ultravox-v0_3-llama-3_2-1b / ultravox_processing.py
farzadab's picture
Update ultravox_processing.py
c84f28d verified
import dataclasses
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
import transformers
from .ultravox_config import UltravoxConfig
@dataclasses.dataclass
class DataCollatorForSeq2SeqWithAudio(transformers.DataCollatorForSeq2Seq):
# when enabled, the alt_input_ids, alt_attention_mask, and alt_labels fields are used for computing the KL loss in UltravoxModel
include_alt_fields: bool = False
def __call__(self, features, *args, **kwargs):
audio_values = [x for f in features for x in f.pop("audio_values", [])]
audio_lens = [x for f in features for x in f.pop("audio_lens", [])]
audio_token_len = [x for f in features for x in f.pop("audio_token_len", [])]
audio_token_start_idx = [
x for f in features for x in f.pop("audio_token_start_idx", [])
]
if self.include_alt_fields:
# these fields are hard-coded in the transformer data collator, so they need special handling before calling the super method
alt_features = [
{
"input_ids": f.pop("alt_input_ids"),
"attention_mask": f.pop("alt_attention_mask"),
"labels": f.pop("alt_labels"),
}
for f in features
]
batch = super().__call__(features, *args, **kwargs)
if self.include_alt_fields:
alt_batch = super().__call__(alt_features, *args, **kwargs)
batch["alt_input_ids"] = alt_batch["input_ids"]
batch["alt_attention_mask"] = alt_batch["attention_mask"]
batch["alt_labels"] = alt_batch["labels"]
batch["audio_token_start_idx"] = torch.stack(audio_token_start_idx)
batch["audio_lens"] = torch.stack(audio_lens)
batch["audio_token_len"] = torch.stack(audio_token_len)
# Pad the last dimension of all audio_values to the same length, with 0s on the right.
if audio_values:
max_len = max([x.shape[-1] for x in audio_values])
batch["audio_values"] = torch.stack(
[F.pad(x, (0, max_len - x.shape[-1])) for x in audio_values]
)
if self.tokenizer.padding_side == "left":
input_ids_lens = torch.LongTensor(
[f["input_ids"].shape[-1] for f in features]
)
displacement = batch["input_ids"].shape[-1] - input_ids_lens
displacement = displacement.repeat_interleave(
batch["audio_batch_size"].squeeze(-1)
)
batch["audio_token_start_idx"] += displacement.to(
batch["audio_token_start_idx"].device
)
return batch
class UltravoxProcessor(transformers.ProcessorMixin):
"""
Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.
Args:
audio_processor: The audio processor for the audio encoder.
tokenizer: The tokenizer for the language model.
"""
attributes = ["audio_processor", "tokenizer"]
audio_processor_class = ("WhisperProcessor",)
tokenizer_class = (
"PreTrainedTokenizer",
"PreTrainedTokenizerFast",
)
tokenizer: transformers.PreTrainedTokenizerBase
audio_processor: transformers.ProcessorMixin
def __init__(
self,
audio_processor=None,
tokenizer=None,
audio_padding: str = "longest",
encoder_ds_factor: int = 2,
stack_factor: int = 8,
audio_placeholder: str = "<|audio|>",
# Defaults to whisper encoder context size
audio_context_size: Optional[int] = 3000,
):
"""
Args:
audio_processor: The audio processor for the audio encoder.
tokenizer: The tokenizer for the language model.
audio_padding: The padding strategy for the audio encoder.
stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
encoder_ds_factor: The downsampling factor of the audio encoder.
audio_placeholder: The placeholder for the audio in the text.
audio_context_size: The maximum number of frames that the audio encoder can handle.
"""
self.audio_padding = audio_padding
self.encoder_ds_factor = encoder_ds_factor
self.stack_factor = stack_factor
self.audio_placeholder = audio_placeholder
self.audio_context_size = audio_context_size
assert (
tokenizer.eos_token is not None
), "The tokenizer has no EOS token. Cannot recover."
self.vocab = tokenizer.get_vocab()
self.audio_replacement = tokenizer.eos_token
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
config: UltravoxConfig = transformers.AutoConfig.from_pretrained(
pretrained_model_name_or_path, **kwargs
)
audio_processor = transformers.AutoProcessor.from_pretrained(
config.audio_model_id
or config.audio_config._name_or_path
or "openai/whisper-tiny"
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, **kwargs
)
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
return cls(
audio_processor=audio_processor,
tokenizer=tokenizer,
stack_factor=config.stack_factor,
)
def _chunk_and_pad_audio(
self,
audio_values: torch.Tensor,
audio_lens: torch.Tensor,
include_audio_num_chunks: bool = False,
) -> Dict[str, Any]:
"""
Processes the audio batch by chunking any items in the batch according to the audio_context_size,
padding the last chunk if needed, and returns a dictionary with updated audio data.
Args:
audio_values (torch.Tensor): A tensor of audio values (e.g., in B, D, T format).
audio_lens (torch.Tensor): A tensor of audio lengths.
Returns:
Dict[str, Any]: Dictionary with the following keys:
- "audio_values": The concatenated audio tensor after chunking and padding.
- "audio_lens": Tensor of lengths for each chunk.
- "audio_is_continuation": Tensor of booleans indicating if the chunk is a continuation of the previous chunk.
- "audio_batch_size": A Tensor with one integer representing the number of chunks.
"""
chunked_audio_values: List[torch.Tensor] = []
chunked_audio_lens: List[int] = []
is_continuation_list: List[bool] = []
num_chunks: List[int] = []
context_size = self.audio_context_size or audio_values.shape[-1]
for i in range(audio_values.shape[0]): # iterate over the batch
num_chunks.append(int(np.ceil(audio_lens[i] / context_size)))
for offset in range(0, audio_lens[i], context_size):
is_continuation = offset > 0
chunk = audio_values[i, :, offset : offset + context_size]
if is_continuation and chunk.shape[-1] < context_size:
# N.B. We only need to pad continuation chunks. If none of the samples require chunking, the
# batch might not (need to) be padded all the way to the audio_context_size, in which case
# we've already included the padding above. On the other hand, if we have any continuation
# chunks we know that the batch needs to be padded to audio_context_size because that's what
# we're slicing to.
chunk = F.pad(chunk, (0, context_size - chunk.shape[-1]))
chunked_audio_values.append(chunk)
chunked_audio_lens.append(
min(int(audio_lens[i].item()) - offset, context_size)
)
is_continuation_list.append(is_continuation)
return {
"audio_values": torch.stack(chunked_audio_values, dim=0),
"audio_lens": torch.tensor(
chunked_audio_lens, dtype=torch.int64, device=audio_values.device
),
"audio_is_continuation": torch.tensor(
is_continuation_list, dtype=torch.bool, device=audio_values.device
),
"audio_batch_size": torch.tensor(
[len(chunked_audio_values)], device=audio_values.device
),
"audio_num_chunks": (
torch.tensor(num_chunks, dtype=torch.int64, device=audio_values.device)
if include_audio_num_chunks
else None
),
}
def __call__(
self,
text: Optional[str] = None,
audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
audios: Optional[
Union[
List[Union[np.ndarray, torch.Tensor]], Union[np.ndarray, torch.Tensor]
]
] = None,
sampling_rate: Optional[int] = None,
return_tensors: Optional[
Union[str, transformers.TensorType]
] = transformers.TensorType.PYTORCH,
include_audio_num_chunks: bool = False,
**kwargs,
) -> transformers.BatchFeature:
"""
Main method to prepare for the model one text sequence and audio. This method forwards the `text`
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
audio processor's [`~WhisperProcessor.__call__`] if `audio` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
text (`str`, `List[str]`):
The sequence to be encoded. Sequence can be a string or (pretokenized string).
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The audio to be prepared. Audio can be a single-channel (1-dimensional) NumPy array or PyTorch tensor.
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
A list or two dimensional array of audio to be prepared.
sampling_rate (`int`, *optional*, defaults to 16000):
Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
you are doing.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
- **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
Returned when `audio` is not `None`.
- **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
"""
# TODO: Add support for multiple text inputs.
if audio is not None and audios is not None:
raise ValueError("Only one of `audio` or `audios` should be provided.")
elif audio is not None:
audios = audio if isinstance(audio, list) or audio.ndim == 2 else [audio]
elif audios is None:
audios = []
data = {}
audio_is_continuation = []
if len(audios) > 0:
audios = [x.numpy() if isinstance(x, torch.Tensor) else x for x in audios]
# Pad out each audio to at least 2 hops (the minimum required by the processor).
hop_length = self.audio_processor.feature_extractor.hop_length
audios = [
(
np.pad(x, (0, 2 * hop_length - len(x)), mode="constant")
if len(x) < 2 * hop_length
else x
)
for x in audios
]
# Main audio processing. The processor is model-specific.
x: transformers.BatchFeature = self.audio_processor(
audios,
sampling_rate=sampling_rate,
padding="longest",
pad_to_multiple_of=hop_length, # The attention mask effectively gets padded to the hop length, so pad the audio to be consistent.
truncation=False,
return_attention_mask=True,
**kwargs,
)
data.update(
self._chunk_and_pad_audio(
audio_values=torch.as_tensor(
x.input_features if "input_features" in x else x.input_values
),
audio_lens=torch.as_tensor(x.attention_mask).sum(-1),
include_audio_num_chunks=include_audio_num_chunks,
)
)
audio_is_continuation = data.pop("audio_is_continuation")
data["audio_token_len"] = torch.ceil(
data["audio_lens"] / (self.encoder_ds_factor * self.stack_factor)
).to(dtype=torch.int)
if text is not None:
if not isinstance(text, str):
raise ValueError("Text must be a string. Batch mode not supported yet.")
# Special tokens like BOS should already have been added by the caller.
tokenized_parts = self.tokenizer(
text.split(
"<|audio|>" # The placeholder isn't part of the vocabulary, so split the text around it.
),
add_special_tokens=False,
**kwargs,
)
audio_token_start_idx = []
placeholder_index = -1
split_input_ids = tokenized_parts["input_ids"]
input_ids: List[int] = []
audio_replacement_token_id = self.vocab[self.audio_replacement]
for i, token_len in enumerate(data.get("audio_token_len", [])):
if not audio_is_continuation[i]:
placeholder_index += 1
if placeholder_index >= len(split_input_ids):
raise ValueError(
f"Text contains too few audio placeholders. (Expected {len(audios)} placeholders)"
)
input_ids.extend(split_input_ids[placeholder_index])
audio_token_start_idx.append(len(input_ids))
input_ids.extend([audio_replacement_token_id] * token_len)
# Include any tokens after the last audio.
placeholder_index += 1
if placeholder_index != len(split_input_ids) - 1:
raise ValueError(
f"Text contains too many audio placeholders. (Expected {len(audios)} placeholders)"
)
input_ids.extend(split_input_ids[placeholder_index])
if "audio_token_len" in data:
data["audio_token_start_idx"] = torch.as_tensor(audio_token_start_idx)
data["input_ids"] = [input_ids]
data["attention_mask"] = [[1] * len(input_ids)]
# Ensure that there are no audio placeholders after the last audio.
return transformers.BatchFeature(data=data, tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
audio_processor_input_names = self.audio_processor.model_input_names
return list(set(tokenizer_input_names + audio_processor_input_names))
UltravoxProcessor.register_for_auto_class()
transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor)