ehristoforu's picture
Update README.md
1c425af verified
metadata
language:
  - en
  - fr
  - es
  - ru
  - zh
  - ja
  - fa
  - code
license: mit
library_name: transformers
tags:
  - fluently-lm
  - fluently
  - prinum
  - instruct
  - trained
  - math
  - roleplay
  - reasoning
  - axolotl
  - unsloth
  - argilla
  - qwen2
  - llama-cpp
  - gguf-my-repo
datasets:
  - fluently-sets/ultraset
  - fluently-sets/ultrathink
  - fluently-sets/reasoning-1-1k
  - fluently-sets/MATH-500-Overall
inference: true
pipeline_tag: text-generation
base_model: fluently-lm/FluentlyLM-Prinum
model-index:
  - name: FluentlyLM-Prinum
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 80.9
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 59.48
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 54
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 18.23
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 17.26
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 53.42
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard

fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF

This model was converted to GGUF format from fluently-lm/FluentlyLM-Prinum using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo ehristoforu/FluentlyLM-Prinum-Q4_K_M-GGUF --hf-file fluentlylm-prinum-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo ehristoforu/FluentlyLM-Prinum-Q4_K_M-GGUF --hf-file fluentlylm-prinum-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo ehristoforu/FluentlyLM-Prinum-Q4_K_M-GGUF --hf-file fluentlylm-prinum-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo ehristoforu/FluentlyLM-Prinum-Q4_K_M-GGUF --hf-file fluentlylm-prinum-q4_k_m.gguf -c 2048