FluentlyLM-Prinum / README.md
ehristoforu's picture
Adding Evaluation Results (#1)
a94d0e1 verified
metadata
language:
  - en
  - fr
  - es
  - ru
  - zh
  - ja
  - fa
  - code
license: mit
library_name: transformers
tags:
  - fluently-lm
  - fluently
  - prinum
  - instruct
  - trained
  - math
  - roleplay
  - reasoning
  - axolotl
  - unsloth
  - argilla
  - qwen2
datasets:
  - fluently-sets/ultraset
  - fluently-sets/ultrathink
  - fluently-sets/reasoning-1-1k
  - fluently-sets/MATH-500-Overall
inference: true
pipeline_tag: text-generation
model-index:
  - name: FluentlyLM-Prinum
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 80.9
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 59.48
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 54
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 18.23
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 17.26
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 53.42
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
          name: Open LLM Leaderboard
FluentlyLM Logo

FluentlyLM Prinum (32B-version)

Introducing the first standalone model from Project Fluently LM! We worked on it for several months, used different approaches, and eventually found the optimal one.

Model Details

Model Description

  • Developed by: @fluently-lm
  • Model type: Causal Language Models (QwenForCausalLM, LM Transformer)
  • Number of Parameters: 32.5B
  • Number of Paramaters (Non-Embedding): 31.0B
  • Number of Layers: 64
  • Number of Attention Heads (GQA): 40 for Q and 8 for KV
  • Context Length: Full 131,072 tokens
  • Language(s) (NLP): English, French, Spanish, Russian, Chinese, Japanese, Persian (official support)
  • License: MIT

Quickstart

Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "fluently-lm/FluentlyLM-Prinum"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Write a quick sort algorithm."
messages = [
    {"role": "system", "content": "You are FluentlyLM, created by Project Fluently. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1024
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

GGUF-using

You can also use our model locally via GGUF file in various interfaces and workflows, we offer several repos for downloading GGUF:

Model recipe

image/png

Evolution

🏆 12th place on Open LLM Leaderboard

image/png

Special thanks

🤗 We are grateful for open source resources, technologies and assistance from: Unsloth AI, Axolotl AI, Argilla, Alibaba Cloud: Qwen, NVIDIA and NousResearch.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 47.22
IFEval (0-Shot) 80.90
BBH (3-Shot) 59.48
MATH Lvl 5 (4-Shot) 54.00
GPQA (0-shot) 18.23
MuSR (0-shot) 17.26
MMLU-PRO (5-shot) 53.42