|
import math |
|
import sys |
|
from typing import Iterable |
|
import torch |
|
import torch.nn as nn |
|
import utils_mae as utils |
|
from einops import rearrange |
|
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
|
|
def train_one_epoch(model: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, |
|
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, patch_size: int = 16, |
|
normlize_target: bool = True, log_writer=None, lr_scheduler=None, start_steps=None, |
|
lr_schedule_values=None, wd_schedule_values=None,teacher_model=None,target_type='pixel', multiple_sampling=False): |
|
|
|
model.train() |
|
metric_logger = utils.MetricLogger(delimiter=" ") |
|
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
header = 'Epoch: [{}]'.format(epoch) |
|
print_freq = 10 |
|
|
|
loss_func = nn.MSELoss() |
|
|
|
for step, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)): |
|
|
|
it = start_steps + step |
|
if lr_schedule_values is not None or wd_schedule_values is not None: |
|
for i, param_group in enumerate(optimizer.param_groups): |
|
if lr_schedule_values is not None: |
|
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] |
|
if wd_schedule_values is not None and param_group["weight_decay"] > 0: |
|
param_group["weight_decay"] = wd_schedule_values[it] |
|
|
|
videos, bool_masked_pos = batch |
|
videos = videos.to(device, non_blocking=True) |
|
bool_masked_pos = bool_masked_pos.to(device, non_blocking=True).flatten(1).to(torch.bool) |
|
|
|
bs, _, nf, h, w = videos.shape |
|
|
|
idx = torch.randperm(bool_masked_pos.size(0)) |
|
shuffled_bool_masked_pos = bool_masked_pos[idx,:] |
|
|
|
if 'pixel' in target_type: |
|
|
|
with torch.no_grad(): |
|
|
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None, None] |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None, None] |
|
unnorm_videos = videos * std + mean |
|
|
|
if normlize_target: |
|
videos_squeeze = rearrange(unnorm_videos, 'b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2) c', p0=2, p1=patch_size, p2=patch_size) |
|
videos_norm = (videos_squeeze - videos_squeeze.mean(dim=-2, keepdim=True) |
|
) / (videos_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6) |
|
|
|
videos_patch = rearrange(videos_norm, 'b n p c -> b n (p c)') |
|
else: |
|
videos_patch = rearrange(unnorm_videos, 'b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2 c)', p0=2, p1=patch_size, p2=patch_size) |
|
|
|
B, _, C = videos_patch.shape |
|
if not multiple_sampling: |
|
labels = videos_patch[bool_masked_pos].reshape(B, -1, C) |
|
else: |
|
labels_1 = videos_patch[bool_masked_pos].reshape(B, -1, C) |
|
labels_2 = videos_patch[shuffled_bool_masked_pos].reshape(B, -1, C) |
|
|
|
elif 'dino' in target_type or 'clip' in target_type: |
|
|
|
with torch.no_grad(): |
|
permuted_video = videos.permute(0, 2, 1, 3, 4) |
|
bs, nf, _, h, w = permuted_video.shape |
|
permuted_video = permuted_video[:, ::2].flatten(0, 1) |
|
permuted_video = permuted_video.to(device, non_blocking=True) |
|
features = teacher_model(permuted_video) |
|
_, np, dim = features.shape |
|
features = features.reshape(bs, nf//2, np, dim) |
|
features.requires_grad = False |
|
|
|
features = features.to(device, non_blocking=True) |
|
with torch.no_grad(): |
|
features_squeeze = rearrange(features, 'b n o c -> b (n o) c') |
|
if normlize_target: |
|
labels = (features_squeeze - features_squeeze.mean(dim=-2, keepdim=True) |
|
) / (features_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6) |
|
else: |
|
labels = features_squeeze |
|
B, _, C = labels.shape |
|
if not multiple_sampling: |
|
labels = labels[bool_masked_pos].reshape(B, -1, C) |
|
else: |
|
labels_1 = labels[bool_masked_pos].reshape(B, -1, C) |
|
labels_2 = labels[shuffled_bool_masked_pos].reshape(B, -1, C) |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
if not multiple_sampling: |
|
outputs = model(videos, bool_masked_pos) |
|
else: |
|
outputs_1 = model(videos, bool_masked_pos) |
|
outputs_2 = model(videos,shuffled_bool_masked_pos) |
|
|
|
labels = torch.cat((labels_1,labels_2),dim=0) |
|
outputs = torch.cat((outputs_1,outputs_2),dim=0) |
|
|
|
loss = loss_func(input=outputs, target=labels) |
|
|
|
loss_value = loss.item() |
|
if not math.isfinite(loss_value): |
|
print("Loss is {}, stopping training".format(loss_value)) |
|
sys.exit(1) |
|
|
|
optimizer.zero_grad() |
|
|
|
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order |
|
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, |
|
parameters=model.parameters(), create_graph=is_second_order) |
|
loss_scale_value = loss_scaler.state_dict()["scale"] |
|
|
|
torch.cuda.synchronize() |
|
|
|
metric_logger.update(loss=loss_value) |
|
metric_logger.update(loss_scale=loss_scale_value) |
|
min_lr = 10. |
|
max_lr = 0. |
|
for group in optimizer.param_groups: |
|
min_lr = min(min_lr, group["lr"]) |
|
max_lr = max(max_lr, group["lr"]) |
|
|
|
metric_logger.update(lr=max_lr) |
|
metric_logger.update(min_lr=min_lr) |
|
weight_decay_value = None |
|
for group in optimizer.param_groups: |
|
if group["weight_decay"] > 0: |
|
weight_decay_value = group["weight_decay"] |
|
metric_logger.update(weight_decay=weight_decay_value) |
|
metric_logger.update(grad_norm=grad_norm) |
|
|
|
if log_writer is not None: |
|
log_writer.update(loss=loss_value, head="loss") |
|
log_writer.update(loss_scale=loss_scale_value, head="opt") |
|
log_writer.update(lr=max_lr, head="opt") |
|
log_writer.update(min_lr=min_lr, head="opt") |
|
log_writer.update(weight_decay=weight_decay_value, head="opt") |
|
log_writer.update(grad_norm=grad_norm, head="opt") |
|
log_writer.set_step() |
|
|
|
if lr_scheduler is not None: |
|
lr_scheduler.step_update(start_steps + step) |
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger) |
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|