rwkv7-7.2B-g0 / README.md
zhiyuan8's picture
Upload folder using huggingface_hub
15a33c8 verified
|
raw
history blame
2.78 kB
metadata
license: apache-2.0
language:
  - en
  - zh
  - ja
  - ko
  - fr
  - ar
  - es
  - pt
metrics:
  - accuracy
base_model:
  - BlinkDL/rwkv7-g1
pipeline_tag: text-generation

rwkv7-7.2B-g0

This is RWKV-7 model under flash-linear attention format.

Model Details

Model Description

  • Developed by: Bo Peng, Yu Zhang, Songlin Yang, Ruichong Zhang, Zhiyuan Li
  • Funded by: RWKV Project (Under LF AI & Data Foundation)
  • Model type: RWKV7
  • Language(s) (NLP): Multilingual
  • License: Apache-2.0
  • Parameter count: 7.2B
  • Tokenizer: RWKV World tokenizer
  • Vocabulary size: 65,536

Model Sources

Uses

Install flash-linear-attention and the latest version of transformers before using this model:

pip install git+https://github.com/fla-org/flash-linear-attention
pip install 'transformers>=4.48.0'

Direct Use

You can use this model just as any other HuggingFace models:

from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('fla-hub/rwkv7-7.2B-g0', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('fla-hub/rwkv7-7.2B-g0', trust_remote_code=True) 
model = model.cuda() # Supported on Nvidia/AMD/Intel eg. model.xpu()
prompt = "What is a large language model?"
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True  # Default is True, set to False to disable thinking
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1024,
    do_sample=True,
    temperature=1.0,
    top_p=0.3,
    repetition_penalty=1.2
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)[0]
print(response)

FAQ

Q: safetensors metadata is none.

A: upgrade transformers to >=4.48.0: pip install 'transformers>=4.48.0'