File size: 33,852 Bytes
4940c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import random
import numpy as np
import random
import cv2
from typing import List
from PIL import Image

from dynamic_utils import (extend_key_frame_to_all,
                                                   sample_key_frames)
import imutils
import math
from scipy.ndimage import gaussian_filter1d
from glob import glob


class RandomRegionSampler(object):

    def __init__(self,
                 num_rois: int,
                 scales: tuple,
                 ratios: tuple,
                 scale_jitter: float):
        """ Randomly sample several RoIs

        Args:
            num_rois (int): number of sampled RoIs per image
            scales (tuple): scales of candidate bounding boxes
            ratios (tuple): aspect ratios of candidate bounding boxes
            scale_jitter (float): scale jitter factor, positive number
        """

        self.num_rois = num_rois
        self.scale_jitter = scale_jitter

        scales = np.array(scales, np.float32)
        ratios = np.array(ratios, np.float32)
        widths = scales.reshape(1, -1) * np.sqrt(ratios).reshape(-1, 1)
        heights = scales.reshape(1, -1) / np.sqrt(ratios).reshape(-1, 1)
        self.anchors = np.concatenate((widths.reshape(-1, 1),
                                       heights.reshape(-1, 1)), axis=-1)

    def sample(self, data: List[np.ndarray]) -> np.ndarray:
        """ Sample boxes.

        Args:
            data (list): image list, each element is a numpy.ndarray
                in shape of [H, W, 3]

        Returns:
            boxes (np.ndarray): the sampled bounding boxes. in shape of
                [self.num_rois, 4], represented in (x1, y1, x2, y2).

        """
        h, w = data[0].shape[0:2]

        # random sample box shapes
        anchor_inds = np.random.randint(0, len(self.anchors),
                                        size=(self.num_rois, ))
        box_shapes = self.anchors[anchor_inds].copy()
        if self.scale_jitter is not None:
            scale_factors = np.random.uniform(-self.scale_jitter,
                                              self.scale_jitter,
                                              size=(self.num_rois, 2))
            box_shapes = box_shapes * np.exp(scale_factors)
        box_shapes[:, 0] = np.clip(box_shapes[:, 0], 1, w - 1)
        box_shapes[:, 1] = np.clip(box_shapes[:, 1], 1, h - 1)

        #print("box shapes",box_shapes,box_shapes.shape)
        # random sample box x1, y1
        x1 = np.random.uniform(0, w - box_shapes[:, 0])
        y1 = np.random.uniform(0, h - box_shapes[:, 1])
        #print("x1, y1",x1,y1)
        boxes = np.concatenate((x1.reshape(-1, 1),
                                y1.reshape(-1, 1),
                                (x1 + box_shapes[:, 0]).reshape(-1, 1),
                                (y1 + box_shapes[:, 1]).reshape(-1, 1)),
                               axis=1)
        #print("sampled initial boxes",boxes)

        return boxes

    def sample_box_shapes(self, data: List[np.ndarray]) -> np.ndarray:
        """ Sample boxes.

        Args:
            data (list): image list, each element is a numpy.ndarray
                in shape of [H, W, 3]

        Returns:
            boxes (np.ndarray): the sampled bounding boxes. in shape of
                [self.num_rois, 4], represented in (x1, y1, x2, y2).

        """
        h, w = data[0].shape[0:2]

        # random sample box shapes
        anchor_inds = np.random.randint(0, len(self.anchors),
                                        size=(self.num_rois, ))
        box_shapes = self.anchors[anchor_inds].copy()
        if self.scale_jitter is not None:
            scale_factors = np.random.uniform(-self.scale_jitter,
                                              self.scale_jitter,
                                              size=(self.num_rois, 2))
            box_shapes = box_shapes * np.exp(scale_factors)
        box_shapes[:, 0] = np.clip(box_shapes[:, 0], 1, w - 1)
        box_shapes[:, 1] = np.clip(box_shapes[:, 1], 1, h - 1)

        #print(" gaussian box shapes",box_shapes)

        return box_shapes


class PatchMask(object):

    def __init__(self,
                 use_objects: bool,
                 objects_path: str,
                 region_sampler: dict,
                 key_frame_probs: list,
                 loc_velocity: float,
                 rot_velocity: float,
                 size_velocity: float,
                 label_prob: float,
                 patch_transformation: str,
                 motion_type: str):

        """ Core transformation in Catch-the-Patch.

        Args:
            region_sampler (dict): region sampler setting, it will be used to
                construct a RandomRegionSampler object.
            key_frame_probs (list): probabilities of sampling how many key
                frames. The sum of this list should be 1.
            loc_velocity (float): the maximum patch movement speed. (pix per
                frame).
            size_velocity (float): the maximum size change ratios between two
                neighbouring frames.
            label_prob (float): how many percentages of frames will be
                modified. Note that even the frame is not modified, we still
                force the model to infer the patch positions. (see MRM module
                in the paper).
        """
        self.region_sampler = RandomRegionSampler(**region_sampler)
        self.key_frame_probs = key_frame_probs
        self.loc_velocity = loc_velocity
        self.rot_velocity = rot_velocity
        self.size_velocity = size_velocity
        self.label_prob = label_prob
        if motion_type is not None:
            self.motion_type = motion_type
        self.patch_transformation = patch_transformation
        self.use_objects = use_objects

        if self.use_objects:
              #self.object_list  = glob("/ibex/user/jianl0b/Dataset/Fida_file_1/video_images/micheal_objects/cleaned/images/*/*")
              self.object_list  = glob(objects_path+"/*/*")

              #self.object_list  = glob("/ibex/project/c2134/Fida/micheal_objects_big/cleaned_big/images/*/*")
              print(self.object_list[0:10],len(self.object_list))

    def paste_objects(self, data, traj_rois, boxes):

        objects_list = []
        label_list = []

        for i in range(len(boxes)):
            objects, crop_index = self.pick_objects(data, traj_rois[i])
            labels = np.random.uniform(0, 1, size=(len(data), ))
            labels[crop_index] = 0.0
            labels[0] = 0.0
            labels = labels <= self.label_prob
            objects_list.append(objects)
            label_list.append(labels)

        return objects_list, None, label_list

    def paste_patches(self, data, traj_rois, boxes):

            patches_list = []
            alphas_list = []
            label_list = []

            for i in range(len(boxes)):
                patches, crop_index = self.pick_patches(data, traj_rois[i])
                alphas = self.pick_alphas(data, traj_rois[i], crop_index)
                labels = np.random.uniform(0, 1, size=(len(data), ))
                labels[crop_index] = 0.0
                labels[0] = 0.0
                labels = labels <= self.label_prob
                patches_list.append(patches)
                alphas_list.append(alphas)
                label_list.append(labels)

            return patches_list, alphas_list, label_list





    def pick_patches(self,
                     data: List[np.ndarray],
                     traj_rois: np.ndarray) -> tuple:
        """ Pick image patches from the raw video frame.

        We just randomly select a frame index, and crop the frame according to
        the trajectory rois. This cropped patch will be resized into the
        suitable size specified by the traj_rois.

        Args:
            data (List[np.ndarray]): list of images, each element is in shape
                of [H, W, 3]
            traj_rois (np.ndarray): the generated trajectories, in shape of
                [N_frames, 4]. (x1, y1, x2, y2)

        Returns:
            patches (List[np.ndarray]): the cropped patches
            select_idx (int): the frame index which the source patch
                cropped from.
        """
        traj_sizes = traj_rois[..., 2:4] - traj_rois[..., 0:2]
        num = len(traj_sizes)
        select_idx = random.randint(0, num - 1)
        x1, y1, x2, y2 = traj_rois[select_idx]
        traj_rois_H = y2 - y1
        traj_rois_W = x2 - x1

        img = data[select_idx]
        img_H, img_W, _ = img.shape

        if img_W - traj_rois_W - 1 >= 0 and img_H - traj_rois_H - 1 >= 0:
            new_x1 = random.randint(0, img_W - traj_rois_W - 1)
            new_y1 = random.randint(0, img_H - traj_rois_H - 1)
            new_x2 = new_x1 + traj_rois_W
            new_y2 = new_y1 + traj_rois_H
            img = img[new_y1:new_y2, new_x1:new_x2, :]
        else:
            img = img
        patches = [cv2.resize(img, (traj_sizes[i, 0], traj_sizes[i, 1]))
                   for i in range(traj_rois.shape[0])]
        return patches, select_idx

    def pick_objects(self,
                     data: List[np.ndarray],
                     traj_rois: np.ndarray) -> tuple:
        """ Pick image patches from the raw video frame.

        We just randomly select a frame index, and crop the frame according to
        the trajectory rois. This cropped patch will be resized into the
        suitable size specified by the traj_rois.

        Args:
            data (List[np.ndarray]): list of images, each element is in shape
                of [H, W, 3]
            traj_rois (np.ndarray): the generated trajectories, in shape of
                [N_frames, 4]. (x1, y1, x2, y2)

        Returns:
            patches (List[np.ndarray]): the cropped patches
            select_idx (int): the frame index which the source patch
                cropped from.
        """
        traj_sizes = traj_rois[..., 2:4] - traj_rois[..., 0:2]
        num = len(traj_sizes)
        select_idx = random.randint(0, num - 1)
        #print(len(data),traj_rois.shape)
        x1, y1, x2, y2 = traj_rois[select_idx]
        #print(x1, y1, x2, y2)

        object_ind = random.randint(0, len(self.object_list)- 1)
        object_img = Image.open(self.object_list[object_ind])
        object_img = object_img.resize((x2-x1,y2-y1))

        objects = [object_img.resize((traj_sizes[i, 0], traj_sizes[i, 1]))
                   for i in range(traj_rois.shape[0])]

        return objects, select_idx
   


    def pick_alphas(self,
                    data,
                    traj_rois: np.ndarray,
                    crop_index: int):
        """ Generate the alpha masks for merging the patches into the raw
        frames:
            out_frame = raw_frame * (1 - alpha) + patch * alpha.
        Despite the transparency, the alpha values are also used to mask the
        patches into some predefined shapes, like ellipse or rhombus.
        There are many strange constants in this function. But we do not
        conduct any ablation analysis on these constants. They should have
        little impact to the final performances.

         Args:
            data (List[np.ndarray]): list of images, each element is in shape
                of [H, W, 3]
            traj_rois (np.ndarray): the generated trajectories, in shape of
                [N_frames, 4]. (x1, y1, x2, y2)
            crop_index (int): the frame index which the source patch
                cropped from.

        Returns:
            alphas (List[np.ndarray]): the generated alpha values

        """
        traj_sizes = traj_rois[..., 2:4] - traj_rois[..., 0:2]
        num_frames = traj_sizes.shape[0]

        base_w, base_h = traj_sizes[crop_index]

        base_x_grids, base_y_grids = np.meshgrid(
            np.arange(base_w).astype(np.float32),
            np.arange(base_h).astype(np.float32)

        )
        ctr_w = (base_w - 1) // 2
        ctr_h = (base_h - 1) // 2

        dist_to_ctr_x = np.abs(base_x_grids - ctr_w) / base_w
        dist_to_ctr_y = np.abs(base_y_grids - ctr_h) / base_h

        mask_type = int(np.random.choice(3, p=[0.5, 0.35, 0.15]))
        if mask_type == 0:
            dist_to_ctr = np.maximum(dist_to_ctr_x, dist_to_ctr_y)
            base_alpha = np.ones((base_h, base_w), np.float32)
        elif mask_type == 1:
            dist_to_ctr = np.sqrt(dist_to_ctr_x ** 2 + dist_to_ctr_y ** 2)
            base_alpha = np.where(dist_to_ctr < 0.5,
                                  np.ones((base_h, base_w), np.float32),
                                  np.zeros((base_h, base_w), np.float32))
        elif mask_type == 2:
            dist_to_ctr = (dist_to_ctr_x + dist_to_ctr_y)
            base_alpha = np.where(dist_to_ctr < 0.5,
                                  np.ones((base_h, base_w), np.float32),
                                  np.zeros((base_h, base_w), np.float32))
        else:
            raise NotImplementedError

        use_smooth_edge = random.uniform(0, 1) < 0.5
        if use_smooth_edge:
            turning_point = random.uniform(0.30, 0.45)
            k = -1 / (0.5 - turning_point)
            alpha_mul = k * dist_to_ctr - 0.5 * k
            alpha_mul = np.clip(alpha_mul, 0, 1)
            base_alpha = base_alpha * alpha_mul

        # sample key frames
        key_inds = sample_key_frames(num_frames, self.key_frame_probs)
        frame_alphas = np.random.uniform(0.8, 1.0, size=(len(key_inds), 1))
        frame_alphas = extend_key_frame_to_all(frame_alphas, key_inds)

        alphas = []
        for frame_idx in range(num_frames):
            w, h = traj_sizes[frame_idx]
            i_alpha = cv2.resize(base_alpha, (w, h))
            i_alpha = i_alpha * frame_alphas[frame_idx]
            alphas.append(i_alpha)
        return alphas

    def get_rotation_angles(self,
                     num_frames,
                     transform_param: dict):
        key_frame_probs = transform_param['key_frame_probs']
        loc_key_inds = sample_key_frames(num_frames, key_frame_probs)

        rot_velocity  = transform_param['rot_velocity']
        rot_angles = np.zeros((transform_param['traj_rois'].shape[0],1))

        #print("rotation  angles original",rot_angles.shape,loc_key_inds)
        rot_angles_list= [np.expand_dims(rot_angles, axis=0)]
        for i in range(len(loc_key_inds) - 1):
            if rot_velocity > 0:
                index_diff = loc_key_inds[i + 1] - loc_key_inds[i]
                shifts = np.random.uniform(low=-rot_velocity* index_diff,
                                           high=rot_velocity* index_diff,
                                           size=rot_angles.shape)
                rot_angles = rot_angles + shifts
            rot_angles_list.append(np.expand_dims(rot_angles, axis=0))
        rot_angles = np.concatenate(rot_angles_list, axis=0)
        rot_angles = extend_key_frame_to_all(rot_angles, loc_key_inds, 'random')
        rot_angles = rot_angles.transpose((1, 0, 2))


        return rot_angles

    def get_shear_factors(self,
                     num_frames,
                     transform_param: dict):
        key_frame_probs = transform_param['key_frame_probs']
        loc_key_inds = sample_key_frames(num_frames, key_frame_probs)

        #print("Loc key inds shear",loc_key_inds)

        rot_velocity  = transform_param['rot_velocity']
        rot_angles = np.zeros((transform_param['traj_rois'].shape[0],1))

        #print("rotation  angles original",rot_angles.shape,loc_key_inds)
        rot_angles_list= [np.expand_dims(rot_angles, axis=0)]
        for i in range(len(loc_key_inds) - 1):
            if rot_velocity > 0:
                index_diff = loc_key_inds[i + 1] - loc_key_inds[i]
                shifts = np.random.uniform(low=-rot_velocity* index_diff,
                                           high=rot_velocity* index_diff,
                                           size=rot_angles.shape)
                #scales = np.exp(shifts)
                #print("shifts shear", shifts)
                #rot_angles = scales
                rot_angles = rot_angles + shifts
            rot_angles_list.append(np.expand_dims(rot_angles, axis=0))
        rot_angles = np.concatenate(rot_angles_list, axis=0)
        rot_angles = extend_key_frame_to_all(rot_angles, loc_key_inds, 'random')
        rot_angles = rot_angles.transpose((1, 0, 2))

        return rot_angles


    def _apply_image(self,
                     data: List[np.ndarray],
                     transform_param: dict):

             data_1 = data

             # we sort the size and firstly paste the large patch
             # this trick is because, if we paste the small patch first, it may
             # be totally covered by a large one.
             sizes = transform_param['traj_rois'][..., 2:4] - \
                     transform_param['traj_rois'][..., 0:2]
             avg_sizes = np.prod(np.mean(sizes, axis=1), axis=1)
             arg_rank = np.argsort(avg_sizes)[::-1]
       
             width, height,_ = data_1[0].shape
             #print(width,height)


             if self.use_objects:

                 if transform_param['patch_transformation'] == 'rotation':
                        rot_angles = self.get_rotation_angles(len(data_1),transform_param)
                        transformed_data_1 = []
                        for frame_idx in range(len(data_1)):
                            i_rois = transform_param['traj_rois'][:, frame_idx, :]
                            img = data_1[frame_idx].copy()
                            for patch_idx in arg_rank:
                                if not transform_param['traj_labels'][patch_idx][frame_idx]:
                                    continue
                                i_object = transform_param['patches'][patch_idx][frame_idx]  # here patches are objects
                                i_object = np.array(i_object)
                                angle = int(rot_angles[patch_idx][frame_idx])
                                rotated_i_object = imutils.rotate_bound(i_object, angle)

                                rotated_i_alpha = rotated_i_object[..., -1]
                                rotated_i_alpha = rotated_i_alpha / 255.0
                                rotated_i_object = rotated_i_object[..., :3]

                                h_prime, w_prime, channels = rotated_i_object.shape
                                x1, y1, x2, y2 = i_rois[patch_idx]
                                h, w = y2 - y1, x2 - x1
                                if ((h_prime - h) % 2) == 0:
                                    delta_h1 = delta_h2 = math.ceil((h_prime - h) / 2)
                                else:
                                    delta_h1 = math.ceil((h_prime - h) / 2)
                                    delta_h2 = math.floor((h_prime - h) / 2)
                                if ((w_prime - w) % 2) == 0:
                                    delta_w1 = delta_w2 = math.ceil((w_prime - w) / 2)
                                else:
                                    delta_w1 = math.ceil((w_prime - w) / 2)
                                    delta_w2 = math.floor((w_prime - w) / 2)

                                x1_new, y1_new, x2_new, y2_new = x1 - delta_w1, y1 - delta_h1, x2 + delta_w2, y2 + delta_h2
                                if all(i >= 0 for i in [x1_new, y1_new, x2_new, y2_new]) and all(
                                        i < width for i in [x1_new, y1_new, x2_new, y2_new]):
                                    # in bound
                                    i_patch = rotated_i_object
                                    i_alpha = rotated_i_alpha[..., np.newaxis]
                                    img[y1_new:y2_new, x1_new:x2_new, :] = img[y1_new:y2_new, x1_new:x2_new, :] * (1 - i_alpha) + i_patch * i_alpha
                                else:
                                    # out of bound
                                    img_H, img_W, C = img.shape
                                    patch_H, patch_W, _ = rotated_i_object.shape
                                    extended_img = np.zeros((img_H + 2 * patch_H, img_W + 2 * patch_W, C), dtype=img.dtype)
                                    extended_img[patch_H:(img_H + patch_H), patch_W:(img_W + patch_W), :] = img

                                    x1_new += patch_W
                                    x2_new += patch_W
                                    y1_new += patch_H
                                    y2_new += patch_H
                                    i_alpha = rotated_i_alpha[..., np.newaxis]
                                    extended_img[y1_new:y2_new, x1_new:x2_new, :] = extended_img[y1_new:y2_new, x1_new:x2_new, :] * (1 - i_alpha) + rotated_i_object * i_alpha
                                    img = extended_img[patch_H:(img_H + patch_H), patch_W:(img_W + patch_W), :]

                            img = np.array(img)
                            transformed_data_1.append(img)

             return transformed_data_1


    @staticmethod
    def rectangle_movement(boxes: np.ndarray,
                           img_wh: tuple,
                           loc_velocity: float,
                           size_velocity: float,
                           num_frames: int,
                           key_frame_probs: List[float]) -> np.ndarray:
        """ Simulate the object movement.

        Args:
            boxes (np.ndarray): in shpae of [N_boxes, 4]
            img_wh (tuple): image width and image height
            loc_velocity (float): max speed of the center point movement
            size_velocity (float): max speed of size changes
            num_frames (int): number of frames
            key_frame_probs (float): probability distribution of how many key
                frames will be sampled.

        Returns
            all_boxes (np.ndarray): the generated box trajectory, in shpae
                of [N_traj, N_frame, 4].

        """
        # Step 1, sample key frames for location changes
        loc_key_inds = sample_key_frames(num_frames, key_frame_probs)
        # Step 2, decide box locations in key frames
        ctr_pts = (boxes[:, 0:2] + boxes[:, 2:4]) * 0.5
        #print("center points original",ctr_pts)
        box_sizes = (boxes[:, 2:4] - boxes[:, 0:2])
        #print("box sizes = ",box_sizes,box_sizes.shape)

        min_ctr_pts = box_sizes * 0.5
        max_ctr_pts = np.array(img_wh[0:2]).reshape(1, 2) - box_sizes * 0.5

        #print("initial center points ",ctr_pts,loc_key_inds)
        ctr_pts_list = [np.expand_dims(ctr_pts, axis=0)]
        #print("ctr pts list",ctr_pts_list)
        for i in range(len(loc_key_inds) - 1):
            if loc_velocity > 0:
                index_diff = loc_key_inds[i + 1] - loc_key_inds[i]
                shifts = np.random.uniform(low=-loc_velocity * index_diff,
                                           high=loc_velocity * index_diff,
                                           size=ctr_pts.shape)
                #print("shifts",shifts)
                ctr_pts = ctr_pts + shifts
                ctr_pts = np.clip(ctr_pts, min_ctr_pts, max_ctr_pts)
            ctr_pts_list.append(np.expand_dims(ctr_pts, axis=0))
        ctr_pts = np.concatenate(ctr_pts_list, axis=0)

        ctr_pts = extend_key_frame_to_all(ctr_pts, loc_key_inds, 'random')
        #print("all center points ",ctr_pts,ctr_pts.shape)

        # Step 3, sample key frames for shape changes
        size_key_inds = sample_key_frames(num_frames, key_frame_probs)

        # Step 4, setup shape in different key frames
        box_sizes_list = [np.expand_dims(box_sizes, axis=0)]
        for i in range(len(size_key_inds) - 1):
            if size_velocity > 0:
                index_diff = size_key_inds[i + 1] - size_key_inds[i]
                scales = np.random.uniform(low=-size_velocity * index_diff,
                                           high=size_velocity * index_diff,
                                           size=box_sizes.shape)
                scales = np.exp(scales)
                box_sizes = box_sizes * scales
            box_sizes_list.append(np.expand_dims(box_sizes, axis=0))
        box_sizes = np.concatenate(box_sizes_list, axis=0)
        # print("box sizes before interpolation",box_sizes,size_key_inds)
        box_sizes = extend_key_frame_to_all(box_sizes, size_key_inds, 'random')
        #print("box sizes after interpolation",box_sizes)

        # Step 5, construct boxes in key frames
        all_boxes = np.concatenate((ctr_pts - box_sizes * 0.5,
                                    ctr_pts + box_sizes * 0.5), axis=2)
        # all_boxes[..., 0::2] = np.clip(all_boxes[..., 0::2], 0, img_wh[0])
        # all_boxes[..., 1::2] = np.clip(all_boxes[..., 1::2], 0, img_wh[1])
        all_boxes = all_boxes.transpose((1, 0, 2))
        return all_boxes

    @staticmethod
    def gaussian_movement(box_shapes: np.ndarray,
                           img_wh: tuple,
                           num_trajs: int,
                           size_velocity: float,
                           num_frames: int,
                           key_frame_probs: List[float]) -> np.ndarray:
        """ Simulate the object movement.

        Args:

        Returns
            all_boxes (np.ndarray): the generated box trajectory, in shpae
                of [N_traj, N_frame, 4].

        """

        def create_traj(box_shapes):
                w = img_wh[0]
                h = img_wh[1]
                #print("gaussian",w,h)

                n_points = 48 # how many points to create trajectory
                sigma = 8 # bigger sigma -> smoother trajectory
                
                # simulate trajectory points
                #x = np.random.uniform(0,112,n_points)
                #y = np.random.uniform(0,112,n_points)

                # for 112 x 112
                x = np.random.uniform(1+box_shapes[0]/2,w-1-box_shapes[0]/2,n_points)
                y = np.random.uniform(1+box_shapes[1]/2,h-1-box_shapes[1]/2,n_points)

                # for 224x 224
                # x = np.random.uniform(0,112,n_points)
                # y = np.random.uniform(0,112,n_points)
                
                # smooth trajectory
                xk = gaussian_filter1d(x, sigma=sigma, mode='reflect')
                yk = gaussian_filter1d(y, sigma=sigma, mode='reflect')

                # normalize and random scale 
                xkk = (xk -xk.min())
                xkk /= xkk.max()
                ykk = (yk -yk.min())
                ykk /= ykk.max()

                #scaling_factor =  np.random.randint(20,90)
                scaling_factor =  np.random.randint(40,180)
                xkk*=scaling_factor    # randomize 
                ykk*=scaling_factor    # randomize 


                # random  translate and clip 
                translation_factor_x =  np.random.randint(0,w-scaling_factor)
                translation_factor_y =  np.random.randint(0,h-scaling_factor)
                tr_x = xkk + translation_factor_x
                tr_y = ykk + translation_factor_y
                
                tr_x = np.clip(tr_x,0,w-1)
                tr_y = np.clip(tr_y,0,h-1)

                # sample 16 points from trajectory with linear spacing
                idxs = np.round(np.linspace(0, tr_x.shape[0]-1, num=16)).astype(int)
                x_f = tr_x[idxs].astype(int)
                y_f = tr_y[idxs].astype(int)
                #print(x_f.shape,y_f.shape)
                traj = np.column_stack((x_f,y_f))
                traj = np.expand_dims(traj, axis=1)
                return traj

        # Step 1 create a non-linear trajectory
        #print(" number of rois",num_trajs,box_shapes.shape)
        ctr_pts_list = []
        for i in range(num_trajs):
             ctr_pts_list.append(create_traj(box_shapes[i]))
        ctr_pts = np.concatenate(ctr_pts_list, axis=1)
        #print("all center points guassian ",ctr_pts,ctr_pts.shape)
        
        # Step 2 create box shapes for the starting location 
        
        boxes_list = []
        for i in range(num_trajs):
            x1, y1 = ctr_pts[0][i][0], ctr_pts[0][i][1] 
            box = np.concatenate((
                                (x1 - box_shapes[i, 0]/2).reshape(-1, 1),
                                (y1 - box_shapes[i, 1]/2).reshape(-1, 1),
                                (x1 + box_shapes[i, 0]/2).reshape(-1, 1),
                                (y1 + box_shapes[i, 1]/2).reshape(-1, 1)),
                               axis=1)
            boxes_list.append(box)

        boxes= np.concatenate(boxes_list, axis=0)
        box_sizes = (boxes[:, 2:4] - boxes[:, 0:2])
        #print("bboxes guassian ",boxes,boxes.shape)
        #print("guassian box sizes = ",box_sizes,box_sizes.shape)

        # Step 3, sample key frames for shape changes
        size_key_inds = sample_key_frames(num_frames, key_frame_probs)
        # Step 4, setup shape in different key frames
        box_sizes_list = [np.expand_dims(box_sizes, axis=0)]
        for i in range(len(size_key_inds) - 1):
            if size_velocity > 0:
                index_diff = size_key_inds[i + 1] - size_key_inds[i]
                scales = np.random.uniform(low=-size_velocity * index_diff,
                                           high=size_velocity * index_diff,
                                           size=box_sizes.shape)
                scales = np.exp(scales)
                box_sizes = box_sizes * scales
            box_sizes_list.append(np.expand_dims(box_sizes, axis=0))
        box_sizes = np.concatenate(box_sizes_list, axis=0)
        # print("box sizes before interpolation",box_sizes)
        box_sizes = extend_key_frame_to_all(box_sizes, size_key_inds, 'random')
        #print("box sizes after interpolation",box_sizes)

        # Step 5, construct boxes in key frames
        all_boxes = np.concatenate((ctr_pts - box_sizes * 0.5,
                                    ctr_pts + box_sizes * 0.5), axis=2)
        # all_boxes[..., 0::2] = np.clip(all_boxes[..., 0::2], 0, img_wh[0])
        # all_boxes[..., 1::2] = np.clip(all_boxes[..., 1::2], 0, img_wh[1])
        all_boxes = all_boxes.transpose((1, 0, 2))
        return all_boxes,boxes

    def __call__(self,img_tuple):
    #def get_transform_param(self, data: List[np.ndarray], *args, **kwargs):
        """ Generate the transformation parameters.

        Args:
            data (List[np.ndarray]): list of image array, each element is in
                a shape of [H, W, 3]

        Returns:
            params (dict): a dict that contains necessary transformation
                params, which include:
                'patches': list of image patches (np.ndarray)
                'alphas': list of alpha mask, same size and shape as patches.
                'traj_rois': the trajectory position, in shape of
                    [N_traj, N_frame, 4]
                'traj_labels': whether the patches have been pasted on some
                    specific frames, in shape of [N_traj, N_frame]
        """

        #print("with tubelets")

        img_group, label = img_tuple

        #print("before length data",len(img_group),img_group[0].size)

        new_data = [np.array(img) for img in img_group]

        #print("after length data",len(new_data),new_data[0].shape)

        data_1  = new_data        # Step 1, generate the trajectories.

        h, w = data_1[0].shape[0:2]

        #print("motion type and size_velocity", self.motion_type,self.size_velocity)
        #print(" patch transformation and rotation velocity =",self.patch_transformation,self.rot_velocity)
        if self.motion_type == 'linear' :

               boxes = self.region_sampler.sample(data_1)

               traj_rois = self.rectangle_movement(boxes, (w, h), 
                                            self.loc_velocity,
                                            self.size_velocity,
                                            len(data_1),
                                            self.key_frame_probs)
        # gaussian
        elif self.motion_type == 'gaussian' :

              box_shapes = self.region_sampler.sample_box_shapes(data_1)

              traj_rois,boxes = self.gaussian_movement(box_shapes, (w, h),
                                                  self.region_sampler.num_rois,
                                                  self.size_velocity,
                                                  len(data_1),
                                                  self.key_frame_probs)

        #print("gaussian rois",traj_rois.shape)
        traj_rois = np.round(traj_rois).astype(int)
        # traj_rois[..., 0::2] = np.clip(traj_rois[..., 0::2], 0, w)
        # traj_rois[..., 1::2] = np.clip(traj_rois[..., 1::2], 0, h)

        # Step 2, crop the patches and prepare the alpha masks.
        if not self.use_objects:

                #print(" pasting patches")
                patches_list, alphas_list, label_list  = self.paste_patches(data_1,traj_rois,boxes)
        else:
                #print(" pasting objects")
                patches_list, alphas_list, label_list  = self.paste_objects(data_1,traj_rois,boxes)



        transforms_dict =  dict(
            traj_rois=traj_rois,
            patches=patches_list,
            alphas=alphas_list,
            traj_labels=label_list,
            rot_velocity = self.rot_velocity,
            patch_transformation = self.patch_transformation,
            key_frame_probs = self.key_frame_probs
        )

        output_data = self._apply_image( new_data,transforms_dict)

        ret_data = [Image.fromarray(img) for img in output_data]

        return ret_data, label, traj_rois