PoseDataset',
107
+ ann_file=
108
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
109
+ split='val',
110
+ pipeline=[
111
+ dict(type='DecompressPose', squeeze=True),
112
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
113
+ dict(type='PoseDecode'),
114
+ dict(type='Kinetics_Transform'),
115
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
116
+ dict(type='FormatGCNInput', num_person=2),
117
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
118
+ dict(type='ToTensor', keys=['keypoint'])
119
+ ],
120
+ box_thr=0.5,
121
+ memcached=True,
122
+ mc_cfg=('localhost', 22077)))
123
+ optimizer = dict(
124
+ type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
125
+ optimizer_config = dict(grad_clip=None)
126
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
127
+ total_epochs = 150
128
+ checkpoint_config = dict(interval=1)
129
+ evaluation = dict(
130
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
131
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
132
+ dist_params = dict(backend='nccl')
133
+ gpu_ids = range(0, 1)
134
+ resume_from = './work_dirs/test_prototype/k400/j_3/latest.pth'
k400/k400_ensemble.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mmcv import load
2
+ import sys
3
+ # Note: please adjust the relative path according to the actual situation.
4
+ sys.path.append('../..')
5
+ from protogcn.smp import *
6
+
7
+
8
+ j_1 = load('j_1/best_pred.pkl')
9
+ b_1 = load('b_1/best_pred.pkl')
10
+ k_1 = load('k_1/best_pred.pkl')
11
+ j_2 = load('j_2/best_pred.pkl')
12
+ b_2 = load('b_2/best_pred.pkl')
13
+ k_2 = load('k_2/best_pred.pkl')
14
+ j_3 = load('j_3/best_pred.pkl')
15
+ b_3 = load('b_3/best_pred.pkl')
16
+ k_3 = load('k_3/best_pred.pkl')
17
+ label = load_label('/data/k400/k400_hrnet.pkl', 'val')
18
+
19
+
20
+ """
21
+ ***************
22
+ InfoGCN v1:
23
+ j j b b k k
24
+ 2S: 49.85 / 73.96
25
+ 4S: 51.33 / 75.23
26
+ 6S: 51.73 / 75.58
27
+ ***************
28
+ """
29
+ print('InfoGCN v1:')
30
+ print('j j b b k k')
31
+ print('2S')
32
+ fused = comb([j_1, b_1], [1, 1])
33
+ print('Top-1', top1(fused, label))
34
+ print('Top-5', topk(fused, label, 5))
35
+
36
+ print('4S')
37
+ fused = comb([j_1, b_1, j_3, b_2], [1, 1, 1, 1])
38
+ print('Top-1', top1(fused, label))
39
+ print('Top-5', topk(fused, label, 5))
40
+
41
+ print('6S')
42
+ fused = comb([j_1, j_3, b_1, b_2, k_1, k_2], [7, 7, 5, 5, 3, 3])
43
+ print('Top-1', top1(fused, label))
44
+ print('Top-5', topk(fused, label, 5))
45
+
46
+
47
+ """
48
+ ***************
49
+ InfoGCN v2:
50
+ j b j b j b
51
+ 2S: 49.85 / 73.96
52
+ 4S: 51.33 / 75.06
53
+ 6S: 51.85 / 75.55
54
+ ***************
55
+ """
56
+ print('InfoGCN v2:')
57
+ print('j b j b j b')
58
+ print('2S')
59
+ fused = comb([j_1, b_1], [1, 1])
60
+ print('Top-1', top1(fused, label))
61
+ print('Top-5', topk(fused, label, 5))
62
+
63
+ print('4S')
64
+ fused = comb([j_1, b_1, j_2, b_2], [1, 1, 1, 1])
65
+ print('Top-1', top1(fused, label))
66
+ print('Top-5', topk(fused, label, 5))
67
+
68
+ print('6S')
69
+ fused = comb([j_1, b_1, j_2, b_2, j_3, b_3], [6, 5, 3, 3, 5, 6])
70
+ print('Top-1', top1(fused, label))
71
+ print('Top-5', topk(fused, label, 5))
k400/k_1/20231229_093413.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_1/20231229_093413.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_1/20240101_134823.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_1/20240101_134823.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_1/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4d63b57506fb1a04c8fa5b89952c40adaad80ff9bf1f695b289948814042ae8
3
+ size 44884333
k400/k_1/best_top1_acc_epoch_150.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db3d4bf5524919668120dee2faeeea56155d8f62e3d32fbd76f8a3c553c6e34b
3
+ size 33920678
k400/k_1/k_1.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'k'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/k400/k_1'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_1',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_11', num_classes=400, in_channels=384))
16
+ memcached = True
17
+ mc_cfg = ('localhost', 22077)
18
+ dataset_type = 'PoseDataset'
19
+ ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
20
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
21
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
22
+ box_thr = 0.5
23
+ valid_ratio = 0.0
24
+ train_pipeline = [
25
+ dict(type='DecompressPose', squeeze=True),
26
+ dict(type='UniformSampleFrames', clip_len=100),
27
+ dict(type='PoseDecode'),
28
+ dict(
29
+ type='Flip',
30
+ flip_ratio=0.5,
31
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
32
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
33
+ dict(type='Kinetics_Transform'),
34
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
35
+ dict(type='FormatGCNInput', num_person=2),
36
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
37
+ dict(type='ToTensor', keys=['keypoint'])
38
+ ]
39
+ val_pipeline = [
40
+ dict(type='DecompressPose', squeeze=True),
41
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
42
+ dict(type='PoseDecode'),
43
+ dict(type='Kinetics_Transform'),
44
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
45
+ dict(type='FormatGCNInput', num_person=2),
46
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
47
+ dict(type='ToTensor', keys=['keypoint'])
48
+ ]
49
+ test_pipeline = [
50
+ dict(type='DecompressPose', squeeze=True),
51
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
52
+ dict(type='PoseDecode'),
53
+ dict(type='Kinetics_Transform'),
54
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
55
+ dict(type='FormatGCNInput', num_person=2),
56
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
57
+ dict(type='ToTensor', keys=['keypoint'])
58
+ ]
59
+ data = dict(
60
+ videos_per_gpu=64,
61
+ workers_per_gpu=16,
62
+ test_dataloader=dict(videos_per_gpu=1),
63
+ train=dict(
64
+ type='PoseDataset',
65
+ ann_file=
66
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
67
+ split='train',
68
+ pipeline=[
69
+ dict(type='DecompressPose', squeeze=True),
70
+ dict(type='UniformSampleFrames', clip_len=100),
71
+ dict(type='PoseDecode'),
72
+ dict(
73
+ type='Flip',
74
+ flip_ratio=0.5,
75
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
76
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
77
+ dict(type='Kinetics_Transform'),
78
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
79
+ dict(type='FormatGCNInput', num_person=2),
80
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
81
+ dict(type='ToTensor', keys=['keypoint'])
82
+ ],
83
+ box_thr=0.5,
84
+ valid_ratio=0.0,
85
+ memcached=True,
86
+ mc_cfg=('localhost', 22077)),
87
+ val=dict(
88
+ type='PoseDataset',
89
+ ann_file=
90
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
91
+ split='val',
92
+ pipeline=[
93
+ dict(type='DecompressPose', squeeze=True),
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ box_thr=0.5,
103
+ memcached=True,
104
+ mc_cfg=('localhost', 22077)),
105
+ test=dict(
106
+ type='PoseDataset',
107
+ ann_file=
108
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
109
+ split='val',
110
+ pipeline=[
111
+ dict(type='DecompressPose', squeeze=True),
112
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
113
+ dict(type='PoseDecode'),
114
+ dict(type='Kinetics_Transform'),
115
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
116
+ dict(type='FormatGCNInput', num_person=2),
117
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
118
+ dict(type='ToTensor', keys=['keypoint'])
119
+ ],
120
+ box_thr=0.5,
121
+ memcached=True,
122
+ mc_cfg=('localhost', 22077)))
123
+ optimizer = dict(
124
+ type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
125
+ optimizer_config = dict(grad_clip=None)
126
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
127
+ total_epochs = 150
128
+ checkpoint_config = dict(interval=1)
129
+ evaluation = dict(
130
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
131
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
132
+ dist_params = dict(backend='nccl')
133
+ gpu_ids = range(0, 1)
134
+ resume_from = './work_dirs/test_prototype/k400/k_1/latest.pth'
k400/k_2/20231224_142844.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_2/20231224_142844.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_2/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37034f4c4fb45809ae22f5eb70b40ecf9c54891bf3ccc33407c66038d342005e
3
+ size 44885202
k400/k_2/best_top1_acc_epoch_147.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03f936902d81b1456a921983f0c92a6b66c3ffda432a01fd9f4c35c247a34c09
3
+ size 33915366
k400/k_2/k_2.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'k'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/k400/k_2'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_1',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_11', num_classes=400, in_channels=384))
16
+ memcached = True
17
+ mc_cfg = ('localhost', 22077)
18
+ dataset_type = 'PoseDataset'
19
+ ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
20
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
21
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
22
+ box_thr = 0.5
23
+ valid_ratio = 0.0
24
+ train_pipeline = [
25
+ dict(type='DecompressPose', squeeze=True),
26
+ dict(type='UniformSampleFrames', clip_len=100),
27
+ dict(type='PoseDecode'),
28
+ dict(
29
+ type='Flip',
30
+ flip_ratio=0.5,
31
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
32
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
33
+ dict(type='Kinetics_Transform'),
34
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
35
+ dict(type='FormatGCNInput', num_person=2),
36
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
37
+ dict(type='ToTensor', keys=['keypoint'])
38
+ ]
39
+ val_pipeline = [
40
+ dict(type='DecompressPose', squeeze=True),
41
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
42
+ dict(type='PoseDecode'),
43
+ dict(type='Kinetics_Transform'),
44
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
45
+ dict(type='FormatGCNInput', num_person=2),
46
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
47
+ dict(type='ToTensor', keys=['keypoint'])
48
+ ]
49
+ test_pipeline = [
50
+ dict(type='DecompressPose', squeeze=True),
51
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
52
+ dict(type='PoseDecode'),
53
+ dict(type='Kinetics_Transform'),
54
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
55
+ dict(type='FormatGCNInput', num_person=2),
56
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
57
+ dict(type='ToTensor', keys=['keypoint'])
58
+ ]
59
+ data = dict(
60
+ videos_per_gpu=64,
61
+ workers_per_gpu=16,
62
+ test_dataloader=dict(videos_per_gpu=1),
63
+ train=dict(
64
+ type='PoseDataset',
65
+ ann_file=
66
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
67
+ split='train',
68
+ pipeline=[
69
+ dict(type='DecompressPose', squeeze=True),
70
+ dict(type='UniformSampleFrames', clip_len=100),
71
+ dict(type='PoseDecode'),
72
+ dict(
73
+ type='Flip',
74
+ flip_ratio=0.5,
75
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
76
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
77
+ dict(type='Kinetics_Transform'),
78
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
79
+ dict(type='FormatGCNInput', num_person=2),
80
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
81
+ dict(type='ToTensor', keys=['keypoint'])
82
+ ],
83
+ box_thr=0.5,
84
+ valid_ratio=0.0,
85
+ memcached=True,
86
+ mc_cfg=('localhost', 22077)),
87
+ val=dict(
88
+ type='PoseDataset',
89
+ ann_file=
90
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
91
+ split='val',
92
+ pipeline=[
93
+ dict(type='DecompressPose', squeeze=True),
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ box_thr=0.5,
103
+ memcached=True,
104
+ mc_cfg=('localhost', 22077)),
105
+ test=dict(
106
+ type='PoseDataset',
107
+ ann_file=
108
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
109
+ split='val',
110
+ pipeline=[
111
+ dict(type='DecompressPose', squeeze=True),
112
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
113
+ dict(type='PoseDecode'),
114
+ dict(type='Kinetics_Transform'),
115
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
116
+ dict(type='FormatGCNInput', num_person=2),
117
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
118
+ dict(type='ToTensor', keys=['keypoint'])
119
+ ],
120
+ box_thr=0.5,
121
+ memcached=True,
122
+ mc_cfg=('localhost', 22077)))
123
+ optimizer = dict(
124
+ type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
125
+ optimizer_config = dict(grad_clip=None)
126
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
127
+ total_epochs = 150
128
+ checkpoint_config = dict(interval=1)
129
+ evaluation = dict(
130
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
131
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
132
+ dist_params = dict(backend='nccl')
133
+ gpu_ids = range(0, 1)
k400/k_3/20231229_093515.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_3/20231229_093515.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_3/20240101_134903.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_3/20240101_134903.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/k_3/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49e37ad26aa519bc4714859ce0d86feda671817a7f80cc3ac533c8a9b39845fe
3
+ size 44888083
k400/k_3/best_top1_acc_epoch_147.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21233d88db2e6b4cd5a4301b09db594d331a18adb3cb9d1b217ac5a22c95e278
3
+ size 33920678
k400/k_3/k_3.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'k'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/k400/k_3'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_1',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_11', num_classes=400, in_channels=384))
16
+ memcached = True
17
+ mc_cfg = ('localhost', 22077)
18
+ dataset_type = 'PoseDataset'
19
+ ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
20
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
21
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
22
+ box_thr = 0.5
23
+ valid_ratio = 0.0
24
+ train_pipeline = [
25
+ dict(type='DecompressPose', squeeze=True),
26
+ dict(type='UniformSampleFrames', clip_len=100),
27
+ dict(type='PoseDecode'),
28
+ dict(
29
+ type='Flip',
30
+ flip_ratio=0.5,
31
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
32
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
33
+ dict(type='Kinetics_Transform'),
34
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
35
+ dict(type='FormatGCNInput', num_person=2),
36
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
37
+ dict(type='ToTensor', keys=['keypoint'])
38
+ ]
39
+ val_pipeline = [
40
+ dict(type='DecompressPose', squeeze=True),
41
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
42
+ dict(type='PoseDecode'),
43
+ dict(type='Kinetics_Transform'),
44
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
45
+ dict(type='FormatGCNInput', num_person=2),
46
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
47
+ dict(type='ToTensor', keys=['keypoint'])
48
+ ]
49
+ test_pipeline = [
50
+ dict(type='DecompressPose', squeeze=True),
51
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
52
+ dict(type='PoseDecode'),
53
+ dict(type='Kinetics_Transform'),
54
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
55
+ dict(type='FormatGCNInput', num_person=2),
56
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
57
+ dict(type='ToTensor', keys=['keypoint'])
58
+ ]
59
+ data = dict(
60
+ videos_per_gpu=64,
61
+ workers_per_gpu=16,
62
+ test_dataloader=dict(videos_per_gpu=1),
63
+ train=dict(
64
+ type='PoseDataset',
65
+ ann_file=
66
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
67
+ split='train',
68
+ pipeline=[
69
+ dict(type='DecompressPose', squeeze=True),
70
+ dict(type='UniformSampleFrames', clip_len=100),
71
+ dict(type='PoseDecode'),
72
+ dict(
73
+ type='Flip',
74
+ flip_ratio=0.5,
75
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
76
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
77
+ dict(type='Kinetics_Transform'),
78
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
79
+ dict(type='FormatGCNInput', num_person=2),
80
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
81
+ dict(type='ToTensor', keys=['keypoint'])
82
+ ],
83
+ box_thr=0.5,
84
+ valid_ratio=0.0,
85
+ memcached=True,
86
+ mc_cfg=('localhost', 22077)),
87
+ val=dict(
88
+ type='PoseDataset',
89
+ ann_file=
90
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
91
+ split='val',
92
+ pipeline=[
93
+ dict(type='DecompressPose', squeeze=True),
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ box_thr=0.5,
103
+ memcached=True,
104
+ mc_cfg=('localhost', 22077)),
105
+ test=dict(
106
+ type='PoseDataset',
107
+ ann_file=
108
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
109
+ split='val',
110
+ pipeline=[
111
+ dict(type='DecompressPose', squeeze=True),
112
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
113
+ dict(type='PoseDecode'),
114
+ dict(type='Kinetics_Transform'),
115
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
116
+ dict(type='FormatGCNInput', num_person=2),
117
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
118
+ dict(type='ToTensor', keys=['keypoint'])
119
+ ],
120
+ box_thr=0.5,
121
+ memcached=True,
122
+ mc_cfg=('localhost', 22077)))
123
+ optimizer = dict(
124
+ type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
125
+ optimizer_config = dict(grad_clip=None)
126
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
127
+ total_epochs = 150
128
+ checkpoint_config = dict(interval=1)
129
+ evaluation = dict(
130
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
131
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
132
+ dist_params = dict(backend='nccl')
133
+ gpu_ids = range(0, 1)
134
+ resume_from = './work_dirs/test_prototype/k400/k_3/latest.pth'