Upload 95 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- annotation_files/k400/test.csv +0 -0
- annotation_files/k400/train.csv +3 -0
- annotation_files/k400/val.csv +0 -0
- annotation_files/object_instances.txt +0 -0
- annotation_files/ssv2/test.csv +0 -0
- annotation_files/ssv2/train.csv +3 -0
- annotation_files/ssv2/val.csv +0 -0
- configs/beit-base-patch16-224-pt22k-ft22k.json +30 -0
- configs/config.py +132 -0
- configs/config_bert.json +22 -0
- configs/config_bert_large.json +25 -0
- configs/data.py +195 -0
- configs/model.py +27 -0
- configs/pretrain.py +101 -0
- configs/qa.py +20 -0
- configs/qa_anet.py +27 -0
- configs/qa_msrvtt.py +27 -0
- configs/ret_anet.py +27 -0
- configs/ret_coco.py +37 -0
- configs/ret_didemo.py +36 -0
- configs/ret_flickr.py +37 -0
- configs/ret_msrvtt.py +31 -0
- configs/ret_msrvtt_9k.py +7 -0
- configs/ret_msrvtt_mc.py +30 -0
- configs/ret_ssv2_label.py +24 -0
- configs/ret_ssv2_template.py +24 -0
- configs/tvqa.py +36 -0
- figs/smile.jpg +3 -0
- models_viclip/__init__.py +0 -0
- models_viclip/backbones/__init__.py +0 -0
- models_viclip/backbones/beit/__init__.py +0 -0
- models_viclip/backbones/beit/builder.py +85 -0
- models_viclip/backbones/beit/st_beit.py +1749 -0
- models_viclip/backbones/bert/.tokenization_bert.py.swp +0 -0
- models_viclip/backbones/bert/__init__.py +0 -0
- models_viclip/backbones/bert/__pycache__/__init__.cpython-310.pyc +0 -0
- models_viclip/backbones/bert/__pycache__/__init__.cpython-38.pyc +0 -0
- models_viclip/backbones/bert/__pycache__/tokenization_bert.cpython-310.pyc +0 -0
- models_viclip/backbones/bert/__pycache__/tokenization_bert.cpython-38.pyc +0 -0
- models_viclip/backbones/bert/builder.py +68 -0
- models_viclip/backbones/bert/tokenization_bert.py +546 -0
- models_viclip/backbones/bert/xbert.py +2157 -0
- models_viclip/backbones/blip_toremove/Qformer.py +1237 -0
- models_viclip/backbones/blip_toremove/__init__.py +0 -0
- models_viclip/backbones/blip_toremove/builder.py +44 -0
- models_viclip/backbones/blip_toremove/modeling_t5.py +2063 -0
- models_viclip/backbones/clip/__pycache__/clip_text.cpython-310.pyc +0 -0
- models_viclip/backbones/clip/__pycache__/clip_text.cpython-38.pyc +0 -0
- models_viclip/backbones/clip/__pycache__/clip_vision.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
annotation_files/k400/train.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
annotation_files/ssv2/train.csv filter=lfs diff=lfs merge=lfs -text
|
38 |
+
figs/smile.jpg filter=lfs diff=lfs merge=lfs -text
|
annotation_files/k400/test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
annotation_files/k400/train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:932b926a43e791b761badbf349dbd23107cfbcc069057d320212251cc60700c0
|
3 |
+
size 21512452
|
annotation_files/k400/val.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
annotation_files/object_instances.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
annotation_files/ssv2/test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
annotation_files/ssv2/train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4833f9f9ddf54236dcdd66ecf59c7c0156fb1889a41832e9add5378d484ca787
|
3 |
+
size 15352045
|
annotation_files/ssv2/val.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
configs/beit-base-patch16-224-pt22k-ft22k.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"note": "this file is a copy of the BEiT model config, not used directly",
|
3 |
+
"architectures": [
|
4 |
+
"BeitForImageClassification"
|
5 |
+
],
|
6 |
+
"url": "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k/raw/main/config.json",
|
7 |
+
"attention_probs_dropout_prob": 0.0,
|
8 |
+
"drop_path_rate": 0.1,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.0,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"image_size": 224,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"layer_scale_init_value": 0.1,
|
17 |
+
"model_type": "beit",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_channels": 3,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"patch_size": 16,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.11.0.dev0",
|
24 |
+
"use_absolute_position_embeddings": false,
|
25 |
+
"use_mask_token": false,
|
26 |
+
"use_mean_pooling": true,
|
27 |
+
"use_relative_position_bias": true,
|
28 |
+
"use_shared_relative_position_bias": false,
|
29 |
+
"vocab_size": 8192
|
30 |
+
}
|
configs/config.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from configs.data import *
|
2 |
+
from configs.model import *
|
3 |
+
|
4 |
+
# ========================= data ==========================
|
5 |
+
train_corpus = "webvid_10m"
|
6 |
+
train_file = "${available_corpus[${train_corpus}]}" # for lazy evaluation
|
7 |
+
test_file = dict(
|
8 |
+
test=[
|
9 |
+
"/ibex/project/c2134/LSMDC/annotations/LSMDC16_challenge_1000_publictest.json",
|
10 |
+
"/ibex/project/c2134/LSMDC/videos/",
|
11 |
+
"video",
|
12 |
+
],
|
13 |
+
)
|
14 |
+
test_types = ["test"]
|
15 |
+
num_workers = 10
|
16 |
+
|
17 |
+
stop_key = None
|
18 |
+
|
19 |
+
# ========================= input ==========================
|
20 |
+
num_frames = 1
|
21 |
+
num_frames_test = 1
|
22 |
+
batch_size = 512
|
23 |
+
batch_size_test = 64
|
24 |
+
max_txt_l = 32
|
25 |
+
|
26 |
+
inputs = dict(
|
27 |
+
image_res=224,
|
28 |
+
video_input=dict(
|
29 |
+
num_frames="${num_frames}",
|
30 |
+
sample_type="rand",
|
31 |
+
num_frames_test="${num_frames_test}",
|
32 |
+
sample_type_test="middle",
|
33 |
+
random_aug=False,
|
34 |
+
),
|
35 |
+
max_txt_l=dict(image="${max_txt_l}", video="${max_txt_l}"),
|
36 |
+
batch_size=dict(image="${batch_size}", video="${batch_size}"),
|
37 |
+
batch_size_test=dict(image="${batch_size_test}", video="${batch_size_test}"),
|
38 |
+
)
|
39 |
+
|
40 |
+
# ========================= model ==========================
|
41 |
+
text_enc = "bert_large"
|
42 |
+
model = dict(
|
43 |
+
model_cls="ViCLIP",
|
44 |
+
vision_encoder=dict(
|
45 |
+
# backbone
|
46 |
+
name="vit_b16",
|
47 |
+
pretrained='CLIP-ViT-B/16',
|
48 |
+
d_model=1024,
|
49 |
+
kernel_size=1,
|
50 |
+
center=True,
|
51 |
+
drop_path_rate=0.1,
|
52 |
+
masking_prob=0.9,
|
53 |
+
checkpoint_num=24,
|
54 |
+
),
|
55 |
+
text_encoder=dict(
|
56 |
+
pretrained='CLIP-ViT-B/16', # This is for vindlu default tokenizer, this is never used
|
57 |
+
name="vit_b16",
|
58 |
+
d_model=512,
|
59 |
+
vocab_size=49408,
|
60 |
+
),
|
61 |
+
requires_raw_text=True,
|
62 |
+
embed_dim=768,
|
63 |
+
temp=1 / 100.0,
|
64 |
+
temp_min=1 / 100.0,
|
65 |
+
freeze_text=True,
|
66 |
+
)
|
67 |
+
|
68 |
+
criterion = dict(
|
69 |
+
loss_weight=dict(
|
70 |
+
vtc=1.0,
|
71 |
+
# mlm=1.0,
|
72 |
+
# vtm=1.0,
|
73 |
+
# mvm=0.0,
|
74 |
+
# mac=1.0,
|
75 |
+
), # 0: disabled.
|
76 |
+
)
|
77 |
+
|
78 |
+
optimizer = dict(
|
79 |
+
opt="adamW",
|
80 |
+
lr=4e-4,
|
81 |
+
opt_betas=[0.9, 0.98], # default
|
82 |
+
weight_decay=0.2,
|
83 |
+
max_grad_norm=-1, # requires a positive float, use -1 to disable
|
84 |
+
# use a different lr for some modules, e.g., larger lr for new modules
|
85 |
+
different_lr=dict(enable=False, module_names=[], lr=1e-3),
|
86 |
+
)
|
87 |
+
|
88 |
+
scheduler = dict(sched="cosine", epochs=12, min_lr_multi=0.01, warmup_epochs=0.5)
|
89 |
+
|
90 |
+
evaluate = False
|
91 |
+
deep_fusion = False
|
92 |
+
evaluation = dict(
|
93 |
+
eval_frame_ensemble="concat", # [concat, max, mean, lse]
|
94 |
+
eval_x_only=False,
|
95 |
+
k_test=128,
|
96 |
+
eval_offload=True, # offload gpu tensors to cpu to save memory.
|
97 |
+
)
|
98 |
+
|
99 |
+
fp16 = True
|
100 |
+
gradient_checkpointing = True
|
101 |
+
|
102 |
+
# ========================= wandb ==========================
|
103 |
+
wandb = dict(
|
104 |
+
enable=True,
|
105 |
+
entity="likunchang", # username or team name to store the runs, see https://docs.wandb.ai/ref/python/init
|
106 |
+
project="vindlu_videoclip", # setup in your command line
|
107 |
+
)
|
108 |
+
dist_url = "env://"
|
109 |
+
device = "cuda"
|
110 |
+
mode = "pt"
|
111 |
+
|
112 |
+
# ========================= others ==========================
|
113 |
+
output_dir = None # output dir
|
114 |
+
resume = False # if True, load optimizer and scheduler states as well
|
115 |
+
debug = False
|
116 |
+
log_freq = 10
|
117 |
+
seed = 42
|
118 |
+
|
119 |
+
save_latest = True
|
120 |
+
auto_resume = True
|
121 |
+
pretrained_path = "" # path to pretrained model weights, for resume only?
|
122 |
+
|
123 |
+
deepspeed = dict(
|
124 |
+
enable=False,
|
125 |
+
stage=2,
|
126 |
+
)
|
127 |
+
|
128 |
+
wiseft = dict(
|
129 |
+
enable=False,
|
130 |
+
coef=0.5,
|
131 |
+
keys_to_exclude=["vision_encoder.temporal_positional_embedding"]
|
132 |
+
)
|
configs/config_bert.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 30522,
|
19 |
+
"fusion_layer": 9,
|
20 |
+
"encoder_width": 768,
|
21 |
+
"cross_module": "ca"
|
22 |
+
}
|
configs/config_bert_large.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"gradient_checkpointing": false,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 1024,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 4096,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 24,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"type_vocab_size": 2,
|
20 |
+
"use_cache": true,
|
21 |
+
"vocab_size": 30522,
|
22 |
+
"fusion_layer": 19,
|
23 |
+
"encoder_width": 768,
|
24 |
+
"cross_module": "ca"
|
25 |
+
}
|
configs/data.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os as __os # add "__" if not want to be exported
|
2 |
+
from copy import deepcopy as __deepcopy
|
3 |
+
|
4 |
+
#data_dir = f'{VL_DATA_DIR}'
|
5 |
+
data_dir = '/ssdstore/fmthoker/videos_images/'
|
6 |
+
if data_dir is None:
|
7 |
+
raise ValueError("please set environment `VL_DATA_DIR` before continue")
|
8 |
+
|
9 |
+
|
10 |
+
#data_root = __os.path.join(data_dir, "videos_images")
|
11 |
+
#anno_root_pt = __os.path.join(data_dir, "anno_pretrain")
|
12 |
+
#anno_root_downstream = __os.path.join(data_dir, "anno_downstream")
|
13 |
+
data_root = data_dir
|
14 |
+
anno_root_pt = __os.path.join("/ssdstore/fmthoker/videos_images/", "anno_pretrain")
|
15 |
+
anno_root_downstream = __os.path.join("/ssdstore/fmthoker/videos_images/", "anno_downstream")
|
16 |
+
|
17 |
+
# ============== pretraining datasets=================
|
18 |
+
available_corpus = dict(
|
19 |
+
# pretraining datasets
|
20 |
+
cc3m=[
|
21 |
+
f"{anno_root_pt}/cc3m_train.json",
|
22 |
+
"{your_data_root}"
|
23 |
+
],
|
24 |
+
cc12m=[
|
25 |
+
f"{anno_root_pt}/cc12m_train.json",
|
26 |
+
"{your_data_root}"
|
27 |
+
],
|
28 |
+
sbu=[
|
29 |
+
f"{anno_root_pt}/sbu.json",
|
30 |
+
"{your_data_root}"
|
31 |
+
],
|
32 |
+
vg=[
|
33 |
+
f"{anno_root_pt}/vg.json",
|
34 |
+
"{your_data_root}"
|
35 |
+
],
|
36 |
+
coco=[
|
37 |
+
f"{anno_root_pt}/coco.json",
|
38 |
+
"{your_data_root}"
|
39 |
+
],
|
40 |
+
imagenet1k=[
|
41 |
+
f"{anno_root_pt}/imagenet1k_train.json",
|
42 |
+
"{your_data_root}"
|
43 |
+
],
|
44 |
+
webvid=[
|
45 |
+
f"{anno_root_pt}/webvid_train.json",
|
46 |
+
"{your_data_root}",
|
47 |
+
"video"
|
48 |
+
],
|
49 |
+
webvid_10m=[
|
50 |
+
f"{anno_root_pt}/webvid_10m_train.json",
|
51 |
+
"{your_data_root}",
|
52 |
+
"video",
|
53 |
+
],
|
54 |
+
kinetics400=[
|
55 |
+
f"{anno_root_pt}/kinetics400_train.json",
|
56 |
+
"{your_data_root}",
|
57 |
+
"video",
|
58 |
+
],
|
59 |
+
kinetics710=[
|
60 |
+
f"{anno_root_pt}/kinetics710_train.json",
|
61 |
+
"{your_data_root}",
|
62 |
+
"video",
|
63 |
+
],
|
64 |
+
kinetics710_raw=[
|
65 |
+
f"{anno_root_pt}/kinetics710_raw_train.json",
|
66 |
+
"{your_data_root}",
|
67 |
+
"only_video",
|
68 |
+
],
|
69 |
+
internvid_10m_flt=[
|
70 |
+
#f"{anno_root_pt}/internvid_10m_flt.json",
|
71 |
+
#f"/ibex/project/c2134/InternVid-10M-FLT/internvid_10m_flt.json",
|
72 |
+
#"/ibex/project/c2134/InternVid-10M-FLT/vd-foundation___InternVid-10M-FLT/raw/InternVId-FLT_1/",
|
73 |
+
f"/ibex/project/c2134/InternVid-10M-FLT/vd-foundation___InternVid-10M-FLT/annotations/internvid_10m_flt.json",
|
74 |
+
f"/ibex/project/c2134/InternVid-10M-FLT/vd-foundation___InternVid-10M-FLT/videos/",
|
75 |
+
"video"
|
76 |
+
],
|
77 |
+
internvid_300k_flt=[
|
78 |
+
f"/ibex/project/c2134/InternVid-10M-FLT/vd-foundation___InternVid-10M-FLT/annotations/internvid_300k_subset1.json",
|
79 |
+
f"/ibex/project/c2134/InternVid-10M-FLT/vd-foundation___InternVid-10M-FLT/videos/",
|
80 |
+
"video"
|
81 |
+
],
|
82 |
+
mad_300k=[
|
83 |
+
f"/ibex/project/c2134/Fida/MAD/annotations/v2/MAD_train_viclip.json",
|
84 |
+
f"/ibex/project/c2134/Fida/MAD/data/folder_pre_shards",
|
85 |
+
"video"
|
86 |
+
],
|
87 |
+
mad_100k=[
|
88 |
+
f"/ibex/project/c2134/Fida/MAD/annotations/v2/MAD_train_viclip_100k.json",
|
89 |
+
f"/ibex/project/c2134/Fida/MAD/data/folder_pre_shards",
|
90 |
+
"video"
|
91 |
+
],
|
92 |
+
)
|
93 |
+
|
94 |
+
# composed datasets.
|
95 |
+
available_corpus["coco_vg"] = [available_corpus["coco"], available_corpus["vg"]]
|
96 |
+
available_corpus["in1k_k710"] = [
|
97 |
+
available_corpus["imagenet1k"],
|
98 |
+
available_corpus["kinetics710"],
|
99 |
+
]
|
100 |
+
available_corpus["webvid_cc3m"] = [available_corpus["webvid"], available_corpus["cc3m"]]
|
101 |
+
available_corpus["webvid_cc3m_in1k_k710"] = [
|
102 |
+
available_corpus["webvid"],
|
103 |
+
available_corpus["cc3m"],
|
104 |
+
available_corpus["imagenet1k"],
|
105 |
+
available_corpus["kinetics710"],
|
106 |
+
]
|
107 |
+
available_corpus["webvid_cc3m_k710raw"] = [
|
108 |
+
available_corpus["webvid"],
|
109 |
+
available_corpus["cc3m"],
|
110 |
+
available_corpus["kinetics710_raw"],
|
111 |
+
]
|
112 |
+
available_corpus["webvid_14m"] = [
|
113 |
+
available_corpus["webvid"],
|
114 |
+
available_corpus["cc3m"],
|
115 |
+
available_corpus["coco"],
|
116 |
+
available_corpus["vg"],
|
117 |
+
available_corpus["sbu"],
|
118 |
+
available_corpus["cc12m"],
|
119 |
+
]
|
120 |
+
available_corpus["webvid12m_14m"] = [
|
121 |
+
available_corpus["webvid"],
|
122 |
+
available_corpus["webvid_10m"],
|
123 |
+
available_corpus["cc3m"],
|
124 |
+
available_corpus["coco"],
|
125 |
+
available_corpus["vg"],
|
126 |
+
available_corpus["sbu"],
|
127 |
+
available_corpus["cc12m"],
|
128 |
+
]
|
129 |
+
available_corpus["webvid10m_14m"] = [
|
130 |
+
available_corpus["webvid_10m"],
|
131 |
+
available_corpus["cc3m"],
|
132 |
+
available_corpus["coco"],
|
133 |
+
available_corpus["vg"],
|
134 |
+
available_corpus["sbu"],
|
135 |
+
available_corpus["cc12m"],
|
136 |
+
]
|
137 |
+
available_corpus["simple_17m"] = [
|
138 |
+
available_corpus["webvid"],
|
139 |
+
available_corpus["cc3m"],
|
140 |
+
available_corpus["cc12m"],
|
141 |
+
]
|
142 |
+
available_corpus["simple_25m"] = [
|
143 |
+
available_corpus["webvid_10m"],
|
144 |
+
available_corpus["cc3m"],
|
145 |
+
available_corpus["cc12m"],
|
146 |
+
]
|
147 |
+
available_corpus["viclip_20m"] = [
|
148 |
+
available_corpus["internvid_10m_flt"],
|
149 |
+
available_corpus["webvid_10m"],
|
150 |
+
]
|
151 |
+
available_corpus["viclip"] = [
|
152 |
+
available_corpus["internvid_10m_flt"],
|
153 |
+
]
|
154 |
+
available_corpus["viclip_mad_300k"] = [
|
155 |
+
available_corpus["mad_300k"],
|
156 |
+
]
|
157 |
+
available_corpus["viclip_mad_100k"] = [
|
158 |
+
available_corpus["mad_100k"],
|
159 |
+
]
|
160 |
+
available_corpus["viclip_internvid_300k"] = [
|
161 |
+
available_corpus["internvid_300k_flt"],
|
162 |
+
]
|
163 |
+
|
164 |
+
# ============== for validation =================
|
165 |
+
available_corpus["msrvtt_1k_test"] = [
|
166 |
+
f"{anno_root_downstream}/msrvtt_test1k.json",
|
167 |
+
f"{data_root}/msrvtt_2fps_224",
|
168 |
+
"video",
|
169 |
+
]
|
170 |
+
available_corpus["k400_act_val"] = [
|
171 |
+
f"{anno_root_downstream}/kinetics400_validate.json",
|
172 |
+
"{your_data_root}",
|
173 |
+
"video",
|
174 |
+
]
|
175 |
+
available_corpus["k600_act_val"] = [
|
176 |
+
f"{anno_root_downstream}/kinetics600_validate.json",
|
177 |
+
"{your_data_root}",
|
178 |
+
"video",
|
179 |
+
]
|
180 |
+
available_corpus["k700_act_val"] = [
|
181 |
+
f"{anno_root_downstream}/kinetics700_validate.json",
|
182 |
+
"{your_data_root}",
|
183 |
+
"video",
|
184 |
+
]
|
185 |
+
available_corpus["sthsthv1_act_val"] = [
|
186 |
+
f"{anno_root_downstream}/sthsthv1_validate_clean2.json",
|
187 |
+
"{your_data_root}",
|
188 |
+
"video",
|
189 |
+
]
|
190 |
+
available_corpus["sthsthv2_act_val"] = [
|
191 |
+
f"{anno_root_downstream}/sthsthv2_validate_clean2.json",
|
192 |
+
"{your_data_root}",
|
193 |
+
"video",
|
194 |
+
]
|
195 |
+
|
configs/model.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
VisionEncoders = dict()
|
2 |
+
VisionEncoders["beit"] = dict(
|
3 |
+
name="beit_base",
|
4 |
+
pretrained="microsoft/beit-base-patch16-224-pt22k-ft22k",
|
5 |
+
d_model=768,
|
6 |
+
)
|
7 |
+
VisionEncoders["beit_large"] = dict(
|
8 |
+
name="beit_large",
|
9 |
+
pretrained="microsoft/beit-large-patch16-224-pt22k-ft22k",
|
10 |
+
d_model=1024,
|
11 |
+
)
|
12 |
+
|
13 |
+
TextEncoders = dict()
|
14 |
+
TextEncoders["bert"] = dict(
|
15 |
+
name="bert_base",
|
16 |
+
pretrained="bert-base-uncased",
|
17 |
+
config="configs/config_bert.json",
|
18 |
+
d_model=768,
|
19 |
+
fusion_layer=9,
|
20 |
+
)
|
21 |
+
TextEncoders["bert_large"] = dict(
|
22 |
+
name="bert_large",
|
23 |
+
pretrained="bert-large-uncased",
|
24 |
+
config="configs/config_bert_large.json",
|
25 |
+
d_model=1024,
|
26 |
+
fusion_layer=19,
|
27 |
+
)
|
configs/pretrain.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .data import *
|
2 |
+
from .model import *
|
3 |
+
|
4 |
+
# ========================= data ==========================
|
5 |
+
train_corpus = "webvid_cc3m"
|
6 |
+
train_file = "${available_corpus[${train_corpus}]}" # for lazy evaluation
|
7 |
+
test_file = dict(msrvtt_1k_test=available_corpus["msrvtt_1k_test"])
|
8 |
+
test_types = ["msrvtt_1k_test"]
|
9 |
+
num_workers = 6
|
10 |
+
|
11 |
+
stop_key = None
|
12 |
+
|
13 |
+
# ========================= input ==========================
|
14 |
+
num_frames = 4
|
15 |
+
num_frames_test = 4
|
16 |
+
batch_size = 64
|
17 |
+
max_txt_l = 32
|
18 |
+
|
19 |
+
inputs = dict(
|
20 |
+
image_res=224,
|
21 |
+
video_input=dict(
|
22 |
+
num_frames="${num_frames}",
|
23 |
+
sample_type="rand",
|
24 |
+
num_frames_test="${num_frames_test}",
|
25 |
+
sample_type_test="middle",
|
26 |
+
random_aug=False,
|
27 |
+
),
|
28 |
+
max_txt_l=dict(image="${max_txt_l}", video="${max_txt_l}"),
|
29 |
+
batch_size=dict(image="${batch_size}", video="${batch_size}"),
|
30 |
+
batch_size_test=dict(image="${batch_size}", video="${batch_size}"),
|
31 |
+
)
|
32 |
+
|
33 |
+
# ========================= model ==========================
|
34 |
+
vision_enc = "beit"
|
35 |
+
text_enc = "bert"
|
36 |
+
model = dict(
|
37 |
+
vision_encoder="${VisionEncoders[${vision_enc}]}",
|
38 |
+
text_encoder="${TextEncoders[${text_enc}]}",
|
39 |
+
temporal_modeling=dict(
|
40 |
+
num_frames="${num_frames}",
|
41 |
+
temporal_model_block="timesformer",
|
42 |
+
temporal_model_position="last",
|
43 |
+
temporal_model_config=dict(input_dim="${model.vision_encoder.d_model}"),
|
44 |
+
use_temporal_position_embedding=True,
|
45 |
+
),
|
46 |
+
vit_add_ln=True,
|
47 |
+
multimodal=dict(enable=True),
|
48 |
+
embed_dim=256,
|
49 |
+
temp=0.07,
|
50 |
+
)
|
51 |
+
|
52 |
+
criterion = dict(
|
53 |
+
loss_weight=dict(vtc=1.0, mlm=1.0, vtm=1.0, mvm=0.0), # 0: disabled.
|
54 |
+
vtm_hard_neg=True,
|
55 |
+
mlm_masking_prob=0.5,
|
56 |
+
)
|
57 |
+
|
58 |
+
optimizer = dict(
|
59 |
+
opt="adamW",
|
60 |
+
lr=1e-4,
|
61 |
+
opt_betas=[0.9, 0.999], # default
|
62 |
+
weight_decay=0.02,
|
63 |
+
max_grad_norm=-1, # requires a positive float, use -1 to disable
|
64 |
+
# use a different lr for some modules, e.g., larger lr for new modules
|
65 |
+
different_lr=dict(enable=False, module_names=[], lr=1e-3),
|
66 |
+
)
|
67 |
+
|
68 |
+
scheduler = dict(sched="cosine", epochs=10, min_lr_multi=0.01, warmup_epochs=1)
|
69 |
+
|
70 |
+
evaluate = False
|
71 |
+
deep_fusion = False
|
72 |
+
evaluation = dict(
|
73 |
+
eval_frame_ensemble="concat", # [concat, max, mean, lse]
|
74 |
+
eval_x_only=False,
|
75 |
+
k_test=128,
|
76 |
+
eval_offload=True, # offload gpu tensors to cpu to save memory.
|
77 |
+
)
|
78 |
+
|
79 |
+
fp16 = True
|
80 |
+
gradient_checkpointing = True
|
81 |
+
|
82 |
+
# ========================= wandb ==========================
|
83 |
+
wandb = dict(
|
84 |
+
enable=True,
|
85 |
+
entity="likunchang", # username or team name to store the runs, see https://docs.wandb.ai/ref/python/init
|
86 |
+
project="vindlu", # setup in your command line
|
87 |
+
)
|
88 |
+
dist_url = "env://"
|
89 |
+
device = "cuda"
|
90 |
+
mode = "pt"
|
91 |
+
|
92 |
+
# ========================= others ==========================
|
93 |
+
output_dir = None # output dir
|
94 |
+
resume = False # if True, load optimizer and scheduler states as well
|
95 |
+
debug = False
|
96 |
+
log_freq = 100
|
97 |
+
seed = 42
|
98 |
+
|
99 |
+
save_latest = True
|
100 |
+
auto_resume = True
|
101 |
+
pretrained_path = "" # path to pretrained model weights, for resume only?
|
configs/qa.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
6 |
+
scheduler["warmup_epochs"] = 0.5
|
7 |
+
|
8 |
+
max_txt_l = 32
|
9 |
+
batch_size = 32
|
10 |
+
num_frames = 12
|
11 |
+
|
12 |
+
optimizer["lr"] = 1e-5
|
13 |
+
log_freq = 100
|
14 |
+
|
15 |
+
# =========additional args for VQA ============
|
16 |
+
eos = "[SEP]"
|
17 |
+
max_q_len = 25
|
18 |
+
max_a_len = 5
|
19 |
+
# =========end ================================
|
20 |
+
|
configs/qa_anet.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .qa import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
[
|
5 |
+
f"{anno_root_downstream}/anet_qa_train.json",
|
6 |
+
f"{data_root}/activity_net_2fps_360",
|
7 |
+
"video",
|
8 |
+
]
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/anet_qa_val.json",
|
13 |
+
f"{data_root}/activity_net_2fps_360",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/anet_qa_test.json",
|
18 |
+
f"{data_root}/activity_net_2fps_360",
|
19 |
+
"video",
|
20 |
+
]
|
21 |
+
)
|
22 |
+
dataset_name = "anet"
|
23 |
+
|
24 |
+
answer_list = f"{anno_root_downstream}/anet_qa_answer_list.json" # list of answer words
|
25 |
+
|
26 |
+
test_types = ["val"]
|
27 |
+
stop_key = "val" # used to choose the best ckpt. If None, save the last.
|
configs/qa_msrvtt.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .qa import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
[
|
5 |
+
f"{anno_root_downstream}/msrvtt_qa_train.json",
|
6 |
+
f"{data_root}/msrvtt_2fps_224",
|
7 |
+
"video",
|
8 |
+
]
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/msrvtt_qa_val.json",
|
13 |
+
f"{data_root}/msrvtt_2fps_224",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/msrvtt_qa_test.json",
|
18 |
+
f"{data_root}/msrvtt_2fps_224",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
dataset_name = "msrvtt"
|
23 |
+
|
24 |
+
answer_list = f"{anno_root_downstream}/msrvtt_qa_answer_list.json" # list of answer words
|
25 |
+
|
26 |
+
test_types = ["val"]
|
27 |
+
stop_key = "val" # used to choose the best ckpt. If None, save the last.
|
configs/ret_anet.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/anet_ret_train.json",
|
7 |
+
f"{data_root}/activity_net_2fps_360",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
test=[
|
12 |
+
f"{anno_root_downstream}/anet_ret_val_1.json",
|
13 |
+
f"{data_root}/activity_net_2fps_360",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
)
|
17 |
+
|
18 |
+
test_types = ["test"]
|
19 |
+
stop_key = "test/" # used to choose the best ckpt. If None, save the last.
|
20 |
+
is_paragraph_retrieval = True
|
21 |
+
|
22 |
+
max_txt_l = 64
|
23 |
+
batch_size = 32
|
24 |
+
num_frames = 12
|
25 |
+
|
26 |
+
optimizer["lr"] = 1e-5
|
27 |
+
log_freq = 100
|
configs/ret_coco.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/coco_train.json",
|
7 |
+
f"{data_root}/coco",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/coco_val.json",
|
13 |
+
f"{data_root}/coco",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/coco_test.json",
|
18 |
+
f"{data_root}/coco",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
test_types = ["val"]
|
24 |
+
stop_key = "val/" # used to choose the best ckpt. If None, save the last.
|
25 |
+
is_paragraph_retrieval = False
|
26 |
+
|
27 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
28 |
+
scheduler["warmup_epochs"] = 0
|
29 |
+
optimizer["lr"] = 1e-5
|
30 |
+
|
31 |
+
|
32 |
+
max_txt_l = 22
|
33 |
+
batch_size = 128
|
34 |
+
num_frames = 1
|
35 |
+
num_frames_test = 1
|
36 |
+
|
37 |
+
log_freq = 100
|
configs/ret_didemo.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/didemo_ret_train.json",
|
7 |
+
f"{data_root}/didemo_2fps_360_trimed30",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/didemo_ret_val.json",
|
13 |
+
f"{data_root}/didemo_2fps_360_trimed30",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/didemo_ret_test.json",
|
18 |
+
f"{data_root}/didemo_2fps_360_trimed30",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
test_types = ["val"]
|
24 |
+
stop_key = "val/" # used to choose the best ckpt. If None, save the last.
|
25 |
+
is_paragraph_retrieval = True
|
26 |
+
|
27 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
28 |
+
scheduler["warmup_epochs"] = 0
|
29 |
+
optimizer["lr"] = 1e-5
|
30 |
+
|
31 |
+
|
32 |
+
max_txt_l = 64
|
33 |
+
batch_size = 32
|
34 |
+
num_frames = 12
|
35 |
+
|
36 |
+
log_freq = 10
|
configs/ret_flickr.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/flickr30k_train.json",
|
7 |
+
f"{data_root}/f30k",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/flickr30k_val.json",
|
13 |
+
f"{data_root}/f30k",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/flickr30k_test.json",
|
18 |
+
f"{data_root}/f30k",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
test_types = ["val"]
|
24 |
+
stop_key = "val/" # used to choose the best ckpt. If None, save the last.
|
25 |
+
is_paragraph_retrieval = False
|
26 |
+
|
27 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
28 |
+
scheduler["warmup_epochs"] = 0
|
29 |
+
optimizer["lr"] = 1e-5
|
30 |
+
|
31 |
+
|
32 |
+
max_txt_l = 32
|
33 |
+
batch_size = 128
|
34 |
+
num_frames = 1
|
35 |
+
num_frames_test = 1
|
36 |
+
|
37 |
+
log_freq = 100
|
configs/ret_msrvtt.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/msrvtt_ret_train7k.json",
|
7 |
+
f"{data_root}/msrvtt_2fps_224",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
test=[
|
12 |
+
f"{anno_root_downstream}/msrvtt_ret_test1k.json",
|
13 |
+
f"{data_root}/msrvtt_2fps_224",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
)
|
17 |
+
|
18 |
+
test_types = ["test"]
|
19 |
+
stop_key = None # used to choose the best ckpt. If None, save the last.
|
20 |
+
is_paragraph_retrieval = False
|
21 |
+
|
22 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
23 |
+
scheduler["warmup_epochs"] = 0
|
24 |
+
scheduler["epochs"] = 5
|
25 |
+
optimizer["lr"] = 1e-5
|
26 |
+
|
27 |
+
max_txt_l = 32
|
28 |
+
batch_size = 32
|
29 |
+
num_frames = 12
|
30 |
+
|
31 |
+
log_freq = 100
|
configs/ret_msrvtt_9k.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ret_msrvtt import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
f"{anno_root_downstream}/msrvtt_ret_train9k.json",
|
5 |
+
f"{data_root}/msrvtt_2fps_224",
|
6 |
+
"video",
|
7 |
+
]
|
configs/ret_msrvtt_mc.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/msrvtt_ret_train7k.json",
|
7 |
+
f"{data_root}/msrvtt_2fps_224",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
mc_test=[
|
12 |
+
f"{anno_root_downstream}/msrvtt_mc_test.json",
|
13 |
+
f"{data_root}/msrvtt_2fps_224",
|
14 |
+
"video",
|
15 |
+
]
|
16 |
+
)
|
17 |
+
|
18 |
+
test_types = ["mc_test"]
|
19 |
+
stop_key = None # used to choose the best ckpt. If None, save the last.
|
20 |
+
is_paragraph_retrieval = False
|
21 |
+
|
22 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
23 |
+
scheduler["warmup_epochs"] = 0
|
24 |
+
optimizer["lr"] = 1e-5
|
25 |
+
|
26 |
+
max_txt_l = 32
|
27 |
+
batch_size = 32
|
28 |
+
num_frames = 12
|
29 |
+
|
30 |
+
log_freq = 100
|
configs/ret_ssv2_label.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ret_msrvtt import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
f"{anno_root_downstream}/ssv2_ret_label_train.json",
|
5 |
+
f"{data_root}/ssv2",
|
6 |
+
"video",
|
7 |
+
]
|
8 |
+
test_file = dict(
|
9 |
+
val=[
|
10 |
+
f"{anno_root_downstream}/ssv2_ret_label_val_small.json",
|
11 |
+
f"{data_root}/ssv2",
|
12 |
+
"video",
|
13 |
+
],
|
14 |
+
)
|
15 |
+
|
16 |
+
test_types = ["val"]
|
17 |
+
stop_key = None # used to choose the best ckpt. If None, save the last.
|
18 |
+
|
19 |
+
has_multi_vision_gt = True
|
20 |
+
|
21 |
+
scheduler["epochs"] = 10
|
22 |
+
optimizer["lr"] = 1e-4
|
23 |
+
|
24 |
+
max_txt_l = 25
|
configs/ret_ssv2_template.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ret_msrvtt import *
|
2 |
+
|
3 |
+
train_file = [
|
4 |
+
f"{anno_root_downstream}/ssv2_ret_template_train.json",
|
5 |
+
f"{data_root}/ssv2",
|
6 |
+
"video",
|
7 |
+
]
|
8 |
+
test_file = dict(
|
9 |
+
val=[
|
10 |
+
f"{anno_root_downstream}/ssv2_ret_template_val_small.json",
|
11 |
+
f"{data_root}/ssv2",
|
12 |
+
"video",
|
13 |
+
],
|
14 |
+
)
|
15 |
+
|
16 |
+
test_types = ["val"]
|
17 |
+
stop_key = None # used to choose the best ckpt. If None, save the last.
|
18 |
+
|
19 |
+
has_multi_vision_gt = True
|
20 |
+
|
21 |
+
scheduler["epochs"] = 10
|
22 |
+
optimizer["lr"] = 1e-4
|
23 |
+
|
24 |
+
max_txt_l = 22
|
configs/tvqa.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pretrain import *
|
2 |
+
|
3 |
+
del available_corpus
|
4 |
+
|
5 |
+
train_file = [
|
6 |
+
f"{anno_root_downstream}/tvqa_train_with_answer.json",
|
7 |
+
f"{data_root}/tvqa_trimmed_3fps",
|
8 |
+
"video",
|
9 |
+
]
|
10 |
+
test_file = dict(
|
11 |
+
val=[
|
12 |
+
f"{anno_root_downstream}/tvqa_val_with_answer.json",
|
13 |
+
f"{data_root}/tvqa_trimmed_3fps",
|
14 |
+
"video",
|
15 |
+
],
|
16 |
+
test=[
|
17 |
+
f"{anno_root_downstream}/tvqa_test_public_with_answer.json",
|
18 |
+
f"{data_root}/tvqa_trimmed_3fps",
|
19 |
+
"video",
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
test_types = ["val"]
|
24 |
+
stop_key = "val" # used to choose the best ckpt. If None, save the last.
|
25 |
+
is_paragraph_retrieval = False
|
26 |
+
|
27 |
+
criterion["loss_weight"]["mlm"] = 0.0
|
28 |
+
optimizer["lr"] = 1e-5
|
29 |
+
scheduler["warmup_epochs"] = 0.5
|
30 |
+
scheduler["epochs"] = 10
|
31 |
+
|
32 |
+
max_txt_l = 150
|
33 |
+
batch_size = 32
|
34 |
+
num_frames = 12
|
35 |
+
|
36 |
+
log_freq = 100
|
figs/smile.jpg
ADDED
![]() |
Git LFS Details
|
models_viclip/__init__.py
ADDED
File without changes
|
models_viclip/backbones/__init__.py
ADDED
File without changes
|
models_viclip/backbones/beit/__init__.py
ADDED
File without changes
|
models_viclip/backbones/beit/builder.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
from models.utils import (interpolate_pos_relative_bias_beit,
|
4 |
+
load_temp_embed_with_mismatch)
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
def interpolate_pos_embed_beit(state_dict, new_model):
|
10 |
+
"""interpolate the positional embeddings.
|
11 |
+
The spatial pe is relative and temporal pe is absolute.
|
12 |
+
additional temporal pe is padded with 0.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
state_dict (dict): The state_dict.
|
16 |
+
new_model (nn.Module): The created model.
|
17 |
+
|
18 |
+
Returns: dict. The state_dict with updated positional embeddings.
|
19 |
+
|
20 |
+
"""
|
21 |
+
state_dict = interpolate_pos_relative_bias_beit(
|
22 |
+
state_dict_old=state_dict,
|
23 |
+
state_dict_new=new_model.state_dict(),
|
24 |
+
patch_shape_new=new_model.vision_encoder.embeddings.patch_embeddings.patch_shape,
|
25 |
+
)
|
26 |
+
# absolute temporal pos bias
|
27 |
+
temporal_pe_key = "vision_encoder.embeddings.temporal_position_embeddings"
|
28 |
+
if temporal_pe_key in state_dict:
|
29 |
+
logger.info(f"interpolate temporal positional embeddings: {temporal_pe_key}")
|
30 |
+
state_dict[temporal_pe_key] = load_temp_embed_with_mismatch(
|
31 |
+
temp_embed_old=state_dict[temporal_pe_key],
|
32 |
+
temp_embed_new=new_model.state_dict()[temporal_pe_key],
|
33 |
+
)
|
34 |
+
return state_dict
|
35 |
+
|
36 |
+
|
37 |
+
def build_beit(model_config, image_res, checkpoint):
|
38 |
+
"""build beit with configuration.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
config (dict): The configs for beit.
|
42 |
+
image_res (int): The image resolution.
|
43 |
+
checkpoint (bool): Whether to enable gradient checkpointing.
|
44 |
+
|
45 |
+
Returns: nn.Module
|
46 |
+
|
47 |
+
"""
|
48 |
+
from .st_beit import BeitConfig as config_cls
|
49 |
+
from .st_beit import BeitModel as model_cls
|
50 |
+
|
51 |
+
logger.info(
|
52 |
+
f"Loading vit pre-trained weights from huggingface {model_config.vision_encoder.pretrained}."
|
53 |
+
)
|
54 |
+
# BEiT uses average pooled tokens instead of [CLS] used by other models
|
55 |
+
aux_kwargs = {"add_pooling_layer": True}
|
56 |
+
tmp_model = model_cls.from_pretrained(model_config.vision_encoder.pretrained, **aux_kwargs)
|
57 |
+
state_dict = tmp_model.state_dict()
|
58 |
+
del tmp_model
|
59 |
+
|
60 |
+
logger.info(f"Init new model with new image size {image_res}, and load weights.")
|
61 |
+
|
62 |
+
other_cfg = model_config.temporal_modeling
|
63 |
+
vit_config = config_cls.from_pretrained(
|
64 |
+
model_config.vision_encoder.pretrained, image_size=image_res, **other_cfg
|
65 |
+
)
|
66 |
+
model = model_cls(config=vit_config, **aux_kwargs)
|
67 |
+
|
68 |
+
if checkpoint:
|
69 |
+
model.gradient_checkpointing_enable()
|
70 |
+
|
71 |
+
# interpolate relative pos bias
|
72 |
+
state_dict = interpolate_pos_relative_bias_beit(
|
73 |
+
state_dict_old=state_dict,
|
74 |
+
state_dict_new=model.state_dict(),
|
75 |
+
patch_shape_new=model.embeddings.patch_embeddings.patch_shape,
|
76 |
+
)
|
77 |
+
|
78 |
+
# del prompt_bias_table
|
79 |
+
for k in list(state_dict.keys()):
|
80 |
+
if "prompt_bias_table" in k:
|
81 |
+
del state_dict[k]
|
82 |
+
|
83 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
84 |
+
logger.info(msg)
|
85 |
+
return model
|
models_viclip/backbones/beit/st_beit.py
ADDED
@@ -0,0 +1,1749 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch BEiT model."""
|
16 |
+
|
17 |
+
import collections.abc
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import einops
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
+
from torch.nn import functional as F
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.configuration_utils import PretrainedConfig
|
30 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
31 |
+
BaseModelOutputWithPooling,
|
32 |
+
ImageClassifierOutput,
|
33 |
+
MaskedLMOutput,
|
34 |
+
SemanticSegmenterOutput)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.pytorch_utils import (find_pruneable_heads_and_indices,
|
37 |
+
prune_linear_layer)
|
38 |
+
from transformers.utils import (add_code_sample_docstrings,
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward, logging,
|
41 |
+
replace_return_docstrings)
|
42 |
+
|
43 |
+
from models.utils import interpolate_temporal_pos_embed
|
44 |
+
|
45 |
+
from ...modules.temporal_model import (X_CLIP, STAdapter, TemporalAttention,
|
46 |
+
WindowTemporalAttention)
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
# General docstring
|
51 |
+
_CONFIG_FOR_DOC = "BeitConfig"
|
52 |
+
_FEAT_EXTRACTOR_FOR_DOC = "BeitFeatureExtractor"
|
53 |
+
|
54 |
+
# Base docstring
|
55 |
+
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k"
|
56 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
|
57 |
+
|
58 |
+
# Image classification docstring
|
59 |
+
_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224"
|
60 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
61 |
+
|
62 |
+
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
63 |
+
"microsoft/beit-base-patch16-224",
|
64 |
+
# See all BEiT models at https://huggingface.co/models?filter=beit
|
65 |
+
]
|
66 |
+
|
67 |
+
|
68 |
+
class BeitConfig(PretrainedConfig):
|
69 |
+
r"""
|
70 |
+
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT
|
71 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
72 |
+
defaults will yield a similar configuration to that of the BEiT
|
73 |
+
[microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
vocab_size (`int`, *optional*, defaults to 8092):
|
77 |
+
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
|
78 |
+
pre-training.
|
79 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
80 |
+
Dimensionality of the encoder layers and the pooler layer.
|
81 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
82 |
+
Number of hidden layers in the Transformer encoder.
|
83 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
84 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
85 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
86 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
87 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
88 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
89 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
90 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
91 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
92 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
93 |
+
The dropout ratio for the attention probabilities.
|
94 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
95 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
96 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
97 |
+
The epsilon used by the layer normalization layers.
|
98 |
+
image_size (`int`, *optional*, defaults to 224):
|
99 |
+
The size (resolution) of each image.
|
100 |
+
patch_size (`int`, *optional*, defaults to 16):
|
101 |
+
The size (resolution) of each patch.
|
102 |
+
num_channels (`int`, *optional*, defaults to 3):
|
103 |
+
The number of input channels.
|
104 |
+
use_mask_token (`bool`, *optional*, defaults to `False`):
|
105 |
+
Whether to use a mask token for masked image modeling.
|
106 |
+
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
|
107 |
+
Whether to use BERT-style absolute position embeddings.
|
108 |
+
use_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether to use T5-style relative position embeddings in the self-attention layers.
|
110 |
+
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
111 |
+
Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
|
112 |
+
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
|
113 |
+
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
|
114 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
115 |
+
Stochastic depth rate per sample (when applied in the main path of residual layers).
|
116 |
+
use_mean_pooling (`bool`, *optional*, defaults to `True`):
|
117 |
+
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
|
118 |
+
CLS token, before applying the classification head.
|
119 |
+
out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`):
|
120 |
+
Indices of the feature maps to use for semantic segmentation.
|
121 |
+
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
|
122 |
+
Pooling scales used in Pooling Pyramid Module applied on the last feature map.
|
123 |
+
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
|
124 |
+
Whether to use an auxiliary head during training.
|
125 |
+
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
|
126 |
+
Weight of the cross-entropy loss of the auxiliary head.
|
127 |
+
auxiliary_channels (`int`, *optional*, defaults to 256):
|
128 |
+
Number of channels to use in the auxiliary head.
|
129 |
+
auxiliary_num_convs (`int`, *optional*, defaults to 1):
|
130 |
+
Number of convolutional layers to use in the auxiliary head.
|
131 |
+
auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
|
132 |
+
Whether to concatenate the output of the auxiliary head with the input before the classification layer.
|
133 |
+
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
134 |
+
The index that is ignored by the loss function of the semantic segmentation model.
|
135 |
+
|
136 |
+
Example:
|
137 |
+
|
138 |
+
```python
|
139 |
+
>>> from transformers import BeitModel, BeitConfig
|
140 |
+
|
141 |
+
>>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
|
142 |
+
>>> configuration = BeitConfig()
|
143 |
+
|
144 |
+
>>> # Initializing a model from the beit-base-patch16-224-pt22k style configuration
|
145 |
+
>>> model = BeitModel(configuration)
|
146 |
+
|
147 |
+
>>> # Accessing the model configuration
|
148 |
+
>>> configuration = model.config
|
149 |
+
```"""
|
150 |
+
model_type = "beit"
|
151 |
+
|
152 |
+
def __init__(
|
153 |
+
self,
|
154 |
+
vocab_size=8192,
|
155 |
+
hidden_size=768,
|
156 |
+
num_hidden_layers=12,
|
157 |
+
num_attention_heads=12,
|
158 |
+
intermediate_size=3072,
|
159 |
+
hidden_act="gelu",
|
160 |
+
hidden_dropout_prob=0.0,
|
161 |
+
attention_probs_dropout_prob=0.0,
|
162 |
+
initializer_range=0.02,
|
163 |
+
layer_norm_eps=1e-12,
|
164 |
+
is_encoder_decoder=False,
|
165 |
+
image_size=224,
|
166 |
+
num_frames=1,
|
167 |
+
patch_size=16,
|
168 |
+
num_channels=3,
|
169 |
+
use_mask_token=False,
|
170 |
+
use_absolute_position_embeddings=False,
|
171 |
+
use_relative_position_bias=False,
|
172 |
+
use_shared_relative_position_bias=False,
|
173 |
+
layer_scale_init_value=0.1,
|
174 |
+
drop_path_rate=0.1,
|
175 |
+
use_mean_pooling=True,
|
176 |
+
out_indices=[3, 5, 7, 11],
|
177 |
+
pool_scales=[1, 2, 3, 6],
|
178 |
+
use_auxiliary_head=True,
|
179 |
+
auxiliary_loss_weight=0.4,
|
180 |
+
auxiliary_channels=256,
|
181 |
+
auxiliary_num_convs=1,
|
182 |
+
auxiliary_concat_input=False,
|
183 |
+
semantic_loss_ignore_index=255,
|
184 |
+
temporal_model_block="none",
|
185 |
+
temporal_model_position="last",
|
186 |
+
temporal_model_init_value=0.0,
|
187 |
+
temporal_model_config={},
|
188 |
+
use_temporal_position_embedding=False,
|
189 |
+
add_k_prompts=0,
|
190 |
+
**kwargs,
|
191 |
+
):
|
192 |
+
super().__init__(**kwargs)
|
193 |
+
|
194 |
+
self.vocab_size = vocab_size
|
195 |
+
self.hidden_size = hidden_size
|
196 |
+
self.num_hidden_layers = num_hidden_layers
|
197 |
+
self.num_attention_heads = num_attention_heads
|
198 |
+
self.intermediate_size = intermediate_size
|
199 |
+
self.hidden_act = hidden_act
|
200 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
201 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
202 |
+
self.initializer_range = initializer_range
|
203 |
+
self.layer_norm_eps = layer_norm_eps
|
204 |
+
|
205 |
+
self.image_size = image_size
|
206 |
+
self.patch_size = patch_size
|
207 |
+
self.num_channels = num_channels
|
208 |
+
self.use_mask_token = use_mask_token
|
209 |
+
self.use_absolute_position_embeddings = use_absolute_position_embeddings
|
210 |
+
self.use_relative_position_bias = use_relative_position_bias
|
211 |
+
self.use_shared_relative_position_bias = use_shared_relative_position_bias
|
212 |
+
self.layer_scale_init_value = layer_scale_init_value
|
213 |
+
self.drop_path_rate = drop_path_rate
|
214 |
+
self.use_mean_pooling = use_mean_pooling
|
215 |
+
# decode head attributes (semantic segmentation)
|
216 |
+
self.out_indices = out_indices
|
217 |
+
self.pool_scales = pool_scales
|
218 |
+
# auxiliary head attributes (semantic segmentation)
|
219 |
+
self.use_auxiliary_head = use_auxiliary_head
|
220 |
+
self.auxiliary_loss_weight = auxiliary_loss_weight
|
221 |
+
self.auxiliary_channels = auxiliary_channels
|
222 |
+
self.auxiliary_num_convs = auxiliary_num_convs
|
223 |
+
self.auxiliary_concat_input = auxiliary_concat_input
|
224 |
+
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
225 |
+
|
226 |
+
self.temporal_model_block = temporal_model_block
|
227 |
+
self.temporal_model_config = temporal_model_config
|
228 |
+
self.temporal_model_position = temporal_model_position
|
229 |
+
self.temporal_model_init_value = temporal_model_init_value
|
230 |
+
self.use_temporal_position_embedding = use_temporal_position_embedding
|
231 |
+
self.add_k_prompts = add_k_prompts
|
232 |
+
self.num_frames = num_frames
|
233 |
+
|
234 |
+
|
235 |
+
@dataclass
|
236 |
+
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
|
237 |
+
"""
|
238 |
+
Class for outputs of [`BeitModel`].
|
239 |
+
|
240 |
+
Args:
|
241 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
242 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
243 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
244 |
+
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
|
245 |
+
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
|
246 |
+
will be returned.
|
247 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
248 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
249 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
250 |
+
|
251 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
252 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
253 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
254 |
+
sequence_length)`.
|
255 |
+
|
256 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
257 |
+
heads.
|
258 |
+
"""
|
259 |
+
|
260 |
+
|
261 |
+
def drop_path(
|
262 |
+
input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
|
263 |
+
) -> torch.Tensor:
|
264 |
+
"""
|
265 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
266 |
+
|
267 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
268 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
269 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
270 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
271 |
+
argument.
|
272 |
+
"""
|
273 |
+
if drop_prob == 0.0 or not training:
|
274 |
+
return input
|
275 |
+
keep_prob = 1 - drop_prob
|
276 |
+
shape = (input.shape[0],) + (1,) * (
|
277 |
+
input.ndim - 1
|
278 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
279 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
280 |
+
random_tensor.floor_() # binarize
|
281 |
+
output = input.div(keep_prob) * random_tensor
|
282 |
+
return output
|
283 |
+
|
284 |
+
|
285 |
+
class BeitDropPath(nn.Module):
|
286 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
287 |
+
|
288 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
289 |
+
super().__init__()
|
290 |
+
self.drop_prob = drop_prob
|
291 |
+
|
292 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
293 |
+
return drop_path(x, self.drop_prob, self.training)
|
294 |
+
|
295 |
+
def extra_repr(self) -> str:
|
296 |
+
return "p={}".format(self.drop_prob)
|
297 |
+
|
298 |
+
|
299 |
+
# Based on timm implementation, which can be found here:
|
300 |
+
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
301 |
+
class BeitEmbeddings(nn.Module):
|
302 |
+
"""
|
303 |
+
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
|
304 |
+
|
305 |
+
"""
|
306 |
+
|
307 |
+
def __init__(self, config: BeitConfig) -> None:
|
308 |
+
super().__init__()
|
309 |
+
|
310 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
311 |
+
if config.use_mask_token:
|
312 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
313 |
+
else:
|
314 |
+
self.mask_token = None
|
315 |
+
self.patch_embeddings = BeitPatchEmbeddings(config)
|
316 |
+
num_patches = self.patch_embeddings.num_patches
|
317 |
+
if config.use_absolute_position_embeddings:
|
318 |
+
self.position_embeddings = nn.Parameter(
|
319 |
+
torch.zeros(1, num_patches + 1, config.hidden_size)
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
self.position_embeddings = None
|
323 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
324 |
+
|
325 |
+
if config.use_temporal_position_embedding:
|
326 |
+
self.temporal_position_embeddings = nn.parameter.Parameter(
|
327 |
+
torch.zeros(1, config.num_frames, 1, config.hidden_size)
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
self.temporal_position_embeddings = None
|
331 |
+
|
332 |
+
if config.add_k_prompts > 0:
|
333 |
+
self.prompt_tokens = nn.parameter.Parameter(
|
334 |
+
torch.zeros(1, config.add_k_prompts, config.hidden_size)
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
self.prompt_tokens = None
|
338 |
+
|
339 |
+
def forward(
|
340 |
+
self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None
|
341 |
+
) -> torch.Tensor:
|
342 |
+
"""
|
343 |
+
Args:
|
344 |
+
pixel_values (torch.Tensor): The input image patches. Shape: [B, T, C, H, W].
|
345 |
+
|
346 |
+
|
347 |
+
"""
|
348 |
+
t = pixel_values.shape[1]
|
349 |
+
pixel_values = einops.rearrange(pixel_values, "b t c h w -> (b t) c h w")
|
350 |
+
|
351 |
+
embeddings = self.patch_embeddings(pixel_values)
|
352 |
+
batch_size, seq_len, _ = embeddings.size() # [(b t) l c]
|
353 |
+
|
354 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
355 |
+
if bool_masked_pos is not None:
|
356 |
+
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
357 |
+
# replace the masked visual tokens by mask_tokens
|
358 |
+
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
359 |
+
embeddings = embeddings * (1 - w) + mask_tokens * w
|
360 |
+
|
361 |
+
if self.prompt_tokens is not None:
|
362 |
+
prompt_tokens = self.prompt_tokens.expand(batch_size, -1, -1)
|
363 |
+
embeddings = torch.cat((cls_tokens, embeddings, prompt_tokens), dim=1)
|
364 |
+
else:
|
365 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1) # [B*T, L, C]
|
366 |
+
if self.position_embeddings is not None:
|
367 |
+
embeddings = embeddings + self.position_embeddings
|
368 |
+
|
369 |
+
embeddings = einops.rearrange(embeddings, "(b t) l c -> b t l c", t=t)
|
370 |
+
if self.temporal_position_embeddings is not None:
|
371 |
+
if t <= self.temporal_position_embeddings.shape[1]:
|
372 |
+
embeddings = embeddings + self.temporal_position_embeddings[:, :t]
|
373 |
+
else:
|
374 |
+
tpe = interpolate_temporal_pos_embed(self.temporal_position_embeddings, t)
|
375 |
+
embeddings = embeddings + tpe
|
376 |
+
|
377 |
+
embeddings = self.dropout(embeddings)
|
378 |
+
|
379 |
+
return embeddings
|
380 |
+
|
381 |
+
|
382 |
+
class BeitPatchEmbeddings(nn.Module):
|
383 |
+
"""
|
384 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
385 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
386 |
+
Transformer.
|
387 |
+
"""
|
388 |
+
|
389 |
+
def __init__(self, config):
|
390 |
+
super().__init__()
|
391 |
+
image_size, patch_size = config.image_size, config.patch_size
|
392 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
393 |
+
|
394 |
+
image_size = (
|
395 |
+
image_size
|
396 |
+
if isinstance(image_size, collections.abc.Iterable)
|
397 |
+
else (image_size, image_size)
|
398 |
+
)
|
399 |
+
patch_size = (
|
400 |
+
patch_size
|
401 |
+
if isinstance(patch_size, collections.abc.Iterable)
|
402 |
+
else (patch_size, patch_size)
|
403 |
+
)
|
404 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
405 |
+
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
406 |
+
self.image_size = image_size
|
407 |
+
self.patch_size = patch_size
|
408 |
+
self.num_channels = num_channels
|
409 |
+
self.num_patches = num_patches
|
410 |
+
self.patch_shape = patch_shape
|
411 |
+
|
412 |
+
self.projection = nn.Conv2d(
|
413 |
+
num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
|
414 |
+
)
|
415 |
+
|
416 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
417 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
418 |
+
if num_channels != self.num_channels:
|
419 |
+
raise ValueError(
|
420 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
421 |
+
)
|
422 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
423 |
+
raise ValueError(
|
424 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
425 |
+
)
|
426 |
+
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
427 |
+
|
428 |
+
return embeddings
|
429 |
+
|
430 |
+
|
431 |
+
class BeitSelfAttention(nn.Module):
|
432 |
+
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
|
433 |
+
super().__init__()
|
434 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
435 |
+
config, "embedding_size"
|
436 |
+
):
|
437 |
+
raise ValueError(
|
438 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
439 |
+
f"heads {config.num_attention_heads}."
|
440 |
+
)
|
441 |
+
|
442 |
+
self.num_attention_heads = config.num_attention_heads
|
443 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
444 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
445 |
+
|
446 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
447 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
448 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
449 |
+
|
450 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
451 |
+
|
452 |
+
if window_size:
|
453 |
+
self.relative_position_bias = BeitRelativePositionBias(
|
454 |
+
config, window_size=window_size
|
455 |
+
)
|
456 |
+
else:
|
457 |
+
self.relative_position_bias = None
|
458 |
+
|
459 |
+
def transpose_for_scores(self, x):
|
460 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
461 |
+
x = x.view(*new_x_shape)
|
462 |
+
return x.permute(0, 2, 1, 3)
|
463 |
+
|
464 |
+
def forward(
|
465 |
+
self,
|
466 |
+
hidden_states: torch.Tensor,
|
467 |
+
head_mask: Optional[torch.Tensor] = None,
|
468 |
+
output_attentions: bool = False,
|
469 |
+
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
|
470 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
471 |
+
mixed_query_layer = self.query(hidden_states)
|
472 |
+
|
473 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
474 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
475 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
476 |
+
|
477 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
478 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
479 |
+
|
480 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
481 |
+
|
482 |
+
# Add relative position bias if present.
|
483 |
+
if self.relative_position_bias is not None:
|
484 |
+
attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0)
|
485 |
+
|
486 |
+
# Add shared relative position bias if provided.
|
487 |
+
if relative_position_bias is not None:
|
488 |
+
attention_scores = attention_scores + relative_position_bias
|
489 |
+
|
490 |
+
# Normalize the attention scores to probabilities.
|
491 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
492 |
+
|
493 |
+
# This is actually dropping out entire tokens to attend to, which might
|
494 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
495 |
+
attention_probs = self.dropout(attention_probs)
|
496 |
+
|
497 |
+
# Mask heads if we want to
|
498 |
+
if head_mask is not None:
|
499 |
+
attention_probs = attention_probs * head_mask
|
500 |
+
|
501 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
502 |
+
|
503 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
504 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
505 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
506 |
+
|
507 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
508 |
+
|
509 |
+
return outputs
|
510 |
+
|
511 |
+
|
512 |
+
class BeitSelfOutput(nn.Module):
|
513 |
+
"""
|
514 |
+
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
|
515 |
+
layernorm applied before each block.
|
516 |
+
"""
|
517 |
+
|
518 |
+
def __init__(self, config: BeitConfig) -> None:
|
519 |
+
super().__init__()
|
520 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
521 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
522 |
+
|
523 |
+
def forward(
|
524 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None
|
525 |
+
) -> torch.Tensor:
|
526 |
+
hidden_states = self.dense(hidden_states)
|
527 |
+
hidden_states = self.dropout(hidden_states)
|
528 |
+
|
529 |
+
return hidden_states
|
530 |
+
|
531 |
+
|
532 |
+
class BeitAttention(nn.Module):
|
533 |
+
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
|
534 |
+
super().__init__()
|
535 |
+
self.attention = BeitSelfAttention(config, window_size=window_size)
|
536 |
+
self.output = BeitSelfOutput(config)
|
537 |
+
self.pruned_heads = set()
|
538 |
+
|
539 |
+
def prune_heads(self, heads):
|
540 |
+
if len(heads) == 0:
|
541 |
+
return
|
542 |
+
heads, index = find_pruneable_heads_and_indices(
|
543 |
+
heads,
|
544 |
+
self.attention.num_attention_heads,
|
545 |
+
self.attention.attention_head_size,
|
546 |
+
self.pruned_heads,
|
547 |
+
)
|
548 |
+
|
549 |
+
# Prune linear layers
|
550 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
551 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
552 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
553 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
554 |
+
|
555 |
+
# Update hyper params and store pruned heads
|
556 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
557 |
+
self.attention.all_head_size = (
|
558 |
+
self.attention.attention_head_size * self.attention.num_attention_heads
|
559 |
+
)
|
560 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
561 |
+
|
562 |
+
def forward(
|
563 |
+
self,
|
564 |
+
hidden_states: torch.Tensor,
|
565 |
+
head_mask: Optional[torch.Tensor] = None,
|
566 |
+
output_attentions: bool = False,
|
567 |
+
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
|
568 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
569 |
+
self_outputs = self.attention(
|
570 |
+
hidden_states, head_mask, output_attentions, relative_position_bias
|
571 |
+
)
|
572 |
+
|
573 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
574 |
+
|
575 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
576 |
+
return outputs
|
577 |
+
|
578 |
+
|
579 |
+
class BeitIntermediate(nn.Module):
|
580 |
+
def __init__(self, config: BeitConfig) -> None:
|
581 |
+
super().__init__()
|
582 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
583 |
+
if isinstance(config.hidden_act, str):
|
584 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
585 |
+
else:
|
586 |
+
self.intermediate_act_fn = config.hidden_act
|
587 |
+
|
588 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
589 |
+
hidden_states = self.dense(hidden_states)
|
590 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
591 |
+
|
592 |
+
return hidden_states
|
593 |
+
|
594 |
+
|
595 |
+
class BeitOutput(nn.Module):
|
596 |
+
def __init__(self, config: BeitConfig) -> None:
|
597 |
+
super().__init__()
|
598 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
599 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
600 |
+
|
601 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
602 |
+
hidden_states = self.dense(hidden_states)
|
603 |
+
hidden_states = self.dropout(hidden_states)
|
604 |
+
|
605 |
+
return hidden_states
|
606 |
+
|
607 |
+
|
608 |
+
class TemporalAttentionBeit(nn.Module):
|
609 |
+
|
610 |
+
"""temporal attention using BeitAttention"""
|
611 |
+
|
612 |
+
def __init__(self, config: BeitConfig):
|
613 |
+
"""TODO: to be defined."""
|
614 |
+
super().__init__()
|
615 |
+
|
616 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
617 |
+
self.attention = BeitAttention(config, window_size=None)
|
618 |
+
self.scale = nn.Parameter(
|
619 |
+
config.temporal_model_init_value * torch.ones((config.hidden_size)),
|
620 |
+
requires_grad=True,
|
621 |
+
)
|
622 |
+
self.drop_path = BeitDropPath(config.drop_path_rate)
|
623 |
+
|
624 |
+
def forward(self, hidden_states: torch.Tensor):
|
625 |
+
"""forward function
|
626 |
+
|
627 |
+
Args:
|
628 |
+
hidden_states (torch.Tensor): The input. Shape: [b,t,l,c]
|
629 |
+
|
630 |
+
Returns: TODO
|
631 |
+
|
632 |
+
"""
|
633 |
+
b = hidden_states.shape[0]
|
634 |
+
output = einops.rearrange(hidden_states, "b t l c -> (b l) t c")
|
635 |
+
output = self.layernorm_before(output)
|
636 |
+
output = self.attention(output)
|
637 |
+
output = einops.rearrange(output[0], "(b l) t c -> b t l c", b=b)
|
638 |
+
return hidden_states + self.drop_path(output[0]) * self.scale
|
639 |
+
|
640 |
+
|
641 |
+
class BeitLayer(nn.Module):
|
642 |
+
"""This corresponds to the Block class in the timm implementation."""
|
643 |
+
|
644 |
+
def __init__(
|
645 |
+
self,
|
646 |
+
config: BeitConfig,
|
647 |
+
window_size: Optional[tuple] = None,
|
648 |
+
drop_path_rate: float = 0.0,
|
649 |
+
) -> None:
|
650 |
+
super().__init__()
|
651 |
+
self.config = config
|
652 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
653 |
+
self.seq_len_dim = 1
|
654 |
+
self.attention = BeitAttention(config, window_size=window_size)
|
655 |
+
self.intermediate = BeitIntermediate(config)
|
656 |
+
self.output = BeitOutput(config)
|
657 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
658 |
+
self.drop_path = (
|
659 |
+
BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
660 |
+
)
|
661 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
662 |
+
|
663 |
+
self.temporal_model_position = config.temporal_model_position
|
664 |
+
|
665 |
+
init_values = config.layer_scale_init_value
|
666 |
+
if init_values > 0:
|
667 |
+
self.lambda_1 = nn.Parameter(
|
668 |
+
init_values * torch.ones((config.hidden_size)), requires_grad=True
|
669 |
+
)
|
670 |
+
self.lambda_2 = nn.Parameter(
|
671 |
+
init_values * torch.ones((config.hidden_size)), requires_grad=True
|
672 |
+
)
|
673 |
+
else:
|
674 |
+
self.lambda_1, self.lambda_2 = None, None
|
675 |
+
|
676 |
+
if config.temporal_model_block == "st_adapter":
|
677 |
+
self.temp_model = STAdapter(**config.temporal_model_config)
|
678 |
+
elif config.temporal_model_block == "timesformer":
|
679 |
+
self.temp_model = TemporalAttention(**config.temporal_model_config)
|
680 |
+
elif config.temporal_model_block == "ta_beit":
|
681 |
+
self.temp_model = TemporalAttentionBeit(config)
|
682 |
+
elif config.temporal_model_block == "window_attention":
|
683 |
+
self.temp_model = WindowTemporalAttention(**config.temporal_model_config)
|
684 |
+
elif config.temporal_model_block == "xclip":
|
685 |
+
self.temp_model = X_CLIP(**config.temporal_model_config)
|
686 |
+
elif config.temporal_model_block == "none":
|
687 |
+
self.temp_model = None
|
688 |
+
else:
|
689 |
+
raise ValueError(f"not accepted temporal model: {config.temporal_model_block}")
|
690 |
+
|
691 |
+
self.temporal_model_block = config.temporal_model_block
|
692 |
+
|
693 |
+
def forward(
|
694 |
+
self,
|
695 |
+
hidden_states: torch.Tensor,
|
696 |
+
head_mask: Optional[torch.Tensor] = None,
|
697 |
+
output_attentions: bool = False,
|
698 |
+
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
|
699 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
700 |
+
|
701 |
+
b, t, l, c = hidden_states.shape
|
702 |
+
|
703 |
+
if self.temporal_model_block == "xclip":
|
704 |
+
assert (
|
705 |
+
self.temporal_model_position == "first" and self.config.add_k_prompts == 1
|
706 |
+
), "xclip must be put before the attention and add_k_prompts must be 1."
|
707 |
+
|
708 |
+
if self.temp_model is not None and self.temporal_model_position == "first":
|
709 |
+
hidden_states = self.temp_model(hidden_states)
|
710 |
+
|
711 |
+
hidden_states = einops.rearrange(hidden_states, "b t l c -> (b t) l c")
|
712 |
+
|
713 |
+
self_attention_outputs = self.attention(
|
714 |
+
self.layernorm_before(
|
715 |
+
hidden_states
|
716 |
+
), # in BEiT, layernorm is applied before self-attention
|
717 |
+
head_mask,
|
718 |
+
output_attentions=output_attentions,
|
719 |
+
relative_position_bias=relative_position_bias,
|
720 |
+
)
|
721 |
+
attention_output = self_attention_outputs[0]
|
722 |
+
|
723 |
+
# add self attentions if we output attention weights
|
724 |
+
outputs = self_attention_outputs[1:]
|
725 |
+
|
726 |
+
# apply lambda_1 if present
|
727 |
+
if self.lambda_1 is not None:
|
728 |
+
attention_output = self.lambda_1 * attention_output
|
729 |
+
|
730 |
+
# first residual connection
|
731 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
732 |
+
|
733 |
+
# in BEiT, layernorm is also applied after self-attention
|
734 |
+
layer_output = self.layernorm_after(hidden_states)
|
735 |
+
|
736 |
+
layer_output = self.intermediate(layer_output)
|
737 |
+
layer_output = self.output(layer_output)
|
738 |
+
|
739 |
+
if self.lambda_2 is not None:
|
740 |
+
layer_output = self.lambda_2 * layer_output
|
741 |
+
|
742 |
+
# second residual connection
|
743 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
744 |
+
|
745 |
+
layer_output = einops.rearrange(layer_output, "(b t) l c -> b t l c", b=b)
|
746 |
+
|
747 |
+
# apply temporal modeling block
|
748 |
+
if self.temp_model is not None and self.temporal_model_position == "last":
|
749 |
+
layer_output = self.temp_model(layer_output)
|
750 |
+
|
751 |
+
outputs = (layer_output,) + outputs
|
752 |
+
|
753 |
+
return outputs
|
754 |
+
|
755 |
+
|
756 |
+
class BeitRelativePositionBias(nn.Module):
|
757 |
+
def __init__(self, config: BeitConfig, window_size: tuple) -> None:
|
758 |
+
super().__init__()
|
759 |
+
self.window_size = window_size
|
760 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
761 |
+
self.relative_position_bias_table = nn.Parameter(
|
762 |
+
torch.zeros(self.num_relative_distance, config.num_attention_heads)
|
763 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
764 |
+
# cls to token & token 2 cls & cls to cls
|
765 |
+
|
766 |
+
# get pair-wise relative position index for each token inside the window
|
767 |
+
coords_h = torch.arange(window_size[0])
|
768 |
+
coords_w = torch.arange(window_size[1])
|
769 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
770 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
771 |
+
relative_coords = (
|
772 |
+
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
773 |
+
) # 2, Wh*Ww, Wh*Ww
|
774 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
775 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
776 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
777 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
778 |
+
relative_position_index = torch.zeros(
|
779 |
+
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
|
780 |
+
)
|
781 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
782 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
783 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
784 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
785 |
+
|
786 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
787 |
+
|
788 |
+
# add bias for prompts
|
789 |
+
k = config.add_k_prompts
|
790 |
+
self.k = k
|
791 |
+
if k > 0:
|
792 |
+
self.prompt_bias_table = nn.parameter.Parameter(
|
793 |
+
torch.zeros((2 + k) * k, config.num_attention_heads)
|
794 |
+
) # k prompt-to-token, k token-to-prompt, k*k prompt-to-promt
|
795 |
+
else:
|
796 |
+
self.prompt_bias_table = None
|
797 |
+
|
798 |
+
def forward(self) -> torch.Tensor:
|
799 |
+
relative_position_bias = self.relative_position_bias_table[
|
800 |
+
self.relative_position_index.view(-1)
|
801 |
+
].view(
|
802 |
+
self.window_size[0] * self.window_size[1] + 1,
|
803 |
+
self.window_size[0] * self.window_size[1] + 1,
|
804 |
+
-1,
|
805 |
+
) # Wh*Ww,Wh*Ww,nH
|
806 |
+
|
807 |
+
k = self.k
|
808 |
+
if k > 0:
|
809 |
+
l = self.window_size[0] * self.window_size[1] + 1
|
810 |
+
bias = torch.zeros(l + k, l + k, relative_position_bias.shape[-1]).to(
|
811 |
+
relative_position_bias.device
|
812 |
+
)
|
813 |
+
bias[:l, :l] = relative_position_bias
|
814 |
+
bias[l:, :l] = self.prompt_bias_table[:k].view(k, 1, -1) # prompt to token
|
815 |
+
bias[:l, l:] = self.prompt_bias_table[k : 2 * k].view(1, k, -1) # token to prompt
|
816 |
+
bias[l:, l:] = self.prompt_bias_table[2 * k, :].view(k, k, -1) # prompt to prompt
|
817 |
+
|
818 |
+
# bias[k:, k:] = relative_position_bias
|
819 |
+
# bias[:k, k:] = self.prompt_bias_table[:k].view(k, 1, -1)
|
820 |
+
# bias[k:, :k] = self.prompt_bias_table[k : 2 * k].view(1, k, -1)
|
821 |
+
# bias[:k, :k] = self.prompt_bias_table[2 * k :].view(k, k, -1)
|
822 |
+
else:
|
823 |
+
bias = relative_position_bias
|
824 |
+
|
825 |
+
return bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
826 |
+
|
827 |
+
|
828 |
+
class BeitEncoder(nn.Module):
|
829 |
+
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
|
830 |
+
super().__init__()
|
831 |
+
self.config = config
|
832 |
+
if config.use_shared_relative_position_bias:
|
833 |
+
self.relative_position_bias = BeitRelativePositionBias(
|
834 |
+
config, window_size=window_size
|
835 |
+
)
|
836 |
+
else:
|
837 |
+
self.relative_position_bias = None
|
838 |
+
|
839 |
+
# stochastic depth decay rule
|
840 |
+
dpr = [
|
841 |
+
x.item()
|
842 |
+
for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)
|
843 |
+
]
|
844 |
+
self.layer = nn.ModuleList(
|
845 |
+
[
|
846 |
+
BeitLayer(
|
847 |
+
config,
|
848 |
+
window_size=window_size if config.use_relative_position_bias else None,
|
849 |
+
drop_path_rate=dpr[i],
|
850 |
+
)
|
851 |
+
for i in range(config.num_hidden_layers)
|
852 |
+
]
|
853 |
+
)
|
854 |
+
self.gradient_checkpointing = False
|
855 |
+
|
856 |
+
def forward(
|
857 |
+
self,
|
858 |
+
hidden_states: torch.Tensor,
|
859 |
+
head_mask: Optional[torch.Tensor] = None,
|
860 |
+
output_attentions: bool = False,
|
861 |
+
output_hidden_states: bool = False,
|
862 |
+
return_dict: bool = True,
|
863 |
+
) -> Union[tuple, BaseModelOutput]:
|
864 |
+
all_hidden_states = () if output_hidden_states else None
|
865 |
+
all_self_attentions = () if output_attentions else None
|
866 |
+
|
867 |
+
for i, layer_module in enumerate(self.layer):
|
868 |
+
if output_hidden_states:
|
869 |
+
# all_hidden_states = all_hidden_states + (
|
870 |
+
# einops.rearrange(hidden_states, "b t l c -> (b t) l c"),
|
871 |
+
# )
|
872 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
873 |
+
|
874 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
875 |
+
|
876 |
+
if self.gradient_checkpointing and self.training:
|
877 |
+
|
878 |
+
def create_custom_forward(module):
|
879 |
+
def custom_forward(*inputs):
|
880 |
+
return module(*inputs, output_attentions)
|
881 |
+
|
882 |
+
return custom_forward
|
883 |
+
|
884 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
885 |
+
create_custom_forward(layer_module),
|
886 |
+
hidden_states,
|
887 |
+
layer_head_mask,
|
888 |
+
use_reentrant=False,
|
889 |
+
)
|
890 |
+
else:
|
891 |
+
relative_position_bias = (
|
892 |
+
self.relative_position_bias()
|
893 |
+
if self.relative_position_bias is not None
|
894 |
+
else None
|
895 |
+
)
|
896 |
+
layer_outputs = layer_module(
|
897 |
+
hidden_states, layer_head_mask, output_attentions, relative_position_bias
|
898 |
+
)
|
899 |
+
|
900 |
+
hidden_states = layer_outputs[0]
|
901 |
+
|
902 |
+
if output_attentions:
|
903 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
904 |
+
|
905 |
+
# hidden_states = einops.rearrange(hidden_states, "b t l c -> (b t) l c")
|
906 |
+
|
907 |
+
if output_hidden_states:
|
908 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
909 |
+
|
910 |
+
if not return_dict:
|
911 |
+
return tuple(
|
912 |
+
v
|
913 |
+
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
914 |
+
if v is not None
|
915 |
+
)
|
916 |
+
return BaseModelOutput(
|
917 |
+
last_hidden_state=hidden_states,
|
918 |
+
hidden_states=all_hidden_states,
|
919 |
+
attentions=all_self_attentions,
|
920 |
+
)
|
921 |
+
|
922 |
+
|
923 |
+
class BeitPreTrainedModel(PreTrainedModel):
|
924 |
+
"""
|
925 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
926 |
+
models.
|
927 |
+
"""
|
928 |
+
|
929 |
+
config_class = BeitConfig
|
930 |
+
base_model_prefix = "beit"
|
931 |
+
main_input_name = "pixel_values"
|
932 |
+
supports_gradient_checkpointing = True
|
933 |
+
|
934 |
+
def _init_weights(self, module):
|
935 |
+
"""Initialize the weights"""
|
936 |
+
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
937 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
938 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
939 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
940 |
+
if module.bias is not None:
|
941 |
+
module.bias.data.zero_()
|
942 |
+
elif isinstance(module, nn.Embedding):
|
943 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
944 |
+
if module.padding_idx is not None:
|
945 |
+
module.weight.data[module.padding_idx].zero_()
|
946 |
+
elif isinstance(module, nn.LayerNorm):
|
947 |
+
module.bias.data.zero_()
|
948 |
+
module.weight.data.fill_(1.0)
|
949 |
+
|
950 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
951 |
+
if isinstance(module, BeitEncoder):
|
952 |
+
module.gradient_checkpointing = value
|
953 |
+
|
954 |
+
|
955 |
+
BEIT_START_DOCSTRING = r"""
|
956 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
957 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
958 |
+
behavior.
|
959 |
+
|
960 |
+
Parameters:
|
961 |
+
config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
|
962 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
963 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
964 |
+
"""
|
965 |
+
|
966 |
+
BEIT_INPUTS_DOCSTRING = r"""
|
967 |
+
Args:
|
968 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
969 |
+
Pixel values. Pixel values can be obtained using [`BeitFeatureExtractor`]. See
|
970 |
+
[`BeitFeatureExtractor.__call__`] for details.
|
971 |
+
|
972 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
973 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
974 |
+
|
975 |
+
- 1 indicates the head is **not masked**,
|
976 |
+
- 0 indicates the head is **masked**.
|
977 |
+
|
978 |
+
output_attentions (`bool`, *optional*):
|
979 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
980 |
+
tensors for more detail.
|
981 |
+
output_hidden_states (`bool`, *optional*):
|
982 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
983 |
+
more detail.
|
984 |
+
return_dict (`bool`, *optional*):
|
985 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
986 |
+
"""
|
987 |
+
|
988 |
+
|
989 |
+
@add_start_docstrings(
|
990 |
+
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
|
991 |
+
BEIT_START_DOCSTRING,
|
992 |
+
)
|
993 |
+
class BeitModel(BeitPreTrainedModel):
|
994 |
+
def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None:
|
995 |
+
super().__init__(config)
|
996 |
+
self.config = config
|
997 |
+
|
998 |
+
self.embeddings = BeitEmbeddings(config)
|
999 |
+
self.encoder = BeitEncoder(
|
1000 |
+
config, window_size=self.embeddings.patch_embeddings.patch_shape
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
self.layernorm = (
|
1004 |
+
nn.Identity()
|
1005 |
+
if config.use_mean_pooling
|
1006 |
+
else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1007 |
+
)
|
1008 |
+
self.pooler = BeitPooler(config) if add_pooling_layer else None
|
1009 |
+
|
1010 |
+
# Initialize weights and apply final processing
|
1011 |
+
self.post_init()
|
1012 |
+
|
1013 |
+
def get_input_embeddings(self):
|
1014 |
+
return self.embeddings.patch_embeddings
|
1015 |
+
|
1016 |
+
def _prune_heads(self, heads_to_prune):
|
1017 |
+
"""
|
1018 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1019 |
+
class PreTrainedModel
|
1020 |
+
"""
|
1021 |
+
for layer, heads in heads_to_prune.items():
|
1022 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1023 |
+
|
1024 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
1025 |
+
@add_code_sample_docstrings(
|
1026 |
+
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
|
1027 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1028 |
+
output_type=BeitModelOutputWithPooling,
|
1029 |
+
config_class=_CONFIG_FOR_DOC,
|
1030 |
+
modality="vision",
|
1031 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
1032 |
+
)
|
1033 |
+
def forward(
|
1034 |
+
self,
|
1035 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1036 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
1037 |
+
head_mask: Optional[torch.Tensor] = None,
|
1038 |
+
output_attentions: Optional[bool] = None,
|
1039 |
+
output_hidden_states: Optional[bool] = None,
|
1040 |
+
return_dict: Optional[bool] = None,
|
1041 |
+
) -> Union[tuple, BeitModelOutputWithPooling]:
|
1042 |
+
output_attentions = (
|
1043 |
+
output_attentions
|
1044 |
+
if output_attentions is not None
|
1045 |
+
else self.config.output_attentions
|
1046 |
+
)
|
1047 |
+
output_hidden_states = (
|
1048 |
+
output_hidden_states
|
1049 |
+
if output_hidden_states is not None
|
1050 |
+
else self.config.output_hidden_states
|
1051 |
+
)
|
1052 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1053 |
+
|
1054 |
+
if pixel_values is None:
|
1055 |
+
raise ValueError("You have to specify pixel_values")
|
1056 |
+
|
1057 |
+
# Prepare head mask if needed
|
1058 |
+
# 1.0 in head_mask indicate we keep the head
|
1059 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1060 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1061 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1062 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1063 |
+
|
1064 |
+
# pixel_values: [bsz, nframes, c, h, w]
|
1065 |
+
assert pixel_values.ndim == 5, logger.error(
|
1066 |
+
f"input shape to st_beit: {pixel_values.shape}"
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
embedding_output = self.embeddings(
|
1070 |
+
pixel_values, bool_masked_pos
|
1071 |
+
) # [bs, nframes, L, c]
|
1072 |
+
|
1073 |
+
encoder_outputs = self.encoder(
|
1074 |
+
embedding_output,
|
1075 |
+
head_mask=head_mask,
|
1076 |
+
output_attentions=output_attentions,
|
1077 |
+
output_hidden_states=output_hidden_states,
|
1078 |
+
return_dict=return_dict,
|
1079 |
+
)
|
1080 |
+
sequence_output = encoder_outputs[0]
|
1081 |
+
sequence_output = self.layernorm(sequence_output)
|
1082 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1083 |
+
|
1084 |
+
# logger.info(f"sequence_output: {sequence_output.shape}. pooled_output: {pooled_output.shape}")
|
1085 |
+
|
1086 |
+
if not return_dict:
|
1087 |
+
head_outputs = (
|
1088 |
+
(sequence_output, pooled_output)
|
1089 |
+
if pooled_output is not None
|
1090 |
+
else (sequence_output,)
|
1091 |
+
)
|
1092 |
+
return head_outputs + encoder_outputs[1:]
|
1093 |
+
|
1094 |
+
return BeitModelOutputWithPooling(
|
1095 |
+
last_hidden_state=sequence_output,
|
1096 |
+
pooler_output=pooled_output,
|
1097 |
+
hidden_states=encoder_outputs.hidden_states,
|
1098 |
+
attentions=encoder_outputs.attentions,
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
|
1102 |
+
class BeitPooler(nn.Module):
|
1103 |
+
def __init__(self, config: BeitConfig) -> None:
|
1104 |
+
super().__init__()
|
1105 |
+
self.num_prompts = config.add_k_prompts
|
1106 |
+
self.layernorm = (
|
1107 |
+
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1108 |
+
if config.use_mean_pooling
|
1109 |
+
else None
|
1110 |
+
)
|
1111 |
+
|
1112 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1113 |
+
"""
|
1114 |
+
Args:
|
1115 |
+
hidden_states (torch.Tensor): Shape: [B,T,L,C]
|
1116 |
+
"""
|
1117 |
+
if self.layernorm is not None:
|
1118 |
+
# Mean pool the final hidden states of the patch tokens
|
1119 |
+
# patch_tokens = hidden_states[:, 1 + self.num_prompts :, :]
|
1120 |
+
if self.num_prompts > 0:
|
1121 |
+
patch_tokens = hidden_states[:, :, 1 : -self.num_prompts, :]
|
1122 |
+
else:
|
1123 |
+
patch_tokens = hidden_states[:, :, 1:, :]
|
1124 |
+
pooled_output = self.layernorm(patch_tokens.mean(2))
|
1125 |
+
else:
|
1126 |
+
# Pool by simply taking the final hidden state of the [CLS] token
|
1127 |
+
pooled_output = hidden_states[:, :, 0]
|
1128 |
+
|
1129 |
+
return pooled_output
|
1130 |
+
|
1131 |
+
|
1132 |
+
@add_start_docstrings(
|
1133 |
+
"""Beit Model transformer with a 'language' modeling head on top. BEiT does masked image modeling by predicting
|
1134 |
+
visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT
|
1135 |
+
predict RGB pixel values. As a result, this class is incompatible with [`AutoModelForMaskedImageModeling`], so you
|
1136 |
+
will need to use [`BeitForMaskedImageModeling`] directly if you wish to do masked image modeling with BEiT.""",
|
1137 |
+
BEIT_START_DOCSTRING,
|
1138 |
+
)
|
1139 |
+
class BeitForMaskedImageModeling(BeitPreTrainedModel):
|
1140 |
+
def __init__(self, config: BeitConfig) -> None:
|
1141 |
+
super().__init__(config)
|
1142 |
+
|
1143 |
+
self.num_labels = config.num_labels
|
1144 |
+
self.beit = BeitModel(config, add_pooling_layer=False)
|
1145 |
+
|
1146 |
+
# Classifier head
|
1147 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1148 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
|
1149 |
+
|
1150 |
+
# Initialize weights and apply final processing
|
1151 |
+
self.post_init()
|
1152 |
+
|
1153 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
1154 |
+
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
1155 |
+
def forward(
|
1156 |
+
self,
|
1157 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1158 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
1159 |
+
head_mask: Optional[torch.Tensor] = None,
|
1160 |
+
labels: Optional[torch.Tensor] = None,
|
1161 |
+
output_attentions: Optional[bool] = None,
|
1162 |
+
output_hidden_states: Optional[bool] = None,
|
1163 |
+
return_dict: Optional[bool] = None,
|
1164 |
+
) -> Union[tuple, MaskedLMOutput]:
|
1165 |
+
r"""
|
1166 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
|
1167 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
1168 |
+
|
1169 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1170 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1171 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1172 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1173 |
+
|
1174 |
+
Returns:
|
1175 |
+
|
1176 |
+
Examples:
|
1177 |
+
|
1178 |
+
```python
|
1179 |
+
>>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
|
1180 |
+
>>> import torch
|
1181 |
+
>>> from PIL import Image
|
1182 |
+
>>> import requests
|
1183 |
+
|
1184 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1185 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1186 |
+
|
1187 |
+
>>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
|
1188 |
+
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
|
1189 |
+
|
1190 |
+
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
|
1191 |
+
>>> pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
1192 |
+
>>> # create random boolean mask of shape (batch_size, num_patches)
|
1193 |
+
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
|
1194 |
+
|
1195 |
+
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
|
1196 |
+
>>> loss, logits = outputs.loss, outputs.logits
|
1197 |
+
>>> list(logits.shape)
|
1198 |
+
[1, 196, 8192]
|
1199 |
+
```"""
|
1200 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1201 |
+
|
1202 |
+
outputs = self.beit(
|
1203 |
+
pixel_values,
|
1204 |
+
bool_masked_pos=bool_masked_pos,
|
1205 |
+
head_mask=head_mask,
|
1206 |
+
output_attentions=output_attentions,
|
1207 |
+
output_hidden_states=output_hidden_states,
|
1208 |
+
return_dict=return_dict,
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
sequence_output = outputs[0]
|
1212 |
+
sequence_output = self.layernorm(sequence_output)
|
1213 |
+
prediction_scores = self.lm_head(sequence_output[:, 1:])
|
1214 |
+
|
1215 |
+
masked_lm_loss = None
|
1216 |
+
if labels is not None:
|
1217 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1218 |
+
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)
|
1219 |
+
|
1220 |
+
if not return_dict:
|
1221 |
+
output = (prediction_scores,) + outputs[1:]
|
1222 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1223 |
+
|
1224 |
+
return MaskedLMOutput(
|
1225 |
+
loss=masked_lm_loss,
|
1226 |
+
logits=prediction_scores,
|
1227 |
+
hidden_states=outputs.hidden_states,
|
1228 |
+
attentions=outputs.attentions,
|
1229 |
+
)
|
1230 |
+
|
1231 |
+
|
1232 |
+
@add_start_docstrings(
|
1233 |
+
"""
|
1234 |
+
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
|
1235 |
+
hidden states of the patch tokens) e.g. for ImageNet.
|
1236 |
+
""",
|
1237 |
+
BEIT_START_DOCSTRING,
|
1238 |
+
)
|
1239 |
+
class BeitForImageClassification(BeitPreTrainedModel):
|
1240 |
+
def __init__(self, config: BeitConfig) -> None:
|
1241 |
+
super().__init__(config)
|
1242 |
+
|
1243 |
+
self.num_labels = config.num_labels
|
1244 |
+
self.beit = BeitModel(config, add_pooling_layer=True)
|
1245 |
+
|
1246 |
+
# Classifier head
|
1247 |
+
self.classifier = (
|
1248 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
1249 |
+
if config.num_labels > 0
|
1250 |
+
else nn.Identity()
|
1251 |
+
)
|
1252 |
+
|
1253 |
+
# Initialize weights and apply final processing
|
1254 |
+
self.post_init()
|
1255 |
+
|
1256 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
1257 |
+
@add_code_sample_docstrings(
|
1258 |
+
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
|
1259 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1260 |
+
output_type=ImageClassifierOutput,
|
1261 |
+
config_class=_CONFIG_FOR_DOC,
|
1262 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1263 |
+
)
|
1264 |
+
def forward(
|
1265 |
+
self,
|
1266 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1267 |
+
head_mask: Optional[torch.Tensor] = None,
|
1268 |
+
labels: Optional[torch.Tensor] = None,
|
1269 |
+
output_attentions: Optional[bool] = None,
|
1270 |
+
output_hidden_states: Optional[bool] = None,
|
1271 |
+
return_dict: Optional[bool] = None,
|
1272 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
1273 |
+
r"""
|
1274 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1275 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1276 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1277 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1278 |
+
"""
|
1279 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1280 |
+
outputs = self.beit(
|
1281 |
+
pixel_values,
|
1282 |
+
head_mask=head_mask,
|
1283 |
+
output_attentions=output_attentions,
|
1284 |
+
output_hidden_states=output_hidden_states,
|
1285 |
+
return_dict=return_dict,
|
1286 |
+
)
|
1287 |
+
|
1288 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
1289 |
+
|
1290 |
+
logits = self.classifier(pooled_output)
|
1291 |
+
|
1292 |
+
loss = None
|
1293 |
+
if labels is not None:
|
1294 |
+
if self.config.problem_type is None:
|
1295 |
+
if self.num_labels == 1:
|
1296 |
+
self.config.problem_type = "regression"
|
1297 |
+
elif self.num_labels > 1 and (
|
1298 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1299 |
+
):
|
1300 |
+
self.config.problem_type = "single_label_classification"
|
1301 |
+
else:
|
1302 |
+
self.config.problem_type = "multi_label_classification"
|
1303 |
+
|
1304 |
+
if self.config.problem_type == "regression":
|
1305 |
+
loss_fct = MSELoss()
|
1306 |
+
if self.num_labels == 1:
|
1307 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1308 |
+
else:
|
1309 |
+
loss = loss_fct(logits, labels)
|
1310 |
+
elif self.config.problem_type == "single_label_classification":
|
1311 |
+
loss_fct = CrossEntropyLoss()
|
1312 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1313 |
+
elif self.config.problem_type == "multi_label_classification":
|
1314 |
+
loss_fct = BCEWithLogitsLoss()
|
1315 |
+
loss = loss_fct(logits, labels)
|
1316 |
+
if not return_dict:
|
1317 |
+
output = (logits,) + outputs[2:]
|
1318 |
+
return ((loss,) + output) if loss is not None else output
|
1319 |
+
|
1320 |
+
return ImageClassifierOutput(
|
1321 |
+
loss=loss,
|
1322 |
+
logits=logits,
|
1323 |
+
hidden_states=outputs.hidden_states,
|
1324 |
+
attentions=outputs.attentions,
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
|
1328 |
+
class BeitConvModule(nn.Module):
|
1329 |
+
"""
|
1330 |
+
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
|
1331 |
+
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
|
1332 |
+
|
1333 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1334 |
+
"""
|
1335 |
+
|
1336 |
+
def __init__(
|
1337 |
+
self,
|
1338 |
+
in_channels: int,
|
1339 |
+
out_channels: int,
|
1340 |
+
kernel_size: Union[int, Tuple[int, int]],
|
1341 |
+
padding: Union[int, Tuple[int, int], str] = 0,
|
1342 |
+
bias: bool = False,
|
1343 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
1344 |
+
) -> None:
|
1345 |
+
super().__init__()
|
1346 |
+
self.conv = nn.Conv2d(
|
1347 |
+
in_channels=in_channels,
|
1348 |
+
out_channels=out_channels,
|
1349 |
+
kernel_size=kernel_size,
|
1350 |
+
padding=padding,
|
1351 |
+
bias=bias,
|
1352 |
+
dilation=dilation,
|
1353 |
+
)
|
1354 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
1355 |
+
self.activation = nn.ReLU()
|
1356 |
+
|
1357 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
1358 |
+
output = self.conv(input)
|
1359 |
+
output = self.bn(output)
|
1360 |
+
output = self.activation(output)
|
1361 |
+
|
1362 |
+
return output
|
1363 |
+
|
1364 |
+
|
1365 |
+
class BeitPyramidPoolingBlock(nn.Module):
|
1366 |
+
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
|
1367 |
+
super().__init__()
|
1368 |
+
self.layers = [
|
1369 |
+
nn.AdaptiveAvgPool2d(pool_scale),
|
1370 |
+
BeitConvModule(in_channels, channels, kernel_size=1),
|
1371 |
+
]
|
1372 |
+
for i, layer in enumerate(self.layers):
|
1373 |
+
self.add_module(str(i), layer)
|
1374 |
+
|
1375 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
1376 |
+
hidden_state = input
|
1377 |
+
for layer in self.layers:
|
1378 |
+
hidden_state = layer(hidden_state)
|
1379 |
+
return hidden_state
|
1380 |
+
|
1381 |
+
|
1382 |
+
class BeitPyramidPoolingModule(nn.Module):
|
1383 |
+
"""
|
1384 |
+
Pyramid Pooling Module (PPM) used in PSPNet.
|
1385 |
+
|
1386 |
+
Args:
|
1387 |
+
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
|
1388 |
+
Module.
|
1389 |
+
in_channels (int): Input channels.
|
1390 |
+
channels (int): Channels after modules, before conv_seg.
|
1391 |
+
align_corners (bool): align_corners argument of F.interpolate.
|
1392 |
+
|
1393 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1394 |
+
"""
|
1395 |
+
|
1396 |
+
def __init__(
|
1397 |
+
self,
|
1398 |
+
pool_scales: Tuple[int, ...],
|
1399 |
+
in_channels: int,
|
1400 |
+
channels: int,
|
1401 |
+
align_corners: bool,
|
1402 |
+
) -> None:
|
1403 |
+
super().__init__()
|
1404 |
+
self.pool_scales = pool_scales
|
1405 |
+
self.align_corners = align_corners
|
1406 |
+
self.in_channels = in_channels
|
1407 |
+
self.channels = channels
|
1408 |
+
self.blocks = []
|
1409 |
+
for i, pool_scale in enumerate(pool_scales):
|
1410 |
+
block = BeitPyramidPoolingBlock(
|
1411 |
+
pool_scale=pool_scale, in_channels=in_channels, channels=channels
|
1412 |
+
)
|
1413 |
+
self.blocks.append(block)
|
1414 |
+
self.add_module(str(i), block)
|
1415 |
+
|
1416 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
1417 |
+
ppm_outs = []
|
1418 |
+
for ppm in self.blocks:
|
1419 |
+
ppm_out = ppm(x)
|
1420 |
+
upsampled_ppm_out = nn.functional.interpolate(
|
1421 |
+
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
|
1422 |
+
)
|
1423 |
+
ppm_outs.append(upsampled_ppm_out)
|
1424 |
+
return ppm_outs
|
1425 |
+
|
1426 |
+
|
1427 |
+
class BeitUperHead(nn.Module):
|
1428 |
+
"""
|
1429 |
+
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
|
1430 |
+
[UPerNet](https://arxiv.org/abs/1807.10221).
|
1431 |
+
|
1432 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1433 |
+
"""
|
1434 |
+
|
1435 |
+
def __init__(self, config: BeitConfig) -> None:
|
1436 |
+
super().__init__()
|
1437 |
+
|
1438 |
+
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
|
1439 |
+
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
|
1440 |
+
self.channels = config.hidden_size
|
1441 |
+
self.align_corners = False
|
1442 |
+
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
1443 |
+
|
1444 |
+
# PSP Module
|
1445 |
+
self.psp_modules = BeitPyramidPoolingModule(
|
1446 |
+
self.pool_scales,
|
1447 |
+
self.in_channels[-1],
|
1448 |
+
self.channels,
|
1449 |
+
align_corners=self.align_corners,
|
1450 |
+
)
|
1451 |
+
self.bottleneck = BeitConvModule(
|
1452 |
+
self.in_channels[-1] + len(self.pool_scales) * self.channels,
|
1453 |
+
self.channels,
|
1454 |
+
kernel_size=3,
|
1455 |
+
padding=1,
|
1456 |
+
)
|
1457 |
+
# FPN Module
|
1458 |
+
self.lateral_convs = nn.ModuleList()
|
1459 |
+
self.fpn_convs = nn.ModuleList()
|
1460 |
+
for in_channels in self.in_channels[:-1]: # skip the top layer
|
1461 |
+
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
|
1462 |
+
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
|
1463 |
+
self.lateral_convs.append(l_conv)
|
1464 |
+
self.fpn_convs.append(fpn_conv)
|
1465 |
+
|
1466 |
+
self.fpn_bottleneck = BeitConvModule(
|
1467 |
+
len(self.in_channels) * self.channels,
|
1468 |
+
self.channels,
|
1469 |
+
kernel_size=3,
|
1470 |
+
padding=1,
|
1471 |
+
)
|
1472 |
+
|
1473 |
+
def psp_forward(self, inputs):
|
1474 |
+
x = inputs[-1]
|
1475 |
+
psp_outs = [x]
|
1476 |
+
psp_outs.extend(self.psp_modules(x))
|
1477 |
+
psp_outs = torch.cat(psp_outs, dim=1)
|
1478 |
+
output = self.bottleneck(psp_outs)
|
1479 |
+
|
1480 |
+
return output
|
1481 |
+
|
1482 |
+
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
1483 |
+
# build laterals
|
1484 |
+
laterals = [
|
1485 |
+
lateral_conv(encoder_hidden_states[i])
|
1486 |
+
for i, lateral_conv in enumerate(self.lateral_convs)
|
1487 |
+
]
|
1488 |
+
|
1489 |
+
laterals.append(self.psp_forward(encoder_hidden_states))
|
1490 |
+
|
1491 |
+
# build top-down path
|
1492 |
+
used_backbone_levels = len(laterals)
|
1493 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
1494 |
+
prev_shape = laterals[i - 1].shape[2:]
|
1495 |
+
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
|
1496 |
+
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
|
1497 |
+
)
|
1498 |
+
|
1499 |
+
# build outputs
|
1500 |
+
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
|
1501 |
+
# append psp feature
|
1502 |
+
fpn_outs.append(laterals[-1])
|
1503 |
+
|
1504 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
1505 |
+
fpn_outs[i] = nn.functional.interpolate(
|
1506 |
+
fpn_outs[i],
|
1507 |
+
size=fpn_outs[0].shape[2:],
|
1508 |
+
mode="bilinear",
|
1509 |
+
align_corners=self.align_corners,
|
1510 |
+
)
|
1511 |
+
fpn_outs = torch.cat(fpn_outs, dim=1)
|
1512 |
+
output = self.fpn_bottleneck(fpn_outs)
|
1513 |
+
output = self.classifier(output)
|
1514 |
+
|
1515 |
+
return output
|
1516 |
+
|
1517 |
+
|
1518 |
+
class BeitFCNHead(nn.Module):
|
1519 |
+
"""
|
1520 |
+
Fully Convolution Networks for Semantic Segmentation. This head is implemented of
|
1521 |
+
[FCNNet](https://arxiv.org/abs/1411.4038>).
|
1522 |
+
|
1523 |
+
Args:
|
1524 |
+
config (BeitConfig): Configuration.
|
1525 |
+
in_channels
|
1526 |
+
kernel_size (int): The kernel size for convs in the head. Default: 3.
|
1527 |
+
dilation (int): The dilation rate for convs in the head. Default: 1.
|
1528 |
+
|
1529 |
+
|
1530 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1531 |
+
"""
|
1532 |
+
|
1533 |
+
def __init__(
|
1534 |
+
self,
|
1535 |
+
config: BeitConfig,
|
1536 |
+
in_index: int = 2,
|
1537 |
+
kernel_size: int = 3,
|
1538 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
1539 |
+
) -> None:
|
1540 |
+
super().__init__()
|
1541 |
+
self.in_channels = config.hidden_size
|
1542 |
+
self.channels = config.auxiliary_channels
|
1543 |
+
self.num_convs = config.auxiliary_num_convs
|
1544 |
+
self.concat_input = config.auxiliary_concat_input
|
1545 |
+
self.in_index = in_index
|
1546 |
+
|
1547 |
+
conv_padding = (kernel_size // 2) * dilation
|
1548 |
+
convs = []
|
1549 |
+
convs.append(
|
1550 |
+
BeitConvModule(
|
1551 |
+
self.in_channels,
|
1552 |
+
self.channels,
|
1553 |
+
kernel_size=kernel_size,
|
1554 |
+
padding=conv_padding,
|
1555 |
+
dilation=dilation,
|
1556 |
+
)
|
1557 |
+
)
|
1558 |
+
for i in range(self.num_convs - 1):
|
1559 |
+
convs.append(
|
1560 |
+
BeitConvModule(
|
1561 |
+
self.channels,
|
1562 |
+
self.channels,
|
1563 |
+
kernel_size=kernel_size,
|
1564 |
+
padding=conv_padding,
|
1565 |
+
dilation=dilation,
|
1566 |
+
)
|
1567 |
+
)
|
1568 |
+
if self.num_convs == 0:
|
1569 |
+
self.convs = nn.Identity()
|
1570 |
+
else:
|
1571 |
+
self.convs = nn.Sequential(*convs)
|
1572 |
+
if self.concat_input:
|
1573 |
+
self.conv_cat = BeitConvModule(
|
1574 |
+
self.in_channels + self.channels,
|
1575 |
+
self.channels,
|
1576 |
+
kernel_size=kernel_size,
|
1577 |
+
padding=kernel_size // 2,
|
1578 |
+
)
|
1579 |
+
|
1580 |
+
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
1581 |
+
|
1582 |
+
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
1583 |
+
# just take the relevant feature maps
|
1584 |
+
hidden_states = encoder_hidden_states[self.in_index]
|
1585 |
+
output = self.convs(hidden_states)
|
1586 |
+
if self.concat_input:
|
1587 |
+
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
|
1588 |
+
output = self.classifier(output)
|
1589 |
+
return output
|
1590 |
+
|
1591 |
+
|
1592 |
+
@add_start_docstrings(
|
1593 |
+
"""
|
1594 |
+
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
|
1595 |
+
""",
|
1596 |
+
BEIT_START_DOCSTRING,
|
1597 |
+
)
|
1598 |
+
class BeitForSemanticSegmentation(BeitPreTrainedModel):
|
1599 |
+
def __init__(self, config: BeitConfig) -> None:
|
1600 |
+
super().__init__(config)
|
1601 |
+
|
1602 |
+
self.num_labels = config.num_labels
|
1603 |
+
self.beit = BeitModel(config, add_pooling_layer=False)
|
1604 |
+
|
1605 |
+
# FPNs
|
1606 |
+
self.fpn1 = nn.Sequential(
|
1607 |
+
nn.ConvTranspose2d(
|
1608 |
+
config.hidden_size, config.hidden_size, kernel_size=2, stride=2
|
1609 |
+
),
|
1610 |
+
nn.BatchNorm2d(config.hidden_size),
|
1611 |
+
nn.GELU(),
|
1612 |
+
nn.ConvTranspose2d(
|
1613 |
+
config.hidden_size, config.hidden_size, kernel_size=2, stride=2
|
1614 |
+
),
|
1615 |
+
)
|
1616 |
+
self.fpn2 = nn.Sequential(
|
1617 |
+
nn.ConvTranspose2d(
|
1618 |
+
config.hidden_size, config.hidden_size, kernel_size=2, stride=2
|
1619 |
+
),
|
1620 |
+
)
|
1621 |
+
self.fpn3 = nn.Identity()
|
1622 |
+
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
|
1623 |
+
|
1624 |
+
# Semantic segmentation head(s)
|
1625 |
+
self.decode_head = BeitUperHead(config)
|
1626 |
+
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None
|
1627 |
+
|
1628 |
+
# Initialize weights and apply final processing
|
1629 |
+
self.post_init()
|
1630 |
+
|
1631 |
+
def compute_loss(self, logits, auxiliary_logits, labels):
|
1632 |
+
# upsample logits to the images' original size
|
1633 |
+
upsampled_logits = nn.functional.interpolate(
|
1634 |
+
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
1635 |
+
)
|
1636 |
+
if auxiliary_logits is not None:
|
1637 |
+
upsampled_auxiliary_logits = nn.functional.interpolate(
|
1638 |
+
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
1639 |
+
)
|
1640 |
+
# compute weighted loss
|
1641 |
+
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
|
1642 |
+
main_loss = loss_fct(upsampled_logits, labels)
|
1643 |
+
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
|
1644 |
+
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
|
1645 |
+
|
1646 |
+
return loss
|
1647 |
+
|
1648 |
+
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
|
1649 |
+
@replace_return_docstrings(
|
1650 |
+
output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC
|
1651 |
+
)
|
1652 |
+
def forward(
|
1653 |
+
self,
|
1654 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1655 |
+
head_mask: Optional[torch.Tensor] = None,
|
1656 |
+
labels: Optional[torch.Tensor] = None,
|
1657 |
+
output_attentions: Optional[bool] = None,
|
1658 |
+
output_hidden_states: Optional[bool] = None,
|
1659 |
+
return_dict: Optional[bool] = None,
|
1660 |
+
) -> Union[tuple, SemanticSegmenterOutput]:
|
1661 |
+
r"""
|
1662 |
+
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
1663 |
+
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
|
1664 |
+
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
|
1665 |
+
|
1666 |
+
Returns:
|
1667 |
+
|
1668 |
+
Examples:
|
1669 |
+
|
1670 |
+
```python
|
1671 |
+
>>> from transformers import AutoFeatureExtractor, BeitForSemanticSegmentation
|
1672 |
+
>>> from PIL import Image
|
1673 |
+
>>> import requests
|
1674 |
+
|
1675 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1676 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1677 |
+
|
1678 |
+
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
|
1679 |
+
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
|
1680 |
+
|
1681 |
+
>>> inputs = feature_extractor(images=image, return_tensors="pt")
|
1682 |
+
>>> outputs = model(**inputs)
|
1683 |
+
>>> # logits are of shape (batch_size, num_labels, height, width)
|
1684 |
+
>>> logits = outputs.logits
|
1685 |
+
```"""
|
1686 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1687 |
+
output_hidden_states = (
|
1688 |
+
output_hidden_states
|
1689 |
+
if output_hidden_states is not None
|
1690 |
+
else self.config.output_hidden_states
|
1691 |
+
)
|
1692 |
+
|
1693 |
+
outputs = self.beit(
|
1694 |
+
pixel_values,
|
1695 |
+
head_mask=head_mask,
|
1696 |
+
output_attentions=output_attentions,
|
1697 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
1698 |
+
return_dict=return_dict,
|
1699 |
+
)
|
1700 |
+
|
1701 |
+
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
1702 |
+
|
1703 |
+
# only keep certain features, and reshape
|
1704 |
+
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
|
1705 |
+
features = [
|
1706 |
+
feature
|
1707 |
+
for idx, feature in enumerate(encoder_hidden_states)
|
1708 |
+
if idx + 1 in self.config.out_indices
|
1709 |
+
]
|
1710 |
+
batch_size = pixel_values.shape[0]
|
1711 |
+
patch_resolution = self.config.image_size // self.config.patch_size
|
1712 |
+
features = [
|
1713 |
+
x[:, 1:, :]
|
1714 |
+
.permute(0, 2, 1)
|
1715 |
+
.reshape(batch_size, -1, patch_resolution, patch_resolution)
|
1716 |
+
for x in features
|
1717 |
+
]
|
1718 |
+
|
1719 |
+
# apply FPNs
|
1720 |
+
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
|
1721 |
+
for i in range(len(features)):
|
1722 |
+
features[i] = ops[i](features[i])
|
1723 |
+
|
1724 |
+
logits = self.decode_head(features)
|
1725 |
+
|
1726 |
+
auxiliary_logits = None
|
1727 |
+
if self.auxiliary_head is not None:
|
1728 |
+
auxiliary_logits = self.auxiliary_head(features)
|
1729 |
+
|
1730 |
+
loss = None
|
1731 |
+
if labels is not None:
|
1732 |
+
if self.config.num_labels == 1:
|
1733 |
+
raise ValueError("The number of labels should be greater than one")
|
1734 |
+
else:
|
1735 |
+
loss = self.compute_loss(logits, auxiliary_logits, labels)
|
1736 |
+
|
1737 |
+
if not return_dict:
|
1738 |
+
if output_hidden_states:
|
1739 |
+
output = (logits,) + outputs[1:]
|
1740 |
+
else:
|
1741 |
+
output = (logits,) + outputs[2:]
|
1742 |
+
return ((loss,) + output) if loss is not None else output
|
1743 |
+
|
1744 |
+
return SemanticSegmenterOutput(
|
1745 |
+
loss=loss,
|
1746 |
+
logits=logits,
|
1747 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
1748 |
+
attentions=outputs.attentions,
|
1749 |
+
)
|
models_viclip/backbones/bert/.tokenization_bert.py.swp
ADDED
Binary file (36.9 kB). View file
|
|
models_viclip/backbones/bert/__init__.py
ADDED
File without changes
|
models_viclip/backbones/bert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
models_viclip/backbones/bert/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (175 Bytes). View file
|
|
models_viclip/backbones/bert/__pycache__/tokenization_bert.cpython-310.pyc
ADDED
Binary file (20 kB). View file
|
|
models_viclip/backbones/bert/__pycache__/tokenization_bert.cpython-38.pyc
ADDED
Binary file (19.6 kB). View file
|
|
models_viclip/backbones/bert/builder.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .xbert import BertConfig, BertForMaskedLM, BertLMHeadModel, BertModel
|
2 |
+
|
3 |
+
import logging
|
4 |
+
logger = logging.getLogger(__name__)
|
5 |
+
|
6 |
+
def build_bert(model_config, pretrain, checkpoint):
|
7 |
+
"""build text encoder.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
model_config (dict): model config.
|
11 |
+
pretrain (bool): Whether to do pretrain or finetuning.
|
12 |
+
checkpoint (bool): whether to do gradient_checkpointing.
|
13 |
+
|
14 |
+
Returns: TODO
|
15 |
+
|
16 |
+
"""
|
17 |
+
bert_config = BertConfig.from_json_file(model_config.text_encoder.config)
|
18 |
+
bert_config.encoder_width = model_config.vision_encoder.d_model
|
19 |
+
bert_config.gradient_checkpointing = checkpoint
|
20 |
+
bert_config.fusion_layer = model_config.text_encoder.fusion_layer
|
21 |
+
|
22 |
+
if not model_config.multimodal.enable:
|
23 |
+
bert_config.fusion_layer = bert_config.num_hidden_layers
|
24 |
+
|
25 |
+
if pretrain:
|
26 |
+
text_encoder, loading_info = BertForMaskedLM.from_pretrained(
|
27 |
+
model_config.text_encoder.pretrained,
|
28 |
+
config=bert_config,
|
29 |
+
output_loading_info=True,
|
30 |
+
)
|
31 |
+
else:
|
32 |
+
text_encoder, loading_info = BertModel.from_pretrained(
|
33 |
+
model_config.text_encoder.pretrained,
|
34 |
+
config=bert_config,
|
35 |
+
add_pooling_layer=False,
|
36 |
+
output_loading_info=True,
|
37 |
+
)
|
38 |
+
|
39 |
+
return text_encoder
|
40 |
+
|
41 |
+
|
42 |
+
def build_bert_decoder(model_config, checkpoint):
|
43 |
+
"""build text decoder the same as the multimodal encoder.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
model_config (dict): model config.
|
47 |
+
pretrain (bool): Whether to do pretrain or finetuning.
|
48 |
+
checkpoint (bool): whether to do gradient_checkpointing.
|
49 |
+
|
50 |
+
Returns: TODO
|
51 |
+
|
52 |
+
"""
|
53 |
+
bert_config = BertConfig.from_json_file(model_config.text_encoder.config)
|
54 |
+
bert_config.encoder_width = model_config.vision_encoder.d_model
|
55 |
+
bert_config.gradient_checkpointing = checkpoint
|
56 |
+
|
57 |
+
bert_config.fusion_layer = 0
|
58 |
+
bert_config.num_hidden_layers = (
|
59 |
+
bert_config.num_hidden_layers - model_config.text_encoder.fusion_layer
|
60 |
+
)
|
61 |
+
|
62 |
+
text_decoder, loading_info = BertLMHeadModel.from_pretrained(
|
63 |
+
model_config.text_encoder.pretrained,
|
64 |
+
config=bert_config,
|
65 |
+
output_loading_info=True,
|
66 |
+
)
|
67 |
+
|
68 |
+
return text_decoder
|
models_viclip/backbones/bert/tokenization_bert.py
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Bert."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections
|
19 |
+
import os
|
20 |
+
import unicodedata
|
21 |
+
from typing import List, Optional, Tuple
|
22 |
+
|
23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
32 |
+
"vocab_file": {
|
33 |
+
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
|
34 |
+
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
|
35 |
+
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
|
36 |
+
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
|
37 |
+
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt",
|
38 |
+
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
|
39 |
+
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
|
40 |
+
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
|
41 |
+
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt",
|
42 |
+
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt",
|
43 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
44 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
45 |
+
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt",
|
46 |
+
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
|
47 |
+
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt",
|
48 |
+
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt",
|
49 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt",
|
50 |
+
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt",
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
55 |
+
"bert-base-uncased": 512,
|
56 |
+
"bert-large-uncased": 512,
|
57 |
+
"bert-base-cased": 512,
|
58 |
+
"bert-large-cased": 512,
|
59 |
+
"bert-base-multilingual-uncased": 512,
|
60 |
+
"bert-base-multilingual-cased": 512,
|
61 |
+
"bert-base-chinese": 512,
|
62 |
+
"bert-base-german-cased": 512,
|
63 |
+
"bert-large-uncased-whole-word-masking": 512,
|
64 |
+
"bert-large-cased-whole-word-masking": 512,
|
65 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": 512,
|
66 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": 512,
|
67 |
+
"bert-base-cased-finetuned-mrpc": 512,
|
68 |
+
"bert-base-german-dbmdz-cased": 512,
|
69 |
+
"bert-base-german-dbmdz-uncased": 512,
|
70 |
+
"TurkuNLP/bert-base-finnish-cased-v1": 512,
|
71 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": 512,
|
72 |
+
"wietsedv/bert-base-dutch-cased": 512,
|
73 |
+
}
|
74 |
+
|
75 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
76 |
+
"bert-base-uncased": {"do_lower_case": True},
|
77 |
+
"bert-large-uncased": {"do_lower_case": True},
|
78 |
+
"bert-base-cased": {"do_lower_case": False},
|
79 |
+
"bert-large-cased": {"do_lower_case": False},
|
80 |
+
"bert-base-multilingual-uncased": {"do_lower_case": True},
|
81 |
+
"bert-base-multilingual-cased": {"do_lower_case": False},
|
82 |
+
"bert-base-chinese": {"do_lower_case": False},
|
83 |
+
"bert-base-german-cased": {"do_lower_case": False},
|
84 |
+
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
|
85 |
+
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
|
86 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
|
87 |
+
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
|
88 |
+
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
|
89 |
+
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
|
90 |
+
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
|
91 |
+
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
|
92 |
+
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
|
93 |
+
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
|
94 |
+
}
|
95 |
+
|
96 |
+
|
97 |
+
def load_vocab(vocab_file):
|
98 |
+
"""Loads a vocabulary file into a dictionary."""
|
99 |
+
vocab = collections.OrderedDict()
|
100 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
101 |
+
tokens = reader.readlines()
|
102 |
+
for index, token in enumerate(tokens):
|
103 |
+
token = token.rstrip("\n")
|
104 |
+
vocab[token] = index
|
105 |
+
return vocab
|
106 |
+
|
107 |
+
|
108 |
+
def whitespace_tokenize(text):
|
109 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
110 |
+
text = text.strip()
|
111 |
+
if not text:
|
112 |
+
return []
|
113 |
+
tokens = text.split()
|
114 |
+
return tokens
|
115 |
+
|
116 |
+
|
117 |
+
class BertTokenizer(PreTrainedTokenizer):
|
118 |
+
r"""
|
119 |
+
Construct a BERT tokenizer. Based on WordPiece.
|
120 |
+
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
|
121 |
+
Users should refer to this superclass for more information regarding those methods.
|
122 |
+
Args:
|
123 |
+
vocab_file (:obj:`str`):
|
124 |
+
File containing the vocabulary.
|
125 |
+
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
126 |
+
Whether or not to lowercase the input when tokenizing.
|
127 |
+
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
128 |
+
Whether or not to do basic tokenization before WordPiece.
|
129 |
+
never_split (:obj:`Iterable`, `optional`):
|
130 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
131 |
+
:obj:`do_basic_tokenize=True`
|
132 |
+
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`):
|
133 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
134 |
+
token instead.
|
135 |
+
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
|
136 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
137 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
138 |
+
token of a sequence built with special tokens.
|
139 |
+
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`):
|
140 |
+
The token used for padding, for example when batching sequences of different lengths.
|
141 |
+
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
|
142 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
143 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
144 |
+
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
|
145 |
+
The token used for masking values. This is the token used when training this model with masked language
|
146 |
+
modeling. This is the token which the model will try to predict.
|
147 |
+
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
148 |
+
Whether or not to tokenize Chinese characters.
|
149 |
+
This should likely be deactivated for Japanese (see this `issue
|
150 |
+
<https://github.com/huggingface/transformers/issues/328>`__).
|
151 |
+
strip_accents: (:obj:`bool`, `optional`):
|
152 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
153 |
+
value for :obj:`lowercase` (as in the original BERT).
|
154 |
+
"""
|
155 |
+
|
156 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
157 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
158 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
159 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
160 |
+
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
vocab_file,
|
164 |
+
do_lower_case=True,
|
165 |
+
do_basic_tokenize=True,
|
166 |
+
never_split=None,
|
167 |
+
unk_token="[UNK]",
|
168 |
+
sep_token="[SEP]",
|
169 |
+
pad_token="[PAD]",
|
170 |
+
cls_token="[CLS]",
|
171 |
+
mask_token="[MASK]",
|
172 |
+
tokenize_chinese_chars=True,
|
173 |
+
strip_accents=None,
|
174 |
+
**kwargs
|
175 |
+
):
|
176 |
+
super().__init__(
|
177 |
+
do_lower_case=do_lower_case,
|
178 |
+
do_basic_tokenize=do_basic_tokenize,
|
179 |
+
never_split=never_split,
|
180 |
+
unk_token=unk_token,
|
181 |
+
sep_token=sep_token,
|
182 |
+
pad_token=pad_token,
|
183 |
+
cls_token=cls_token,
|
184 |
+
mask_token=mask_token,
|
185 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
186 |
+
strip_accents=strip_accents,
|
187 |
+
**kwargs,
|
188 |
+
)
|
189 |
+
|
190 |
+
if not os.path.isfile(vocab_file):
|
191 |
+
raise ValueError(
|
192 |
+
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
|
193 |
+
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
194 |
+
vocab_file)
|
195 |
+
)
|
196 |
+
self.vocab = load_vocab(vocab_file)
|
197 |
+
self.ids_to_tokens = collections.OrderedDict(
|
198 |
+
[(ids, tok) for tok, ids in self.vocab.items()])
|
199 |
+
self.do_basic_tokenize = do_basic_tokenize
|
200 |
+
if do_basic_tokenize:
|
201 |
+
self.basic_tokenizer = BasicTokenizer(
|
202 |
+
do_lower_case=do_lower_case,
|
203 |
+
never_split=never_split,
|
204 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
205 |
+
strip_accents=strip_accents,
|
206 |
+
)
|
207 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(
|
208 |
+
vocab=self.vocab, unk_token=self.unk_token)
|
209 |
+
|
210 |
+
@property
|
211 |
+
def do_lower_case(self):
|
212 |
+
return self.basic_tokenizer.do_lower_case
|
213 |
+
|
214 |
+
@property
|
215 |
+
def vocab_size(self):
|
216 |
+
return len(self.vocab)
|
217 |
+
|
218 |
+
def get_vocab(self):
|
219 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
220 |
+
|
221 |
+
def _tokenize(self, text):
|
222 |
+
split_tokens = []
|
223 |
+
if self.do_basic_tokenize:
|
224 |
+
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
225 |
+
|
226 |
+
# If the token is part of the never_split set
|
227 |
+
if token in self.basic_tokenizer.never_split:
|
228 |
+
split_tokens.append(token)
|
229 |
+
else:
|
230 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
231 |
+
else:
|
232 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
233 |
+
return split_tokens
|
234 |
+
|
235 |
+
def _convert_token_to_id(self, token):
|
236 |
+
""" Converts a token (str) in an id using the vocab. """
|
237 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
238 |
+
|
239 |
+
def _convert_id_to_token(self, index):
|
240 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
241 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
242 |
+
|
243 |
+
def convert_tokens_to_string(self, tokens):
|
244 |
+
""" Converts a sequence of tokens (string) in a single string. """
|
245 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
246 |
+
return out_string
|
247 |
+
|
248 |
+
def build_inputs_with_special_tokens(
|
249 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
250 |
+
) -> List[int]:
|
251 |
+
"""
|
252 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
253 |
+
adding special tokens. A BERT sequence has the following format:
|
254 |
+
- single sequence: ``[CLS] X ``
|
255 |
+
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
256 |
+
Args:
|
257 |
+
token_ids_0 (:obj:`List[int]`):
|
258 |
+
List of IDs to which the special tokens will be added.
|
259 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
260 |
+
Optional second list of IDs for sequence pairs.
|
261 |
+
Returns:
|
262 |
+
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
263 |
+
"""
|
264 |
+
if token_ids_1 is None:
|
265 |
+
return [self.cls_token_id] + token_ids_0
|
266 |
+
cls = [self.cls_token_id]
|
267 |
+
sep = [self.sep_token_id]
|
268 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
269 |
+
|
270 |
+
def get_special_tokens_mask(
|
271 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
272 |
+
) -> List[int]:
|
273 |
+
"""
|
274 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
275 |
+
special tokens using the tokenizer ``prepare_for_model`` method.
|
276 |
+
Args:
|
277 |
+
token_ids_0 (:obj:`List[int]`):
|
278 |
+
List of IDs.
|
279 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
280 |
+
Optional second list of IDs for sequence pairs.
|
281 |
+
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
282 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
283 |
+
Returns:
|
284 |
+
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
285 |
+
"""
|
286 |
+
|
287 |
+
if already_has_special_tokens:
|
288 |
+
if token_ids_1 is not None:
|
289 |
+
raise ValueError(
|
290 |
+
"You should not supply a second sequence if the provided sequence of "
|
291 |
+
"ids is already formatted with special tokens for the model."
|
292 |
+
)
|
293 |
+
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
294 |
+
|
295 |
+
if token_ids_1 is not None:
|
296 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
297 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
298 |
+
|
299 |
+
def create_token_type_ids_from_sequences(
|
300 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
301 |
+
) -> List[int]:
|
302 |
+
"""
|
303 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
304 |
+
pair mask has the following format:
|
305 |
+
::
|
306 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
307 |
+
| first sequence | second sequence |
|
308 |
+
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
|
309 |
+
Args:
|
310 |
+
token_ids_0 (:obj:`List[int]`):
|
311 |
+
List of IDs.
|
312 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
313 |
+
Optional second list of IDs for sequence pairs.
|
314 |
+
Returns:
|
315 |
+
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
|
316 |
+
sequence(s).
|
317 |
+
"""
|
318 |
+
sep = [self.sep_token_id]
|
319 |
+
cls = [self.cls_token_id]
|
320 |
+
if token_ids_1 is None:
|
321 |
+
return len(cls + token_ids_0 + sep) * [0]
|
322 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
323 |
+
|
324 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
325 |
+
index = 0
|
326 |
+
if os.path.isdir(save_directory):
|
327 |
+
vocab_file = os.path.join(
|
328 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") +
|
329 |
+
VOCAB_FILES_NAMES["vocab_file"]
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
vocab_file = (filename_prefix +
|
333 |
+
"-" if filename_prefix else "") + save_directory
|
334 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
335 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
336 |
+
if index != token_index:
|
337 |
+
logger.warning(
|
338 |
+
"Saving vocabulary to {}: vocabulary indices are not consecutive."
|
339 |
+
" Please check that the vocabulary is not corrupted!".format(
|
340 |
+
vocab_file)
|
341 |
+
)
|
342 |
+
index = token_index
|
343 |
+
writer.write(token + "\n")
|
344 |
+
index += 1
|
345 |
+
return (vocab_file,)
|
346 |
+
|
347 |
+
|
348 |
+
class BasicTokenizer(object):
|
349 |
+
"""
|
350 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
351 |
+
Args:
|
352 |
+
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
353 |
+
Whether or not to lowercase the input when tokenizing.
|
354 |
+
never_split (:obj:`Iterable`, `optional`):
|
355 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
356 |
+
:obj:`do_basic_tokenize=True`
|
357 |
+
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
358 |
+
Whether or not to tokenize Chinese characters.
|
359 |
+
This should likely be deactivated for Japanese (see this `issue
|
360 |
+
<https://github.com/huggingface/transformers/issues/328>`__).
|
361 |
+
strip_accents: (:obj:`bool`, `optional`):
|
362 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
363 |
+
value for :obj:`lowercase` (as in the original BERT).
|
364 |
+
"""
|
365 |
+
|
366 |
+
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
|
367 |
+
if never_split is None:
|
368 |
+
never_split = []
|
369 |
+
self.do_lower_case = do_lower_case
|
370 |
+
self.never_split = set(never_split)
|
371 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
372 |
+
self.strip_accents = strip_accents
|
373 |
+
|
374 |
+
def tokenize(self, text, never_split=None):
|
375 |
+
"""
|
376 |
+
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
|
377 |
+
WordPieceTokenizer.
|
378 |
+
Args:
|
379 |
+
**never_split**: (`optional`) list of str
|
380 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
381 |
+
:func:`PreTrainedTokenizer.tokenize`) List of token not to split.
|
382 |
+
"""
|
383 |
+
# union() returns a new set by concatenating the two sets.
|
384 |
+
never_split = self.never_split.union(
|
385 |
+
set(never_split)) if never_split else self.never_split
|
386 |
+
text = self._clean_text(text)
|
387 |
+
|
388 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
389 |
+
# models. This is also applied to the English models now, but it doesn't
|
390 |
+
# matter since the English models were not trained on any Chinese data
|
391 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
392 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
393 |
+
# words in the English Wikipedia.).
|
394 |
+
if self.tokenize_chinese_chars:
|
395 |
+
text = self._tokenize_chinese_chars(text)
|
396 |
+
orig_tokens = whitespace_tokenize(text)
|
397 |
+
split_tokens = []
|
398 |
+
for token in orig_tokens:
|
399 |
+
if token not in never_split:
|
400 |
+
if self.do_lower_case:
|
401 |
+
token = token.lower()
|
402 |
+
if self.strip_accents is not False:
|
403 |
+
token = self._run_strip_accents(token)
|
404 |
+
elif self.strip_accents:
|
405 |
+
token = self._run_strip_accents(token)
|
406 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
407 |
+
|
408 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
409 |
+
return output_tokens
|
410 |
+
|
411 |
+
def _run_strip_accents(self, text):
|
412 |
+
"""Strips accents from a piece of text."""
|
413 |
+
text = unicodedata.normalize("NFD", text)
|
414 |
+
output = []
|
415 |
+
for char in text:
|
416 |
+
cat = unicodedata.category(char)
|
417 |
+
if cat == "Mn":
|
418 |
+
continue
|
419 |
+
output.append(char)
|
420 |
+
return "".join(output)
|
421 |
+
|
422 |
+
def _run_split_on_punc(self, text, never_split=None):
|
423 |
+
"""Splits punctuation on a piece of text."""
|
424 |
+
if never_split is not None and text in never_split:
|
425 |
+
return [text]
|
426 |
+
chars = list(text)
|
427 |
+
i = 0
|
428 |
+
start_new_word = True
|
429 |
+
output = []
|
430 |
+
while i < len(chars):
|
431 |
+
char = chars[i]
|
432 |
+
if _is_punctuation(char):
|
433 |
+
output.append([char])
|
434 |
+
start_new_word = True
|
435 |
+
else:
|
436 |
+
if start_new_word:
|
437 |
+
output.append([])
|
438 |
+
start_new_word = False
|
439 |
+
output[-1].append(char)
|
440 |
+
i += 1
|
441 |
+
|
442 |
+
return ["".join(x) for x in output]
|
443 |
+
|
444 |
+
def _tokenize_chinese_chars(self, text):
|
445 |
+
"""Adds whitespace around any CJK character."""
|
446 |
+
output = []
|
447 |
+
for char in text:
|
448 |
+
cp = ord(char)
|
449 |
+
if self._is_chinese_char(cp):
|
450 |
+
output.append(" ")
|
451 |
+
output.append(char)
|
452 |
+
output.append(" ")
|
453 |
+
else:
|
454 |
+
output.append(char)
|
455 |
+
return "".join(output)
|
456 |
+
|
457 |
+
def _is_chinese_char(self, cp):
|
458 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
459 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
460 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
461 |
+
#
|
462 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
463 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
464 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
465 |
+
# space-separated words, so they are not treated specially and handled
|
466 |
+
# like the all of the other languages.
|
467 |
+
if (
|
468 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
469 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
470 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
471 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
472 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
473 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
474 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
475 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
476 |
+
): #
|
477 |
+
return True
|
478 |
+
|
479 |
+
return False
|
480 |
+
|
481 |
+
def _clean_text(self, text):
|
482 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
483 |
+
output = []
|
484 |
+
for char in text:
|
485 |
+
cp = ord(char)
|
486 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
487 |
+
continue
|
488 |
+
if _is_whitespace(char):
|
489 |
+
output.append(" ")
|
490 |
+
else:
|
491 |
+
output.append(char)
|
492 |
+
return "".join(output)
|
493 |
+
|
494 |
+
|
495 |
+
class WordpieceTokenizer(object):
|
496 |
+
"""Runs WordPiece tokenization."""
|
497 |
+
|
498 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
499 |
+
self.vocab = vocab
|
500 |
+
self.unk_token = unk_token
|
501 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
502 |
+
|
503 |
+
def tokenize(self, text):
|
504 |
+
"""
|
505 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
506 |
+
tokenization using the given vocabulary.
|
507 |
+
For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`.
|
508 |
+
Args:
|
509 |
+
text: A single token or whitespace separated tokens. This should have
|
510 |
+
already been passed through `BasicTokenizer`.
|
511 |
+
Returns:
|
512 |
+
A list of wordpiece tokens.
|
513 |
+
"""
|
514 |
+
|
515 |
+
output_tokens = []
|
516 |
+
for token in whitespace_tokenize(text):
|
517 |
+
chars = list(token)
|
518 |
+
if len(chars) > self.max_input_chars_per_word:
|
519 |
+
output_tokens.append(self.unk_token)
|
520 |
+
continue
|
521 |
+
|
522 |
+
is_bad = False
|
523 |
+
start = 0
|
524 |
+
sub_tokens = []
|
525 |
+
while start < len(chars):
|
526 |
+
end = len(chars)
|
527 |
+
cur_substr = None
|
528 |
+
while start < end:
|
529 |
+
substr = "".join(chars[start:end])
|
530 |
+
if start > 0:
|
531 |
+
substr = "##" + substr
|
532 |
+
if substr in self.vocab:
|
533 |
+
cur_substr = substr
|
534 |
+
break
|
535 |
+
end -= 1
|
536 |
+
if cur_substr is None:
|
537 |
+
is_bad = True
|
538 |
+
break
|
539 |
+
sub_tokens.append(cur_substr)
|
540 |
+
start = end
|
541 |
+
|
542 |
+
if is_bad:
|
543 |
+
output_tokens.append(self.unk_token)
|
544 |
+
else:
|
545 |
+
output_tokens.extend(sub_tokens)
|
546 |
+
return output_tokens
|
models_viclip/backbones/bert/xbert.py
ADDED
@@ -0,0 +1,2157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch BERT model. """
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
import transformers
|
28 |
+
from torch import Tensor, device, dtype, nn
|
29 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
# from transformers.models.bert.configuration_bert import BertConfig
|
32 |
+
from transformers.configuration_utils import PretrainedConfig
|
33 |
+
from transformers.file_utils import (ModelOutput, add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
replace_return_docstrings)
|
36 |
+
from transformers.modeling_outputs import (
|
37 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
38 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
39 |
+
CausalLMOutputWithCrossAttentions, MaskedLMOutput,
|
40 |
+
MultipleChoiceModelOutput, NextSentencePredictorOutput,
|
41 |
+
QuestionAnsweringModelOutput, SequenceClassifierOutput,
|
42 |
+
TokenClassifierOutput)
|
43 |
+
from transformers.modeling_utils import (PreTrainedModel,
|
44 |
+
apply_chunking_to_forward,
|
45 |
+
find_pruneable_heads_and_indices,
|
46 |
+
prune_linear_layer)
|
47 |
+
from transformers.utils import logging
|
48 |
+
|
49 |
+
transformers.logging.set_verbosity_error()
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
54 |
+
_TOKENIZER_FOR_DOC = "BertTokenizer"
|
55 |
+
|
56 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
57 |
+
"bert-base-uncased",
|
58 |
+
"bert-large-uncased",
|
59 |
+
"bert-base-cased",
|
60 |
+
"bert-large-cased",
|
61 |
+
"bert-base-multilingual-uncased",
|
62 |
+
"bert-base-multilingual-cased",
|
63 |
+
"bert-base-chinese",
|
64 |
+
"bert-base-german-cased",
|
65 |
+
"bert-large-uncased-whole-word-masking",
|
66 |
+
"bert-large-cased-whole-word-masking",
|
67 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad",
|
68 |
+
"bert-large-cased-whole-word-masking-finetuned-squad",
|
69 |
+
"bert-base-cased-finetuned-mrpc",
|
70 |
+
"bert-base-german-dbmdz-cased",
|
71 |
+
"bert-base-german-dbmdz-uncased",
|
72 |
+
"cl-tohoku/bert-base-japanese",
|
73 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking",
|
74 |
+
"cl-tohoku/bert-base-japanese-char",
|
75 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
|
76 |
+
"TurkuNLP/bert-base-finnish-cased-v1",
|
77 |
+
"TurkuNLP/bert-base-finnish-uncased-v1",
|
78 |
+
"wietsedv/bert-base-dutch-cased",
|
79 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
80 |
+
]
|
81 |
+
|
82 |
+
|
83 |
+
class BertConfig(PretrainedConfig):
|
84 |
+
r"""
|
85 |
+
This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
|
86 |
+
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
|
87 |
+
configuration with the defaults will yield a similar configuration to that of the BERT
|
88 |
+
[bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
|
89 |
+
|
90 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
91 |
+
documentation from [`PretrainedConfig`] for more information.
|
92 |
+
|
93 |
+
|
94 |
+
Args:
|
95 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
96 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
97 |
+
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
98 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
99 |
+
Dimensionality of the encoder layers and the pooler layer.
|
100 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
101 |
+
Number of hidden layers in the Transformer encoder.
|
102 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
103 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
104 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
105 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
106 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
107 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
108 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
109 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
110 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
111 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
112 |
+
The dropout ratio for the attention probabilities.
|
113 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
114 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
115 |
+
just in case (e.g., 512 or 1024 or 2048).
|
116 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
117 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
118 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
119 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
120 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
121 |
+
The epsilon used by the layer normalization layers.
|
122 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
123 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
124 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
125 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
126 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
127 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
128 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
129 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
130 |
+
relevant if `config.is_decoder=True`.
|
131 |
+
classifier_dropout (`float`, *optional*):
|
132 |
+
The dropout ratio for the classification head.
|
133 |
+
|
134 |
+
Examples:
|
135 |
+
|
136 |
+
```python
|
137 |
+
>>> from transformers import BertModel, BertConfig
|
138 |
+
|
139 |
+
>>> # Initializing a BERT bert-base-uncased style configuration
|
140 |
+
>>> configuration = BertConfig()
|
141 |
+
|
142 |
+
>>> # Initializing a model from the bert-base-uncased style configuration
|
143 |
+
>>> model = BertModel(configuration)
|
144 |
+
|
145 |
+
>>> # Accessing the model configuration
|
146 |
+
>>> configuration = model.config
|
147 |
+
```"""
|
148 |
+
model_type = "bert"
|
149 |
+
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
vocab_size=30522,
|
153 |
+
hidden_size=768,
|
154 |
+
num_hidden_layers=12,
|
155 |
+
num_attention_heads=12,
|
156 |
+
intermediate_size=3072,
|
157 |
+
hidden_act="gelu",
|
158 |
+
hidden_dropout_prob=0.1,
|
159 |
+
attention_probs_dropout_prob=0.1,
|
160 |
+
max_position_embeddings=512,
|
161 |
+
type_vocab_size=2,
|
162 |
+
initializer_range=0.02,
|
163 |
+
layer_norm_eps=1e-12,
|
164 |
+
pad_token_id=0,
|
165 |
+
position_embedding_type="absolute",
|
166 |
+
use_cache=True,
|
167 |
+
classifier_dropout=None,
|
168 |
+
cross_module="ca",
|
169 |
+
**kwargs,
|
170 |
+
):
|
171 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
172 |
+
|
173 |
+
self.vocab_size = vocab_size
|
174 |
+
self.hidden_size = hidden_size
|
175 |
+
self.num_hidden_layers = num_hidden_layers
|
176 |
+
self.num_attention_heads = num_attention_heads
|
177 |
+
self.hidden_act = hidden_act
|
178 |
+
self.intermediate_size = intermediate_size
|
179 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
180 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
181 |
+
self.max_position_embeddings = max_position_embeddings
|
182 |
+
self.type_vocab_size = type_vocab_size
|
183 |
+
self.initializer_range = initializer_range
|
184 |
+
self.layer_norm_eps = layer_norm_eps
|
185 |
+
self.position_embedding_type = position_embedding_type
|
186 |
+
self.use_cache = use_cache
|
187 |
+
self.classifier_dropout = classifier_dropout
|
188 |
+
self.cross_module = cross_module
|
189 |
+
|
190 |
+
|
191 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
192 |
+
"""Load tf checkpoints in a pytorch model."""
|
193 |
+
try:
|
194 |
+
import re
|
195 |
+
|
196 |
+
import numpy as np
|
197 |
+
import tensorflow as tf
|
198 |
+
except ImportError:
|
199 |
+
logger.error(
|
200 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
201 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
202 |
+
)
|
203 |
+
raise
|
204 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
205 |
+
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
|
206 |
+
# Load weights from TF model
|
207 |
+
init_vars = tf.train.list_variables(tf_path)
|
208 |
+
names = []
|
209 |
+
arrays = []
|
210 |
+
for name, shape in init_vars:
|
211 |
+
logger.info("Loading TF weight {} with shape {}".format(name, shape))
|
212 |
+
array = tf.train.load_variable(tf_path, name)
|
213 |
+
names.append(name)
|
214 |
+
arrays.append(array)
|
215 |
+
|
216 |
+
for name, array in zip(names, arrays):
|
217 |
+
name = name.split("/")
|
218 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
219 |
+
# which are not required for using pretrained model
|
220 |
+
if any(
|
221 |
+
n
|
222 |
+
in [
|
223 |
+
"adam_v",
|
224 |
+
"adam_m",
|
225 |
+
"AdamWeightDecayOptimizer",
|
226 |
+
"AdamWeightDecayOptimizer_1",
|
227 |
+
"global_step",
|
228 |
+
]
|
229 |
+
for n in name
|
230 |
+
):
|
231 |
+
logger.info("Skipping {}".format("/".join(name)))
|
232 |
+
continue
|
233 |
+
pointer = model
|
234 |
+
for m_name in name:
|
235 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
236 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
237 |
+
else:
|
238 |
+
scope_names = [m_name]
|
239 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
240 |
+
pointer = getattr(pointer, "weight")
|
241 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
242 |
+
pointer = getattr(pointer, "bias")
|
243 |
+
elif scope_names[0] == "output_weights":
|
244 |
+
pointer = getattr(pointer, "weight")
|
245 |
+
elif scope_names[0] == "squad":
|
246 |
+
pointer = getattr(pointer, "classifier")
|
247 |
+
else:
|
248 |
+
try:
|
249 |
+
pointer = getattr(pointer, scope_names[0])
|
250 |
+
except AttributeError:
|
251 |
+
logger.info("Skipping {}".format("/".join(name)))
|
252 |
+
continue
|
253 |
+
if len(scope_names) >= 2:
|
254 |
+
num = int(scope_names[1])
|
255 |
+
pointer = pointer[num]
|
256 |
+
if m_name[-11:] == "_embeddings":
|
257 |
+
pointer = getattr(pointer, "weight")
|
258 |
+
elif m_name == "kernel":
|
259 |
+
array = np.transpose(array)
|
260 |
+
try:
|
261 |
+
assert (
|
262 |
+
pointer.shape == array.shape
|
263 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
264 |
+
except AssertionError as e:
|
265 |
+
e.args += (pointer.shape, array.shape)
|
266 |
+
raise
|
267 |
+
logger.info("Initialize PyTorch weight {}".format(name))
|
268 |
+
pointer.data = torch.from_numpy(array)
|
269 |
+
return model
|
270 |
+
|
271 |
+
|
272 |
+
class BertEmbeddings(nn.Module):
|
273 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
274 |
+
|
275 |
+
def __init__(self, config):
|
276 |
+
super().__init__()
|
277 |
+
self.word_embeddings = nn.Embedding(
|
278 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
279 |
+
)
|
280 |
+
self.position_embeddings = nn.Embedding(
|
281 |
+
config.max_position_embeddings, config.hidden_size
|
282 |
+
)
|
283 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
284 |
+
|
285 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
286 |
+
# any TensorFlow checkpoint file
|
287 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
288 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
289 |
+
|
290 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
291 |
+
self.register_buffer(
|
292 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
293 |
+
)
|
294 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
295 |
+
|
296 |
+
self.config = config
|
297 |
+
|
298 |
+
def forward(
|
299 |
+
self,
|
300 |
+
input_ids=None,
|
301 |
+
token_type_ids=None,
|
302 |
+
position_ids=None,
|
303 |
+
inputs_embeds=None,
|
304 |
+
past_key_values_length=0,
|
305 |
+
):
|
306 |
+
if input_ids is not None:
|
307 |
+
input_shape = input_ids.size()
|
308 |
+
else:
|
309 |
+
input_shape = inputs_embeds.size()[:-1]
|
310 |
+
|
311 |
+
seq_length = input_shape[1]
|
312 |
+
|
313 |
+
if position_ids is None:
|
314 |
+
position_ids = self.position_ids[
|
315 |
+
:, past_key_values_length : seq_length + past_key_values_length
|
316 |
+
]
|
317 |
+
|
318 |
+
if token_type_ids is None:
|
319 |
+
token_type_ids = torch.zeros(
|
320 |
+
input_shape, dtype=torch.long, device=self.position_ids.device
|
321 |
+
)
|
322 |
+
|
323 |
+
if inputs_embeds is None:
|
324 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
325 |
+
|
326 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
327 |
+
|
328 |
+
embeddings = inputs_embeds + token_type_embeddings
|
329 |
+
if self.position_embedding_type == "absolute":
|
330 |
+
position_embeddings = self.position_embeddings(position_ids)
|
331 |
+
embeddings += position_embeddings
|
332 |
+
embeddings = self.LayerNorm(embeddings)
|
333 |
+
embeddings = self.dropout(embeddings)
|
334 |
+
return embeddings
|
335 |
+
|
336 |
+
|
337 |
+
class BertSelfAttention(nn.Module):
|
338 |
+
def __init__(self, config, is_cross_attention):
|
339 |
+
super().__init__()
|
340 |
+
self.config = config
|
341 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
342 |
+
config, "embedding_size"
|
343 |
+
):
|
344 |
+
raise ValueError(
|
345 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
346 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
347 |
+
)
|
348 |
+
|
349 |
+
self.num_attention_heads = config.num_attention_heads
|
350 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
351 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
352 |
+
|
353 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
354 |
+
if is_cross_attention:
|
355 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
356 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
357 |
+
else:
|
358 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
359 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
360 |
+
|
361 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
362 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
363 |
+
if (
|
364 |
+
self.position_embedding_type == "relative_key"
|
365 |
+
or self.position_embedding_type == "relative_key_query"
|
366 |
+
):
|
367 |
+
self.max_position_embeddings = config.max_position_embeddings
|
368 |
+
self.distance_embedding = nn.Embedding(
|
369 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
370 |
+
)
|
371 |
+
self.save_attention = False
|
372 |
+
|
373 |
+
def save_attn_gradients(self, attn_gradients):
|
374 |
+
self.attn_gradients = attn_gradients
|
375 |
+
|
376 |
+
def get_attn_gradients(self):
|
377 |
+
return self.attn_gradients
|
378 |
+
|
379 |
+
def save_attention_map(self, attention_map):
|
380 |
+
self.attention_map = attention_map
|
381 |
+
|
382 |
+
def get_attention_map(self):
|
383 |
+
return self.attention_map
|
384 |
+
|
385 |
+
def transpose_for_scores(self, x):
|
386 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
387 |
+
x = x.view(*new_x_shape)
|
388 |
+
return x.permute(0, 2, 1, 3)
|
389 |
+
|
390 |
+
def forward(
|
391 |
+
self,
|
392 |
+
hidden_states,
|
393 |
+
attention_mask=None,
|
394 |
+
head_mask=None,
|
395 |
+
encoder_hidden_states=None,
|
396 |
+
encoder_attention_mask=None,
|
397 |
+
past_key_value=None,
|
398 |
+
output_attentions=False,
|
399 |
+
):
|
400 |
+
mixed_query_layer = self.query(hidden_states)
|
401 |
+
|
402 |
+
# If this is instantiated as a cross-attention module, the keys
|
403 |
+
# and values come from an encoder; the attention mask needs to be
|
404 |
+
# such that the encoder's padding tokens are not attended to.
|
405 |
+
is_cross_attention = encoder_hidden_states is not None
|
406 |
+
|
407 |
+
if is_cross_attention:
|
408 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
409 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
410 |
+
attention_mask = encoder_attention_mask
|
411 |
+
elif past_key_value is not None:
|
412 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
413 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
414 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
415 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
416 |
+
else:
|
417 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
418 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
419 |
+
|
420 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
421 |
+
|
422 |
+
past_key_value = (key_layer, value_layer)
|
423 |
+
|
424 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
425 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
426 |
+
|
427 |
+
if (
|
428 |
+
self.position_embedding_type == "relative_key"
|
429 |
+
or self.position_embedding_type == "relative_key_query"
|
430 |
+
):
|
431 |
+
seq_length = hidden_states.size()[1]
|
432 |
+
position_ids_l = torch.arange(
|
433 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
434 |
+
).view(-1, 1)
|
435 |
+
position_ids_r = torch.arange(
|
436 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
437 |
+
).view(1, -1)
|
438 |
+
distance = position_ids_l - position_ids_r
|
439 |
+
positional_embedding = self.distance_embedding(
|
440 |
+
distance + self.max_position_embeddings - 1
|
441 |
+
)
|
442 |
+
positional_embedding = positional_embedding.to(
|
443 |
+
dtype=query_layer.dtype
|
444 |
+
) # fp16 compatibility
|
445 |
+
|
446 |
+
if self.position_embedding_type == "relative_key":
|
447 |
+
relative_position_scores = torch.einsum(
|
448 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
449 |
+
)
|
450 |
+
attention_scores = attention_scores + relative_position_scores
|
451 |
+
elif self.position_embedding_type == "relative_key_query":
|
452 |
+
relative_position_scores_query = torch.einsum(
|
453 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
454 |
+
)
|
455 |
+
relative_position_scores_key = torch.einsum(
|
456 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
457 |
+
)
|
458 |
+
attention_scores = (
|
459 |
+
attention_scores
|
460 |
+
+ relative_position_scores_query
|
461 |
+
+ relative_position_scores_key
|
462 |
+
)
|
463 |
+
|
464 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
465 |
+
if attention_mask is not None:
|
466 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
467 |
+
attention_scores = attention_scores + attention_mask
|
468 |
+
|
469 |
+
# Normalize the attention scores to probabilities.
|
470 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
471 |
+
|
472 |
+
if is_cross_attention and self.save_attention:
|
473 |
+
self.save_attention_map(attention_probs)
|
474 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
475 |
+
|
476 |
+
# This is actually dropping out entire tokens to attend to, which might
|
477 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
478 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
479 |
+
|
480 |
+
# Mask heads if we want to
|
481 |
+
if head_mask is not None:
|
482 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
483 |
+
|
484 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
485 |
+
|
486 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
487 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
488 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
489 |
+
|
490 |
+
# added `attention_scores` to return tuple
|
491 |
+
outputs = (
|
492 |
+
(context_layer, attention_probs, attention_scores)
|
493 |
+
if output_attentions
|
494 |
+
else (context_layer,)
|
495 |
+
)
|
496 |
+
|
497 |
+
outputs = outputs + (past_key_value,)
|
498 |
+
return outputs
|
499 |
+
|
500 |
+
|
501 |
+
class BertSelfOutput(nn.Module):
|
502 |
+
def __init__(self, config):
|
503 |
+
super().__init__()
|
504 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
505 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
506 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
507 |
+
|
508 |
+
def forward(self, hidden_states, input_tensor):
|
509 |
+
hidden_states = self.dense(hidden_states)
|
510 |
+
hidden_states = self.dropout(hidden_states)
|
511 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
512 |
+
return hidden_states
|
513 |
+
|
514 |
+
|
515 |
+
class BertAttention(nn.Module):
|
516 |
+
def __init__(self, config, is_cross_attention=False):
|
517 |
+
super().__init__()
|
518 |
+
|
519 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
520 |
+
|
521 |
+
self.output = BertSelfOutput(config)
|
522 |
+
self.pruned_heads = set()
|
523 |
+
|
524 |
+
def prune_heads(self, heads):
|
525 |
+
if len(heads) == 0:
|
526 |
+
return
|
527 |
+
heads, index = find_pruneable_heads_and_indices(
|
528 |
+
heads,
|
529 |
+
self.self.num_attention_heads,
|
530 |
+
self.self.attention_head_size,
|
531 |
+
self.pruned_heads,
|
532 |
+
)
|
533 |
+
|
534 |
+
# Prune linear layers
|
535 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
536 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
537 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
538 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
539 |
+
|
540 |
+
# Update hyper params and store pruned heads
|
541 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
542 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
543 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
544 |
+
|
545 |
+
def forward(
|
546 |
+
self,
|
547 |
+
hidden_states,
|
548 |
+
attention_mask=None,
|
549 |
+
head_mask=None,
|
550 |
+
encoder_hidden_states=None,
|
551 |
+
encoder_attention_mask=None,
|
552 |
+
past_key_value=None,
|
553 |
+
output_attentions=False,
|
554 |
+
):
|
555 |
+
self_outputs = self.self(
|
556 |
+
hidden_states,
|
557 |
+
attention_mask,
|
558 |
+
head_mask,
|
559 |
+
encoder_hidden_states,
|
560 |
+
encoder_attention_mask,
|
561 |
+
past_key_value,
|
562 |
+
output_attentions,
|
563 |
+
)
|
564 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
565 |
+
# add attentions if we output them
|
566 |
+
outputs = (attention_output,) + self_outputs[1:]
|
567 |
+
return outputs # (context_layer, attention_probs, attention_scores, past_key_value,)
|
568 |
+
|
569 |
+
|
570 |
+
class BertIntermediate(nn.Module):
|
571 |
+
def __init__(self, config):
|
572 |
+
super().__init__()
|
573 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
574 |
+
if isinstance(config.hidden_act, str):
|
575 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
576 |
+
else:
|
577 |
+
self.intermediate_act_fn = config.hidden_act
|
578 |
+
|
579 |
+
def forward(self, hidden_states):
|
580 |
+
hidden_states = self.dense(hidden_states)
|
581 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
582 |
+
return hidden_states
|
583 |
+
|
584 |
+
|
585 |
+
class BertOutput(nn.Module):
|
586 |
+
def __init__(self, config):
|
587 |
+
super().__init__()
|
588 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
589 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
590 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
591 |
+
|
592 |
+
def forward(self, hidden_states, input_tensor):
|
593 |
+
hidden_states = self.dense(hidden_states)
|
594 |
+
hidden_states = self.dropout(hidden_states)
|
595 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
596 |
+
return hidden_states
|
597 |
+
|
598 |
+
|
599 |
+
class BertLayer(nn.Module):
|
600 |
+
def __init__(self, config, layer_num):
|
601 |
+
super().__init__()
|
602 |
+
self.config = config
|
603 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
604 |
+
self.seq_len_dim = 1
|
605 |
+
self.attention = BertAttention(config)
|
606 |
+
|
607 |
+
self.has_cross_attention = layer_num >= config.fusion_layer
|
608 |
+
if self.has_cross_attention:
|
609 |
+
self.crossattention = BertAttention(config, is_cross_attention=True)
|
610 |
+
self.intermediate = BertIntermediate(config)
|
611 |
+
self.output = BertOutput(config)
|
612 |
+
|
613 |
+
def forward(
|
614 |
+
self,
|
615 |
+
hidden_states,
|
616 |
+
attention_mask=None,
|
617 |
+
head_mask=None,
|
618 |
+
encoder_hidden_states=None,
|
619 |
+
encoder_attention_mask=None,
|
620 |
+
past_key_value=None,
|
621 |
+
output_attentions=False,
|
622 |
+
):
|
623 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
624 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
625 |
+
self_attention_outputs = self.attention(
|
626 |
+
hidden_states,
|
627 |
+
attention_mask,
|
628 |
+
head_mask,
|
629 |
+
output_attentions=output_attentions,
|
630 |
+
past_key_value=self_attn_past_key_value,
|
631 |
+
) # (context_layer, attention_probs, attention_scores, past_key_value,)
|
632 |
+
attention_output = self_attention_outputs[0]
|
633 |
+
|
634 |
+
outputs = self_attention_outputs[1:-1]
|
635 |
+
present_key_value = self_attention_outputs[-1]
|
636 |
+
|
637 |
+
if self.has_cross_attention:
|
638 |
+
assert (
|
639 |
+
encoder_hidden_states is not None
|
640 |
+
), "encoder_hidden_states must be given for cross-attention layers"
|
641 |
+
|
642 |
+
if type(encoder_hidden_states) == list:
|
643 |
+
cross_attention_outputs = self.crossattention(
|
644 |
+
attention_output,
|
645 |
+
attention_mask,
|
646 |
+
head_mask,
|
647 |
+
encoder_hidden_states[
|
648 |
+
(self.layer_num - self.config.fusion_layer)
|
649 |
+
% len(encoder_hidden_states)
|
650 |
+
],
|
651 |
+
encoder_attention_mask[
|
652 |
+
(self.layer_num - self.config.fusion_layer)
|
653 |
+
% len(encoder_hidden_states)
|
654 |
+
],
|
655 |
+
output_attentions=output_attentions,
|
656 |
+
)
|
657 |
+
attention_output = cross_attention_outputs[0]
|
658 |
+
outputs = outputs + cross_attention_outputs[1:-1]
|
659 |
+
|
660 |
+
else:
|
661 |
+
cross_attention_outputs = self.crossattention(
|
662 |
+
attention_output,
|
663 |
+
attention_mask,
|
664 |
+
head_mask,
|
665 |
+
encoder_hidden_states,
|
666 |
+
encoder_attention_mask,
|
667 |
+
output_attentions=output_attentions,
|
668 |
+
) # (context_layer, attention_probs, attention_scores, past_key_value,)
|
669 |
+
attention_output = cross_attention_outputs[0]
|
670 |
+
# add cross attentions if we output attention weights
|
671 |
+
outputs = outputs + cross_attention_outputs[1:-1]
|
672 |
+
layer_output = apply_chunking_to_forward(
|
673 |
+
self.feed_forward_chunk,
|
674 |
+
self.chunk_size_feed_forward,
|
675 |
+
self.seq_len_dim,
|
676 |
+
attention_output,
|
677 |
+
)
|
678 |
+
outputs = (layer_output,) + outputs
|
679 |
+
|
680 |
+
outputs = outputs + (present_key_value,)
|
681 |
+
|
682 |
+
return outputs
|
683 |
+
|
684 |
+
def feed_forward_chunk(self, attention_output):
|
685 |
+
intermediate_output = self.intermediate(attention_output)
|
686 |
+
layer_output = self.output(intermediate_output, attention_output)
|
687 |
+
return layer_output
|
688 |
+
|
689 |
+
|
690 |
+
class BertEncoder(nn.Module):
|
691 |
+
def __init__(self, config):
|
692 |
+
super().__init__()
|
693 |
+
self.config = config
|
694 |
+
self.layer = nn.ModuleList(
|
695 |
+
[BertLayer(config, i) for i in range(config.num_hidden_layers)]
|
696 |
+
)
|
697 |
+
logger.info(f"build bert with cross_module: {config.cross_module}")
|
698 |
+
|
699 |
+
def forward(
|
700 |
+
self,
|
701 |
+
hidden_states,
|
702 |
+
attention_mask=None,
|
703 |
+
head_mask=None,
|
704 |
+
encoder_hidden_states=None,
|
705 |
+
encoder_attention_mask=None,
|
706 |
+
past_key_values=None,
|
707 |
+
use_cache=None,
|
708 |
+
output_attentions=False,
|
709 |
+
output_hidden_states=False,
|
710 |
+
return_dict=True,
|
711 |
+
mode="multi_modal",
|
712 |
+
normalize_attention=True,
|
713 |
+
):
|
714 |
+
all_hidden_states = () if output_hidden_states else None
|
715 |
+
all_self_attentions = () if output_attentions else None
|
716 |
+
# all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
717 |
+
all_cross_attentions = () if output_attentions else None
|
718 |
+
|
719 |
+
next_decoder_cache = () if use_cache else None
|
720 |
+
|
721 |
+
if (
|
722 |
+
mode == "text" or mode == "temporal"
|
723 |
+
): # temporal is added and used for temporal att module.
|
724 |
+
start_layer = 0
|
725 |
+
output_layer = self.config.fusion_layer
|
726 |
+
|
727 |
+
elif mode == "fusion":
|
728 |
+
start_layer = self.config.fusion_layer
|
729 |
+
output_layer = self.config.num_hidden_layers
|
730 |
+
|
731 |
+
elif mode == "multi_modal":
|
732 |
+
start_layer = 0
|
733 |
+
output_layer = self.config.num_hidden_layers
|
734 |
+
|
735 |
+
for i in range(start_layer, output_layer):
|
736 |
+
layer_module = self.layer[i]
|
737 |
+
if output_hidden_states:
|
738 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
739 |
+
|
740 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
741 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
742 |
+
|
743 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
744 |
+
|
745 |
+
if use_cache:
|
746 |
+
logger.warn(
|
747 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
748 |
+
"`use_cache=False`..."
|
749 |
+
)
|
750 |
+
use_cache = False
|
751 |
+
|
752 |
+
def create_custom_forward(module):
|
753 |
+
def custom_forward(*inputs):
|
754 |
+
return module(*inputs, past_key_value, output_attentions)
|
755 |
+
|
756 |
+
return custom_forward
|
757 |
+
|
758 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
759 |
+
create_custom_forward(layer_module),
|
760 |
+
hidden_states,
|
761 |
+
attention_mask,
|
762 |
+
layer_head_mask,
|
763 |
+
encoder_hidden_states,
|
764 |
+
encoder_attention_mask,
|
765 |
+
use_reentrant=False,
|
766 |
+
)
|
767 |
+
else:
|
768 |
+
layer_outputs = layer_module(
|
769 |
+
hidden_states,
|
770 |
+
attention_mask,
|
771 |
+
layer_head_mask,
|
772 |
+
encoder_hidden_states,
|
773 |
+
encoder_attention_mask,
|
774 |
+
past_key_value,
|
775 |
+
output_attentions,
|
776 |
+
) # (context_layer, attention_probs, attention_scores, past_key_value,)
|
777 |
+
hidden_states = layer_outputs[0]
|
778 |
+
if use_cache:
|
779 |
+
next_decoder_cache += (layer_outputs[-1],)
|
780 |
+
if output_attentions:
|
781 |
+
# whether to output normalized attention,
|
782 |
+
# note for unnormalized attention, there is a mask added
|
783 |
+
offset = int(normalize_attention)
|
784 |
+
# all_self_attentions = all_self_attentions + (layer_outputs[1], )
|
785 |
+
all_self_attentions = all_self_attentions + (layer_outputs[2 - offset],)
|
786 |
+
if hasattr(layer_module, "crossattention"):
|
787 |
+
# all_cross_attentions = all_cross_attentions + (layer_outputs[3], )
|
788 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[4 - offset],)
|
789 |
+
|
790 |
+
if output_hidden_states:
|
791 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
792 |
+
|
793 |
+
if not return_dict:
|
794 |
+
return tuple(
|
795 |
+
v
|
796 |
+
for v in [
|
797 |
+
hidden_states,
|
798 |
+
next_decoder_cache,
|
799 |
+
all_hidden_states,
|
800 |
+
all_self_attentions,
|
801 |
+
all_cross_attentions,
|
802 |
+
]
|
803 |
+
if v is not None
|
804 |
+
)
|
805 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
806 |
+
last_hidden_state=hidden_states,
|
807 |
+
past_key_values=next_decoder_cache,
|
808 |
+
hidden_states=all_hidden_states,
|
809 |
+
attentions=all_self_attentions,
|
810 |
+
cross_attentions=all_cross_attentions,
|
811 |
+
)
|
812 |
+
|
813 |
+
|
814 |
+
class BertPooler(nn.Module):
|
815 |
+
def __init__(self, config):
|
816 |
+
super().__init__()
|
817 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
818 |
+
self.activation = nn.Tanh()
|
819 |
+
|
820 |
+
def forward(self, hidden_states):
|
821 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
822 |
+
# to the first token.
|
823 |
+
first_token_tensor = hidden_states[:, 0]
|
824 |
+
pooled_output = self.dense(first_token_tensor)
|
825 |
+
pooled_output = self.activation(pooled_output)
|
826 |
+
return pooled_output
|
827 |
+
|
828 |
+
|
829 |
+
class BertPredictionHeadTransform(nn.Module):
|
830 |
+
def __init__(self, config):
|
831 |
+
super().__init__()
|
832 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
833 |
+
if isinstance(config.hidden_act, str):
|
834 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
835 |
+
else:
|
836 |
+
self.transform_act_fn = config.hidden_act
|
837 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
838 |
+
|
839 |
+
def forward(self, hidden_states):
|
840 |
+
hidden_states = self.dense(hidden_states)
|
841 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
842 |
+
hidden_states = self.LayerNorm(hidden_states)
|
843 |
+
return hidden_states
|
844 |
+
|
845 |
+
|
846 |
+
class BertLMPredictionHead(nn.Module):
|
847 |
+
def __init__(self, config):
|
848 |
+
super().__init__()
|
849 |
+
self.transform = BertPredictionHeadTransform(config)
|
850 |
+
|
851 |
+
# The output weights are the same as the input embeddings, but there is
|
852 |
+
# an output-only bias for each token.
|
853 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
854 |
+
|
855 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
856 |
+
|
857 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
858 |
+
self.decoder.bias = self.bias
|
859 |
+
|
860 |
+
def forward(self, hidden_states):
|
861 |
+
hidden_states = self.transform(hidden_states)
|
862 |
+
hidden_states = self.decoder(hidden_states)
|
863 |
+
return hidden_states
|
864 |
+
|
865 |
+
|
866 |
+
class BertOnlyMLMHead(nn.Module):
|
867 |
+
def __init__(self, config):
|
868 |
+
super().__init__()
|
869 |
+
self.predictions = BertLMPredictionHead(config)
|
870 |
+
|
871 |
+
def forward(self, sequence_output):
|
872 |
+
prediction_scores = self.predictions(sequence_output)
|
873 |
+
return prediction_scores
|
874 |
+
|
875 |
+
|
876 |
+
class BertOnlyNSPHead(nn.Module):
|
877 |
+
def __init__(self, config):
|
878 |
+
super().__init__()
|
879 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
880 |
+
|
881 |
+
def forward(self, pooled_output):
|
882 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
883 |
+
return seq_relationship_score
|
884 |
+
|
885 |
+
|
886 |
+
class BertPreTrainingHeads(nn.Module):
|
887 |
+
def __init__(self, config):
|
888 |
+
super().__init__()
|
889 |
+
self.predictions = BertLMPredictionHead(config)
|
890 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
891 |
+
|
892 |
+
def forward(self, sequence_output, pooled_output):
|
893 |
+
prediction_scores = self.predictions(sequence_output)
|
894 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
895 |
+
return prediction_scores, seq_relationship_score
|
896 |
+
|
897 |
+
|
898 |
+
class BertPreTrainedModel(PreTrainedModel):
|
899 |
+
"""
|
900 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
901 |
+
models.
|
902 |
+
"""
|
903 |
+
|
904 |
+
config_class = BertConfig
|
905 |
+
load_tf_weights = load_tf_weights_in_bert
|
906 |
+
base_model_prefix = "bert"
|
907 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
908 |
+
|
909 |
+
def _init_weights(self, module):
|
910 |
+
"""Initialize the weights"""
|
911 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
912 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
913 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
914 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
915 |
+
elif isinstance(module, nn.LayerNorm):
|
916 |
+
module.bias.data.zero_()
|
917 |
+
module.weight.data.fill_(1.0)
|
918 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
919 |
+
module.bias.data.zero_()
|
920 |
+
|
921 |
+
|
922 |
+
@dataclass
|
923 |
+
class BertForPreTrainingOutput(ModelOutput):
|
924 |
+
"""
|
925 |
+
Output type of :class:`~transformers.BertForPreTraining`.
|
926 |
+
Args:
|
927 |
+
loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
|
928 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
929 |
+
(classification) loss.
|
930 |
+
prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
931 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
932 |
+
seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
|
933 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
934 |
+
before SoftMax).
|
935 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
936 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
937 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
938 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
939 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
940 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
|
941 |
+
sequence_length, sequence_length)`.
|
942 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
943 |
+
heads.
|
944 |
+
"""
|
945 |
+
|
946 |
+
loss: Optional[torch.FloatTensor] = None
|
947 |
+
prediction_logits: torch.FloatTensor = None
|
948 |
+
seq_relationship_logits: torch.FloatTensor = None
|
949 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
950 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
951 |
+
|
952 |
+
|
953 |
+
BERT_START_DOCSTRING = r"""
|
954 |
+
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
955 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
956 |
+
pruning heads etc.)
|
957 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
958 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
959 |
+
general usage and behavior.
|
960 |
+
Parameters:
|
961 |
+
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
|
962 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
963 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
964 |
+
weights.
|
965 |
+
"""
|
966 |
+
|
967 |
+
BERT_INPUTS_DOCSTRING = r"""
|
968 |
+
Args:
|
969 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
970 |
+
Indices of input sequence tokens in the vocabulary.
|
971 |
+
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
|
972 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
973 |
+
details.
|
974 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
975 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
976 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
977 |
+
- 1 for tokens that are **not masked**,
|
978 |
+
- 0 for tokens that are **masked**.
|
979 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
980 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
981 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
982 |
+
1]``:
|
983 |
+
- 0 corresponds to a `sentence A` token,
|
984 |
+
- 1 corresponds to a `sentence B` token.
|
985 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
986 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
987 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
988 |
+
config.max_position_embeddings - 1]``.
|
989 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
990 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
991 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
992 |
+
- 1 indicates the head is **not masked**,
|
993 |
+
- 0 indicates the head is **masked**.
|
994 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
995 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
996 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
997 |
+
vectors than the model's internal embedding lookup matrix.
|
998 |
+
output_attentions (:obj:`bool`, `optional`):
|
999 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
1000 |
+
tensors for more detail.
|
1001 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
1002 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
1003 |
+
more detail.
|
1004 |
+
return_dict (:obj:`bool`, `optional`):
|
1005 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
1006 |
+
"""
|
1007 |
+
|
1008 |
+
|
1009 |
+
@add_start_docstrings(
|
1010 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
1011 |
+
BERT_START_DOCSTRING,
|
1012 |
+
)
|
1013 |
+
class BertModel(BertPreTrainedModel):
|
1014 |
+
"""
|
1015 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
1016 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
1017 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
1018 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
1019 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
1020 |
+
input to the forward pass.
|
1021 |
+
"""
|
1022 |
+
|
1023 |
+
def __init__(self, config, add_pooling_layer=True):
|
1024 |
+
super().__init__(config)
|
1025 |
+
self.config = config
|
1026 |
+
|
1027 |
+
self.embeddings = BertEmbeddings(config)
|
1028 |
+
|
1029 |
+
self.encoder = BertEncoder(config)
|
1030 |
+
|
1031 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
1032 |
+
|
1033 |
+
self.init_weights()
|
1034 |
+
|
1035 |
+
def get_input_embeddings(self):
|
1036 |
+
return self.embeddings.word_embeddings
|
1037 |
+
|
1038 |
+
def set_input_embeddings(self, value):
|
1039 |
+
self.embeddings.word_embeddings = value
|
1040 |
+
|
1041 |
+
def _prune_heads(self, heads_to_prune):
|
1042 |
+
"""
|
1043 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1044 |
+
class PreTrainedModel
|
1045 |
+
"""
|
1046 |
+
for layer, heads in heads_to_prune.items():
|
1047 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1048 |
+
|
1049 |
+
def get_extended_attention_mask(
|
1050 |
+
self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool
|
1051 |
+
) -> Tensor:
|
1052 |
+
"""
|
1053 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
1054 |
+
|
1055 |
+
Arguments:
|
1056 |
+
attention_mask (:obj:`torch.Tensor`):
|
1057 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
1058 |
+
input_shape (:obj:`Tuple[int]`):
|
1059 |
+
The shape of the input to the model.
|
1060 |
+
device: (:obj:`torch.device`):
|
1061 |
+
The device of the input to the model.
|
1062 |
+
|
1063 |
+
Returns:
|
1064 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
1065 |
+
"""
|
1066 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1067 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1068 |
+
if attention_mask.dim() == 3:
|
1069 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
1070 |
+
elif attention_mask.dim() == 2:
|
1071 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
1072 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
1073 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1074 |
+
if is_decoder:
|
1075 |
+
batch_size, seq_length = input_shape
|
1076 |
+
seq_ids = torch.arange(seq_length, device=device)
|
1077 |
+
causal_mask = (
|
1078 |
+
seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
|
1079 |
+
<= seq_ids[None, :, None]
|
1080 |
+
)
|
1081 |
+
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
1082 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
1083 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
1084 |
+
|
1085 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
1086 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
1087 |
+
causal_mask = torch.cat(
|
1088 |
+
[
|
1089 |
+
torch.ones(
|
1090 |
+
(batch_size, seq_length, prefix_seq_len),
|
1091 |
+
device=device,
|
1092 |
+
dtype=causal_mask.dtype,
|
1093 |
+
),
|
1094 |
+
causal_mask,
|
1095 |
+
],
|
1096 |
+
axis=-1,
|
1097 |
+
)
|
1098 |
+
|
1099 |
+
extended_attention_mask = (
|
1100 |
+
causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
1101 |
+
)
|
1102 |
+
else:
|
1103 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
1104 |
+
else:
|
1105 |
+
raise ValueError(
|
1106 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
1107 |
+
input_shape, attention_mask.shape
|
1108 |
+
)
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
1112 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
1113 |
+
# positions we want to attend and -10000.0 for masked positions.
|
1114 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
1115 |
+
# effectively the same as removing these entirely.
|
1116 |
+
extended_attention_mask = extended_attention_mask.to(
|
1117 |
+
dtype=self.dtype
|
1118 |
+
) # fp16 compatibility
|
1119 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
1120 |
+
return extended_attention_mask
|
1121 |
+
|
1122 |
+
def forward(
|
1123 |
+
self,
|
1124 |
+
input_ids=None,
|
1125 |
+
attention_mask=None,
|
1126 |
+
token_type_ids=None,
|
1127 |
+
position_ids=None,
|
1128 |
+
head_mask=None,
|
1129 |
+
inputs_embeds=None,
|
1130 |
+
encoder_embeds=None,
|
1131 |
+
encoder_hidden_states=None,
|
1132 |
+
encoder_attention_mask=None,
|
1133 |
+
past_key_values=None,
|
1134 |
+
use_cache=None,
|
1135 |
+
output_attentions=None,
|
1136 |
+
output_hidden_states=None,
|
1137 |
+
return_dict=None,
|
1138 |
+
is_decoder=False,
|
1139 |
+
mode="multi_modal",
|
1140 |
+
normalize_attention=True,
|
1141 |
+
):
|
1142 |
+
r"""
|
1143 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1144 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1145 |
+
the model is configured as a decoder.
|
1146 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1147 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1148 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
1149 |
+
- 1 for tokens that are **not masked**,
|
1150 |
+
- 0 for tokens that are **masked**.
|
1151 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1152 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1153 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1154 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1155 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1156 |
+
use_cache (:obj:`bool`, `optional`):
|
1157 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1158 |
+
decoding (see :obj:`past_key_values`).
|
1159 |
+
"""
|
1160 |
+
output_attentions = (
|
1161 |
+
output_attentions
|
1162 |
+
if output_attentions is not None
|
1163 |
+
else self.config.output_attentions
|
1164 |
+
)
|
1165 |
+
output_hidden_states = (
|
1166 |
+
output_hidden_states
|
1167 |
+
if output_hidden_states is not None
|
1168 |
+
else self.config.output_hidden_states
|
1169 |
+
)
|
1170 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1171 |
+
|
1172 |
+
if is_decoder:
|
1173 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1174 |
+
else:
|
1175 |
+
use_cache = False
|
1176 |
+
|
1177 |
+
if input_ids is not None and inputs_embeds is not None:
|
1178 |
+
raise ValueError(
|
1179 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1180 |
+
)
|
1181 |
+
elif input_ids is not None:
|
1182 |
+
input_shape = input_ids.size()
|
1183 |
+
batch_size, seq_length = input_shape
|
1184 |
+
device = input_ids.device
|
1185 |
+
elif inputs_embeds is not None:
|
1186 |
+
input_shape = inputs_embeds.size()[:-1]
|
1187 |
+
batch_size, seq_length = input_shape
|
1188 |
+
device = inputs_embeds.device
|
1189 |
+
elif encoder_embeds is not None:
|
1190 |
+
input_shape = encoder_embeds.size()[:-1]
|
1191 |
+
batch_size, seq_length = input_shape
|
1192 |
+
device = encoder_embeds.device
|
1193 |
+
else:
|
1194 |
+
raise ValueError(
|
1195 |
+
"You have to specify either input_ids or inputs_embeds or encoder_embeds"
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
# past_key_values_length
|
1199 |
+
past_key_values_length = (
|
1200 |
+
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
if attention_mask is None:
|
1204 |
+
attention_mask = torch.ones(
|
1205 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
1206 |
+
)
|
1207 |
+
if token_type_ids is None:
|
1208 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1209 |
+
|
1210 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1211 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1212 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
1213 |
+
attention_mask, input_shape, device, is_decoder
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1217 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1218 |
+
if encoder_hidden_states is not None:
|
1219 |
+
if type(encoder_hidden_states) == list:
|
1220 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
|
1221 |
+
0
|
1222 |
+
].size()
|
1223 |
+
else:
|
1224 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1225 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1226 |
+
|
1227 |
+
if type(encoder_attention_mask) == list:
|
1228 |
+
encoder_extended_attention_mask = [
|
1229 |
+
self.invert_attention_mask(mask) for mask in encoder_attention_mask
|
1230 |
+
]
|
1231 |
+
elif encoder_attention_mask is None:
|
1232 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1233 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
1234 |
+
encoder_attention_mask
|
1235 |
+
)
|
1236 |
+
else:
|
1237 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
1238 |
+
encoder_attention_mask
|
1239 |
+
)
|
1240 |
+
else:
|
1241 |
+
encoder_extended_attention_mask = None
|
1242 |
+
|
1243 |
+
# Prepare head mask if needed
|
1244 |
+
# 1.0 in head_mask indicate we keep the head
|
1245 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1246 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1247 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1248 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1249 |
+
|
1250 |
+
if encoder_embeds is None:
|
1251 |
+
embedding_output = self.embeddings(
|
1252 |
+
input_ids=input_ids,
|
1253 |
+
position_ids=position_ids,
|
1254 |
+
token_type_ids=token_type_ids,
|
1255 |
+
inputs_embeds=inputs_embeds,
|
1256 |
+
past_key_values_length=past_key_values_length,
|
1257 |
+
)
|
1258 |
+
else:
|
1259 |
+
embedding_output = encoder_embeds
|
1260 |
+
|
1261 |
+
encoder_outputs = self.encoder(
|
1262 |
+
embedding_output,
|
1263 |
+
attention_mask=extended_attention_mask,
|
1264 |
+
head_mask=head_mask,
|
1265 |
+
encoder_hidden_states=encoder_hidden_states,
|
1266 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1267 |
+
past_key_values=past_key_values,
|
1268 |
+
use_cache=use_cache,
|
1269 |
+
output_attentions=output_attentions,
|
1270 |
+
output_hidden_states=output_hidden_states,
|
1271 |
+
return_dict=return_dict,
|
1272 |
+
mode=mode,
|
1273 |
+
normalize_attention=normalize_attention,
|
1274 |
+
)
|
1275 |
+
sequence_output = encoder_outputs[0]
|
1276 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1277 |
+
|
1278 |
+
if not return_dict:
|
1279 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1280 |
+
|
1281 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1282 |
+
last_hidden_state=sequence_output,
|
1283 |
+
pooler_output=pooled_output,
|
1284 |
+
past_key_values=encoder_outputs.past_key_values,
|
1285 |
+
hidden_states=encoder_outputs.hidden_states,
|
1286 |
+
attentions=encoder_outputs.attentions,
|
1287 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1288 |
+
)
|
1289 |
+
|
1290 |
+
|
1291 |
+
@add_start_docstrings(
|
1292 |
+
"""
|
1293 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
1294 |
+
sentence prediction (classification)` head.
|
1295 |
+
""",
|
1296 |
+
BERT_START_DOCSTRING,
|
1297 |
+
)
|
1298 |
+
class BertForPreTraining(BertPreTrainedModel):
|
1299 |
+
def __init__(self, config):
|
1300 |
+
super().__init__(config)
|
1301 |
+
|
1302 |
+
self.bert = BertModel(config)
|
1303 |
+
self.cls = BertPreTrainingHeads(config)
|
1304 |
+
|
1305 |
+
self.init_weights()
|
1306 |
+
|
1307 |
+
def get_output_embeddings(self):
|
1308 |
+
return self.cls.predictions.decoder
|
1309 |
+
|
1310 |
+
def set_output_embeddings(self, new_embeddings):
|
1311 |
+
self.cls.predictions.decoder = new_embeddings
|
1312 |
+
|
1313 |
+
@add_start_docstrings_to_model_forward(
|
1314 |
+
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1315 |
+
)
|
1316 |
+
@replace_return_docstrings(
|
1317 |
+
output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
|
1318 |
+
)
|
1319 |
+
def forward(
|
1320 |
+
self,
|
1321 |
+
input_ids=None,
|
1322 |
+
attention_mask=None,
|
1323 |
+
token_type_ids=None,
|
1324 |
+
position_ids=None,
|
1325 |
+
head_mask=None,
|
1326 |
+
inputs_embeds=None,
|
1327 |
+
labels=None,
|
1328 |
+
next_sentence_label=None,
|
1329 |
+
output_attentions=None,
|
1330 |
+
output_hidden_states=None,
|
1331 |
+
return_dict=None,
|
1332 |
+
):
|
1333 |
+
r"""
|
1334 |
+
labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`):
|
1335 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1336 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1337 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1338 |
+
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`):
|
1339 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1340 |
+
(see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``:
|
1341 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1342 |
+
- 1 indicates sequence B is a random sequence.
|
1343 |
+
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
|
1344 |
+
Used to hide legacy arguments that have been deprecated.
|
1345 |
+
Returns:
|
1346 |
+
Example::
|
1347 |
+
>>> from transformers import BertTokenizer, BertForPreTraining
|
1348 |
+
>>> import torch
|
1349 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
1350 |
+
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')
|
1351 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1352 |
+
>>> outputs = model(**inputs)
|
1353 |
+
>>> prediction_logits = outputs.prediction_logits
|
1354 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1355 |
+
"""
|
1356 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1357 |
+
|
1358 |
+
outputs = self.bert(
|
1359 |
+
input_ids,
|
1360 |
+
attention_mask=attention_mask,
|
1361 |
+
token_type_ids=token_type_ids,
|
1362 |
+
position_ids=position_ids,
|
1363 |
+
head_mask=head_mask,
|
1364 |
+
inputs_embeds=inputs_embeds,
|
1365 |
+
output_attentions=output_attentions,
|
1366 |
+
output_hidden_states=output_hidden_states,
|
1367 |
+
return_dict=return_dict,
|
1368 |
+
)
|
1369 |
+
|
1370 |
+
sequence_output, pooled_output = outputs[:2]
|
1371 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1372 |
+
|
1373 |
+
total_loss = None
|
1374 |
+
if labels is not None and next_sentence_label is not None:
|
1375 |
+
loss_fct = CrossEntropyLoss()
|
1376 |
+
masked_lm_loss = loss_fct(
|
1377 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1378 |
+
)
|
1379 |
+
next_sentence_loss = loss_fct(
|
1380 |
+
seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)
|
1381 |
+
)
|
1382 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1383 |
+
|
1384 |
+
if not return_dict:
|
1385 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1386 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1387 |
+
|
1388 |
+
return BertForPreTrainingOutput(
|
1389 |
+
loss=total_loss,
|
1390 |
+
prediction_logits=prediction_scores,
|
1391 |
+
seq_relationship_logits=seq_relationship_score,
|
1392 |
+
hidden_states=outputs.hidden_states,
|
1393 |
+
attentions=outputs.attentions,
|
1394 |
+
)
|
1395 |
+
|
1396 |
+
|
1397 |
+
@add_start_docstrings(
|
1398 |
+
"""Bert Model with a `language modeling` head on top for CLM fine-tuning. """,
|
1399 |
+
BERT_START_DOCSTRING,
|
1400 |
+
)
|
1401 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
1402 |
+
|
1403 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1404 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1405 |
+
|
1406 |
+
def __init__(self, config):
|
1407 |
+
super().__init__(config)
|
1408 |
+
|
1409 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1410 |
+
self.cls = BertOnlyMLMHead(config)
|
1411 |
+
|
1412 |
+
self.init_weights()
|
1413 |
+
|
1414 |
+
def get_output_embeddings(self):
|
1415 |
+
return self.cls.predictions.decoder
|
1416 |
+
|
1417 |
+
def set_output_embeddings(self, new_embeddings):
|
1418 |
+
self.cls.predictions.decoder = new_embeddings
|
1419 |
+
|
1420 |
+
@add_start_docstrings_to_model_forward(
|
1421 |
+
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1422 |
+
)
|
1423 |
+
@replace_return_docstrings(
|
1424 |
+
output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC
|
1425 |
+
)
|
1426 |
+
def forward(
|
1427 |
+
self,
|
1428 |
+
input_ids=None,
|
1429 |
+
attention_mask=None,
|
1430 |
+
token_type_ids=None,
|
1431 |
+
position_ids=None,
|
1432 |
+
head_mask=None,
|
1433 |
+
inputs_embeds=None,
|
1434 |
+
encoder_hidden_states=None,
|
1435 |
+
encoder_attention_mask=None,
|
1436 |
+
labels=None,
|
1437 |
+
past_key_values=None,
|
1438 |
+
use_cache=None,
|
1439 |
+
output_attentions=None,
|
1440 |
+
output_hidden_states=None,
|
1441 |
+
return_dict=None,
|
1442 |
+
is_decoder=True,
|
1443 |
+
reduction="mean",
|
1444 |
+
mode="multi_modal",
|
1445 |
+
normalize_attention=True,
|
1446 |
+
soft_labels=None,
|
1447 |
+
alpha=0,
|
1448 |
+
return_logits=False,
|
1449 |
+
):
|
1450 |
+
r"""
|
1451 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1452 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1453 |
+
the model is configured as a decoder.
|
1454 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1455 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1456 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
1457 |
+
- 1 for tokens that are **not masked**,
|
1458 |
+
- 0 for tokens that are **masked**.
|
1459 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1460 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1461 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
1462 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
1463 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1464 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1465 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1466 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1467 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1468 |
+
use_cache (:obj:`bool`, `optional`):
|
1469 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1470 |
+
decoding (see :obj:`past_key_values`).
|
1471 |
+
Returns:
|
1472 |
+
Example::
|
1473 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
1474 |
+
>>> import torch
|
1475 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
1476 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
1477 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
1478 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1479 |
+
>>> outputs = model(**inputs)
|
1480 |
+
>>> prediction_logits = outputs.logits
|
1481 |
+
"""
|
1482 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1483 |
+
if labels is not None:
|
1484 |
+
use_cache = False
|
1485 |
+
|
1486 |
+
outputs = self.bert(
|
1487 |
+
input_ids,
|
1488 |
+
attention_mask=attention_mask,
|
1489 |
+
token_type_ids=token_type_ids,
|
1490 |
+
position_ids=position_ids,
|
1491 |
+
head_mask=head_mask,
|
1492 |
+
inputs_embeds=inputs_embeds,
|
1493 |
+
encoder_hidden_states=encoder_hidden_states,
|
1494 |
+
encoder_attention_mask=encoder_attention_mask,
|
1495 |
+
past_key_values=past_key_values,
|
1496 |
+
use_cache=use_cache,
|
1497 |
+
output_attentions=output_attentions,
|
1498 |
+
output_hidden_states=output_hidden_states,
|
1499 |
+
return_dict=return_dict,
|
1500 |
+
is_decoder=is_decoder,
|
1501 |
+
mode=mode,
|
1502 |
+
normalize_attention=normalize_attention,
|
1503 |
+
)
|
1504 |
+
|
1505 |
+
sequence_output = outputs[0]
|
1506 |
+
prediction_scores = self.cls(sequence_output)
|
1507 |
+
|
1508 |
+
if return_logits:
|
1509 |
+
return prediction_scores[:, :-1, :].contiguous()
|
1510 |
+
|
1511 |
+
lm_loss = None
|
1512 |
+
if labels is not None:
|
1513 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1514 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1515 |
+
labels = labels[:, 1:].contiguous()
|
1516 |
+
loss_fct = CrossEntropyLoss(reduction=reduction)
|
1517 |
+
lm_loss = loss_fct(
|
1518 |
+
shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1519 |
+
)
|
1520 |
+
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
1521 |
+
|
1522 |
+
if soft_labels is not None:
|
1523 |
+
loss_distill = -torch.sum(
|
1524 |
+
F.log_softmax(shifted_prediction_scores, dim=1) * soft_labels, dim=-1
|
1525 |
+
)
|
1526 |
+
loss_distill = (loss_distill * (labels != -100)).sum(1)
|
1527 |
+
lm_loss = (1 - alpha) * lm_loss + alpha * loss_distill
|
1528 |
+
|
1529 |
+
if not return_dict:
|
1530 |
+
output = (prediction_scores,) + outputs[2:]
|
1531 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1532 |
+
|
1533 |
+
return CausalLMOutputWithCrossAttentions(
|
1534 |
+
loss=lm_loss,
|
1535 |
+
logits=prediction_scores,
|
1536 |
+
past_key_values=outputs.past_key_values,
|
1537 |
+
hidden_states=outputs.hidden_states,
|
1538 |
+
attentions=outputs.attentions,
|
1539 |
+
cross_attentions=outputs.cross_attentions,
|
1540 |
+
)
|
1541 |
+
|
1542 |
+
def prepare_inputs_for_generation(
|
1543 |
+
self, input_ids, past=None, attention_mask=None, **model_kwargs
|
1544 |
+
):
|
1545 |
+
input_shape = input_ids.shape
|
1546 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1547 |
+
if attention_mask is None:
|
1548 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1549 |
+
|
1550 |
+
# cut decoder_input_ids if past is used
|
1551 |
+
if past is not None:
|
1552 |
+
input_ids = input_ids[:, -1:]
|
1553 |
+
|
1554 |
+
return {
|
1555 |
+
"input_ids": input_ids,
|
1556 |
+
"attention_mask": attention_mask,
|
1557 |
+
"past_key_values": past,
|
1558 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1559 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1560 |
+
"is_decoder": True,
|
1561 |
+
}
|
1562 |
+
|
1563 |
+
def _reorder_cache(self, past, beam_idx):
|
1564 |
+
reordered_past = ()
|
1565 |
+
for layer_past in past:
|
1566 |
+
reordered_past += (
|
1567 |
+
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),
|
1568 |
+
)
|
1569 |
+
return reordered_past
|
1570 |
+
|
1571 |
+
|
1572 |
+
@dataclass
|
1573 |
+
class MaskedLMOutputWithDistill(MaskedLMOutput):
|
1574 |
+
loss_aux: Optional[torch.FloatTensor] = None
|
1575 |
+
loss_distill: Optional[torch.FloatTensor] = None
|
1576 |
+
|
1577 |
+
|
1578 |
+
@add_start_docstrings(
|
1579 |
+
"""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING
|
1580 |
+
)
|
1581 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1582 |
+
|
1583 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1584 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1585 |
+
|
1586 |
+
def __init__(self, config):
|
1587 |
+
super().__init__(config)
|
1588 |
+
|
1589 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1590 |
+
self.cls = BertOnlyMLMHead(config)
|
1591 |
+
|
1592 |
+
self.init_weights()
|
1593 |
+
|
1594 |
+
def tie_aux_decoder_weights(self, module, aux_modules):
|
1595 |
+
"""Tie decoder weights of all `aux_modules` to `module`, (not bias)"""
|
1596 |
+
for m in aux_modules:
|
1597 |
+
m.predictions.decoder.weight = module.predictions.decoder.weight
|
1598 |
+
|
1599 |
+
def get_output_embeddings(self):
|
1600 |
+
return self.cls.predictions.decoder
|
1601 |
+
|
1602 |
+
def set_output_embeddings(self, new_embeddings):
|
1603 |
+
self.cls.predictions.decoder = new_embeddings
|
1604 |
+
|
1605 |
+
def forward(
|
1606 |
+
self,
|
1607 |
+
input_ids=None,
|
1608 |
+
attention_mask=None,
|
1609 |
+
token_type_ids=None,
|
1610 |
+
position_ids=None,
|
1611 |
+
head_mask=None,
|
1612 |
+
inputs_embeds=None,
|
1613 |
+
encoder_embeds=None,
|
1614 |
+
encoder_hidden_states=None,
|
1615 |
+
encoder_attention_mask=None,
|
1616 |
+
labels=None,
|
1617 |
+
output_attentions=None,
|
1618 |
+
output_hidden_states=None,
|
1619 |
+
return_dict=None,
|
1620 |
+
is_decoder=False,
|
1621 |
+
mode="multi_modal",
|
1622 |
+
normalize_attention=True,
|
1623 |
+
soft_labels=None,
|
1624 |
+
alpha=0,
|
1625 |
+
return_logits=False,
|
1626 |
+
):
|
1627 |
+
r"""
|
1628 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1629 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1630 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1631 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1632 |
+
"""
|
1633 |
+
|
1634 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1635 |
+
|
1636 |
+
outputs = self.bert(
|
1637 |
+
input_ids,
|
1638 |
+
attention_mask=attention_mask,
|
1639 |
+
token_type_ids=token_type_ids,
|
1640 |
+
position_ids=position_ids,
|
1641 |
+
head_mask=head_mask,
|
1642 |
+
inputs_embeds=inputs_embeds,
|
1643 |
+
encoder_embeds=encoder_embeds,
|
1644 |
+
encoder_hidden_states=encoder_hidden_states,
|
1645 |
+
encoder_attention_mask=encoder_attention_mask,
|
1646 |
+
output_attentions=output_attentions,
|
1647 |
+
output_hidden_states=output_hidden_states,
|
1648 |
+
return_dict=return_dict,
|
1649 |
+
is_decoder=is_decoder,
|
1650 |
+
mode=mode,
|
1651 |
+
normalize_attention=normalize_attention,
|
1652 |
+
)
|
1653 |
+
|
1654 |
+
sequence_output = outputs[0]
|
1655 |
+
prediction_scores = self.cls(sequence_output)
|
1656 |
+
|
1657 |
+
if return_logits:
|
1658 |
+
return prediction_scores
|
1659 |
+
|
1660 |
+
masked_lm_loss = None
|
1661 |
+
masked_lm_loss_aux = 0.0
|
1662 |
+
if labels is not None:
|
1663 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1664 |
+
masked_lm_loss = loss_fct(
|
1665 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1666 |
+
)
|
1667 |
+
|
1668 |
+
if soft_labels is not None:
|
1669 |
+
loss_distill = -torch.sum(
|
1670 |
+
F.log_softmax(prediction_scores, dim=1) * soft_labels, dim=-1
|
1671 |
+
)
|
1672 |
+
loss_distill = loss_distill[labels != -100].mean()
|
1673 |
+
masked_lm_loss = (1 - alpha) * masked_lm_loss + alpha * loss_distill
|
1674 |
+
|
1675 |
+
if not return_dict:
|
1676 |
+
output = (prediction_scores,) + outputs[2:]
|
1677 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1678 |
+
|
1679 |
+
# changed from MaskedLMOutput to MaskedLMOutputWithDistill
|
1680 |
+
return MaskedLMOutputWithDistill(
|
1681 |
+
loss=masked_lm_loss,
|
1682 |
+
loss_aux=masked_lm_loss_aux,
|
1683 |
+
logits=prediction_scores,
|
1684 |
+
hidden_states=outputs.hidden_states,
|
1685 |
+
attentions=outputs.attentions,
|
1686 |
+
)
|
1687 |
+
|
1688 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1689 |
+
input_shape = input_ids.shape
|
1690 |
+
effective_batch_size = input_shape[0]
|
1691 |
+
|
1692 |
+
# add a dummy token
|
1693 |
+
assert (
|
1694 |
+
self.config.pad_token_id is not None
|
1695 |
+
), "The PAD token should be defined for generation"
|
1696 |
+
attention_mask = torch.cat(
|
1697 |
+
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1
|
1698 |
+
)
|
1699 |
+
dummy_token = torch.full(
|
1700 |
+
(effective_batch_size, 1),
|
1701 |
+
self.config.pad_token_id,
|
1702 |
+
dtype=torch.long,
|
1703 |
+
device=input_ids.device,
|
1704 |
+
)
|
1705 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1706 |
+
|
1707 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1708 |
+
|
1709 |
+
|
1710 |
+
@add_start_docstrings(
|
1711 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top. """,
|
1712 |
+
BERT_START_DOCSTRING,
|
1713 |
+
)
|
1714 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
1715 |
+
def __init__(self, config):
|
1716 |
+
super().__init__(config)
|
1717 |
+
|
1718 |
+
self.bert = BertModel(config)
|
1719 |
+
self.cls = BertOnlyNSPHead(config)
|
1720 |
+
|
1721 |
+
self.init_weights()
|
1722 |
+
|
1723 |
+
@add_start_docstrings_to_model_forward(
|
1724 |
+
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1725 |
+
)
|
1726 |
+
@replace_return_docstrings(
|
1727 |
+
output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC
|
1728 |
+
)
|
1729 |
+
def forward(
|
1730 |
+
self,
|
1731 |
+
input_ids=None,
|
1732 |
+
attention_mask=None,
|
1733 |
+
token_type_ids=None,
|
1734 |
+
position_ids=None,
|
1735 |
+
head_mask=None,
|
1736 |
+
inputs_embeds=None,
|
1737 |
+
labels=None,
|
1738 |
+
output_attentions=None,
|
1739 |
+
output_hidden_states=None,
|
1740 |
+
return_dict=None,
|
1741 |
+
**kwargs,
|
1742 |
+
):
|
1743 |
+
r"""
|
1744 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1745 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1746 |
+
(see ``input_ids`` docstring). Indices should be in ``[0, 1]``:
|
1747 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1748 |
+
- 1 indicates sequence B is a random sequence.
|
1749 |
+
Returns:
|
1750 |
+
Example::
|
1751 |
+
>>> from transformers import BertTokenizer, BertForNextSentencePrediction
|
1752 |
+
>>> import torch
|
1753 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
1754 |
+
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
|
1755 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1756 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1757 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')
|
1758 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1759 |
+
>>> logits = outputs.logits
|
1760 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1761 |
+
"""
|
1762 |
+
|
1763 |
+
if "next_sentence_label" in kwargs:
|
1764 |
+
warnings.warn(
|
1765 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.",
|
1766 |
+
FutureWarning,
|
1767 |
+
)
|
1768 |
+
labels = kwargs.pop("next_sentence_label")
|
1769 |
+
|
1770 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1771 |
+
|
1772 |
+
outputs = self.bert(
|
1773 |
+
input_ids,
|
1774 |
+
attention_mask=attention_mask,
|
1775 |
+
token_type_ids=token_type_ids,
|
1776 |
+
position_ids=position_ids,
|
1777 |
+
head_mask=head_mask,
|
1778 |
+
inputs_embeds=inputs_embeds,
|
1779 |
+
output_attentions=output_attentions,
|
1780 |
+
output_hidden_states=output_hidden_states,
|
1781 |
+
return_dict=return_dict,
|
1782 |
+
)
|
1783 |
+
|
1784 |
+
pooled_output = outputs[1]
|
1785 |
+
|
1786 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1787 |
+
|
1788 |
+
next_sentence_loss = None
|
1789 |
+
if labels is not None:
|
1790 |
+
loss_fct = CrossEntropyLoss()
|
1791 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1792 |
+
|
1793 |
+
if not return_dict:
|
1794 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1795 |
+
return (
|
1796 |
+
((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1797 |
+
)
|
1798 |
+
|
1799 |
+
return NextSentencePredictorOutput(
|
1800 |
+
loss=next_sentence_loss,
|
1801 |
+
logits=seq_relationship_scores,
|
1802 |
+
hidden_states=outputs.hidden_states,
|
1803 |
+
attentions=outputs.attentions,
|
1804 |
+
)
|
1805 |
+
|
1806 |
+
|
1807 |
+
@add_start_docstrings(
|
1808 |
+
"""
|
1809 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1810 |
+
output) e.g. for GLUE tasks.
|
1811 |
+
""",
|
1812 |
+
BERT_START_DOCSTRING,
|
1813 |
+
)
|
1814 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
1815 |
+
def __init__(self, config):
|
1816 |
+
super().__init__(config)
|
1817 |
+
self.num_labels = config.num_labels
|
1818 |
+
|
1819 |
+
self.bert = BertModel(config)
|
1820 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1821 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1822 |
+
|
1823 |
+
self.init_weights()
|
1824 |
+
|
1825 |
+
def forward(
|
1826 |
+
self,
|
1827 |
+
input_ids=None,
|
1828 |
+
attention_mask=None,
|
1829 |
+
token_type_ids=None,
|
1830 |
+
position_ids=None,
|
1831 |
+
head_mask=None,
|
1832 |
+
inputs_embeds=None,
|
1833 |
+
labels=None,
|
1834 |
+
output_attentions=None,
|
1835 |
+
output_hidden_states=None,
|
1836 |
+
return_dict=None,
|
1837 |
+
):
|
1838 |
+
r"""
|
1839 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1840 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
1841 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1842 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1843 |
+
"""
|
1844 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1845 |
+
|
1846 |
+
outputs = self.bert(
|
1847 |
+
input_ids,
|
1848 |
+
attention_mask=attention_mask,
|
1849 |
+
token_type_ids=token_type_ids,
|
1850 |
+
position_ids=position_ids,
|
1851 |
+
head_mask=head_mask,
|
1852 |
+
inputs_embeds=inputs_embeds,
|
1853 |
+
output_attentions=output_attentions,
|
1854 |
+
output_hidden_states=output_hidden_states,
|
1855 |
+
return_dict=return_dict,
|
1856 |
+
)
|
1857 |
+
|
1858 |
+
pooled_output = outputs[1]
|
1859 |
+
|
1860 |
+
pooled_output = self.dropout(pooled_output)
|
1861 |
+
logits = self.classifier(pooled_output)
|
1862 |
+
|
1863 |
+
loss = None
|
1864 |
+
if labels is not None:
|
1865 |
+
if self.num_labels == 1:
|
1866 |
+
# We are doing regression
|
1867 |
+
loss_fct = MSELoss()
|
1868 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
1869 |
+
else:
|
1870 |
+
loss_fct = CrossEntropyLoss()
|
1871 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1872 |
+
|
1873 |
+
if not return_dict:
|
1874 |
+
output = (logits,) + outputs[2:]
|
1875 |
+
return ((loss,) + output) if loss is not None else output
|
1876 |
+
|
1877 |
+
return SequenceClassifierOutput(
|
1878 |
+
loss=loss,
|
1879 |
+
logits=logits,
|
1880 |
+
hidden_states=outputs.hidden_states,
|
1881 |
+
attentions=outputs.attentions,
|
1882 |
+
)
|
1883 |
+
|
1884 |
+
|
1885 |
+
@add_start_docstrings(
|
1886 |
+
"""
|
1887 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1888 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1889 |
+
""",
|
1890 |
+
BERT_START_DOCSTRING,
|
1891 |
+
)
|
1892 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
1893 |
+
def __init__(self, config):
|
1894 |
+
super().__init__(config)
|
1895 |
+
|
1896 |
+
self.bert = BertModel(config)
|
1897 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1898 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1899 |
+
|
1900 |
+
self.init_weights()
|
1901 |
+
|
1902 |
+
def forward(
|
1903 |
+
self,
|
1904 |
+
input_ids=None,
|
1905 |
+
attention_mask=None,
|
1906 |
+
token_type_ids=None,
|
1907 |
+
position_ids=None,
|
1908 |
+
head_mask=None,
|
1909 |
+
inputs_embeds=None,
|
1910 |
+
labels=None,
|
1911 |
+
output_attentions=None,
|
1912 |
+
output_hidden_states=None,
|
1913 |
+
return_dict=None,
|
1914 |
+
):
|
1915 |
+
r"""
|
1916 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1917 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
1918 |
+
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
|
1919 |
+
:obj:`input_ids` above)
|
1920 |
+
"""
|
1921 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1922 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1923 |
+
|
1924 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1925 |
+
attention_mask = (
|
1926 |
+
attention_mask.view(-1, attention_mask.size(-1))
|
1927 |
+
if attention_mask is not None
|
1928 |
+
else None
|
1929 |
+
)
|
1930 |
+
token_type_ids = (
|
1931 |
+
token_type_ids.view(-1, token_type_ids.size(-1))
|
1932 |
+
if token_type_ids is not None
|
1933 |
+
else None
|
1934 |
+
)
|
1935 |
+
position_ids = (
|
1936 |
+
position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1937 |
+
)
|
1938 |
+
inputs_embeds = (
|
1939 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1940 |
+
if inputs_embeds is not None
|
1941 |
+
else None
|
1942 |
+
)
|
1943 |
+
|
1944 |
+
outputs = self.bert(
|
1945 |
+
input_ids,
|
1946 |
+
attention_mask=attention_mask,
|
1947 |
+
token_type_ids=token_type_ids,
|
1948 |
+
position_ids=position_ids,
|
1949 |
+
head_mask=head_mask,
|
1950 |
+
inputs_embeds=inputs_embeds,
|
1951 |
+
output_attentions=output_attentions,
|
1952 |
+
output_hidden_states=output_hidden_states,
|
1953 |
+
return_dict=return_dict,
|
1954 |
+
)
|
1955 |
+
|
1956 |
+
pooled_output = outputs[1]
|
1957 |
+
|
1958 |
+
pooled_output = self.dropout(pooled_output)
|
1959 |
+
logits = self.classifier(pooled_output)
|
1960 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1961 |
+
|
1962 |
+
loss = None
|
1963 |
+
if labels is not None:
|
1964 |
+
loss_fct = CrossEntropyLoss()
|
1965 |
+
loss = loss_fct(reshaped_logits, labels)
|
1966 |
+
|
1967 |
+
if not return_dict:
|
1968 |
+
output = (reshaped_logits,) + outputs[2:]
|
1969 |
+
return ((loss,) + output) if loss is not None else output
|
1970 |
+
|
1971 |
+
return MultipleChoiceModelOutput(
|
1972 |
+
loss=loss,
|
1973 |
+
logits=reshaped_logits,
|
1974 |
+
hidden_states=outputs.hidden_states,
|
1975 |
+
attentions=outputs.attentions,
|
1976 |
+
)
|
1977 |
+
|
1978 |
+
|
1979 |
+
@add_start_docstrings(
|
1980 |
+
"""
|
1981 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1982 |
+
Named-Entity-Recognition (NER) tasks.
|
1983 |
+
""",
|
1984 |
+
BERT_START_DOCSTRING,
|
1985 |
+
)
|
1986 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
1987 |
+
|
1988 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1989 |
+
|
1990 |
+
def __init__(self, config):
|
1991 |
+
super().__init__(config)
|
1992 |
+
self.num_labels = config.num_labels
|
1993 |
+
|
1994 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1995 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1996 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1997 |
+
|
1998 |
+
self.init_weights()
|
1999 |
+
|
2000 |
+
def forward(
|
2001 |
+
self,
|
2002 |
+
input_ids=None,
|
2003 |
+
attention_mask=None,
|
2004 |
+
token_type_ids=None,
|
2005 |
+
position_ids=None,
|
2006 |
+
head_mask=None,
|
2007 |
+
inputs_embeds=None,
|
2008 |
+
labels=None,
|
2009 |
+
output_attentions=None,
|
2010 |
+
output_hidden_states=None,
|
2011 |
+
return_dict=None,
|
2012 |
+
):
|
2013 |
+
r"""
|
2014 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
2015 |
+
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
|
2016 |
+
1]``.
|
2017 |
+
"""
|
2018 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2019 |
+
|
2020 |
+
outputs = self.bert(
|
2021 |
+
input_ids,
|
2022 |
+
attention_mask=attention_mask,
|
2023 |
+
token_type_ids=token_type_ids,
|
2024 |
+
position_ids=position_ids,
|
2025 |
+
head_mask=head_mask,
|
2026 |
+
inputs_embeds=inputs_embeds,
|
2027 |
+
output_attentions=output_attentions,
|
2028 |
+
output_hidden_states=output_hidden_states,
|
2029 |
+
return_dict=return_dict,
|
2030 |
+
)
|
2031 |
+
|
2032 |
+
sequence_output = outputs[0]
|
2033 |
+
|
2034 |
+
sequence_output = self.dropout(sequence_output)
|
2035 |
+
logits = self.classifier(sequence_output)
|
2036 |
+
|
2037 |
+
loss = None
|
2038 |
+
if labels is not None:
|
2039 |
+
loss_fct = CrossEntropyLoss()
|
2040 |
+
# Only keep active parts of the loss
|
2041 |
+
if attention_mask is not None:
|
2042 |
+
active_loss = attention_mask.view(-1) == 1
|
2043 |
+
active_logits = logits.view(-1, self.num_labels)
|
2044 |
+
active_labels = torch.where(
|
2045 |
+
active_loss,
|
2046 |
+
labels.view(-1),
|
2047 |
+
torch.tensor(loss_fct.ignore_index).type_as(labels),
|
2048 |
+
)
|
2049 |
+
loss = loss_fct(active_logits, active_labels)
|
2050 |
+
else:
|
2051 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
2052 |
+
|
2053 |
+
if not return_dict:
|
2054 |
+
output = (logits,) + outputs[2:]
|
2055 |
+
return ((loss,) + output) if loss is not None else output
|
2056 |
+
|
2057 |
+
return TokenClassifierOutput(
|
2058 |
+
loss=loss,
|
2059 |
+
logits=logits,
|
2060 |
+
hidden_states=outputs.hidden_states,
|
2061 |
+
attentions=outputs.attentions,
|
2062 |
+
)
|
2063 |
+
|
2064 |
+
|
2065 |
+
@add_start_docstrings(
|
2066 |
+
"""
|
2067 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
2068 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
2069 |
+
""",
|
2070 |
+
BERT_START_DOCSTRING,
|
2071 |
+
)
|
2072 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
2073 |
+
|
2074 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
2075 |
+
|
2076 |
+
def __init__(self, config):
|
2077 |
+
super().__init__(config)
|
2078 |
+
self.num_labels = config.num_labels
|
2079 |
+
|
2080 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
2081 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
2082 |
+
|
2083 |
+
self.init_weights()
|
2084 |
+
|
2085 |
+
def forward(
|
2086 |
+
self,
|
2087 |
+
input_ids=None,
|
2088 |
+
attention_mask=None,
|
2089 |
+
token_type_ids=None,
|
2090 |
+
position_ids=None,
|
2091 |
+
head_mask=None,
|
2092 |
+
inputs_embeds=None,
|
2093 |
+
start_positions=None,
|
2094 |
+
end_positions=None,
|
2095 |
+
output_attentions=None,
|
2096 |
+
output_hidden_states=None,
|
2097 |
+
return_dict=None,
|
2098 |
+
):
|
2099 |
+
r"""
|
2100 |
+
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
2101 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
2102 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
2103 |
+
sequence are not taken into account for computing the loss.
|
2104 |
+
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
2105 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
2106 |
+
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
|
2107 |
+
sequence are not taken into account for computing the loss.
|
2108 |
+
"""
|
2109 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2110 |
+
|
2111 |
+
outputs = self.bert(
|
2112 |
+
input_ids,
|
2113 |
+
attention_mask=attention_mask,
|
2114 |
+
token_type_ids=token_type_ids,
|
2115 |
+
position_ids=position_ids,
|
2116 |
+
head_mask=head_mask,
|
2117 |
+
inputs_embeds=inputs_embeds,
|
2118 |
+
output_attentions=output_attentions,
|
2119 |
+
output_hidden_states=output_hidden_states,
|
2120 |
+
return_dict=return_dict,
|
2121 |
+
)
|
2122 |
+
|
2123 |
+
sequence_output = outputs[0]
|
2124 |
+
|
2125 |
+
logits = self.qa_outputs(sequence_output)
|
2126 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
2127 |
+
start_logits = start_logits.squeeze(-1)
|
2128 |
+
end_logits = end_logits.squeeze(-1)
|
2129 |
+
|
2130 |
+
total_loss = None
|
2131 |
+
if start_positions is not None and end_positions is not None:
|
2132 |
+
# If we are on multi-GPU, split add a dimension
|
2133 |
+
if len(start_positions.size()) > 1:
|
2134 |
+
start_positions = start_positions.squeeze(-1)
|
2135 |
+
if len(end_positions.size()) > 1:
|
2136 |
+
end_positions = end_positions.squeeze(-1)
|
2137 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
2138 |
+
ignored_index = start_logits.size(1)
|
2139 |
+
start_positions.clamp_(0, ignored_index)
|
2140 |
+
end_positions.clamp_(0, ignored_index)
|
2141 |
+
|
2142 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
2143 |
+
start_loss = loss_fct(start_logits, start_positions)
|
2144 |
+
end_loss = loss_fct(end_logits, end_positions)
|
2145 |
+
total_loss = (start_loss + end_loss) / 2
|
2146 |
+
|
2147 |
+
if not return_dict:
|
2148 |
+
output = (start_logits, end_logits) + outputs[2:]
|
2149 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
2150 |
+
|
2151 |
+
return QuestionAnsweringModelOutput(
|
2152 |
+
loss=total_loss,
|
2153 |
+
start_logits=start_logits,
|
2154 |
+
end_logits=end_logits,
|
2155 |
+
hidden_states=outputs.hidden_states,
|
2156 |
+
attentions=outputs.attentions,
|
2157 |
+
)
|
models_viclip/backbones/blip_toremove/Qformer.py
ADDED
@@ -0,0 +1,1237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
* Copyright (c) 2023, salesforce.com, inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
* By Junnan Li
|
7 |
+
* Based on huggingface code base
|
8 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
9 |
+
"""
|
10 |
+
|
11 |
+
import math
|
12 |
+
import os
|
13 |
+
import warnings
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional, Tuple, Dict, Any
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import Tensor, device, dtype, nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
from torch.nn import CrossEntropyLoss
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from timm.models.layers import drop_path
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.file_utils import (
|
27 |
+
ModelOutput,
|
28 |
+
)
|
29 |
+
from transformers.modeling_outputs import (
|
30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
32 |
+
CausalLMOutputWithCrossAttentions,
|
33 |
+
MaskedLMOutput,
|
34 |
+
MultipleChoiceModelOutput,
|
35 |
+
NextSentencePredictorOutput,
|
36 |
+
QuestionAnsweringModelOutput,
|
37 |
+
SequenceClassifierOutput,
|
38 |
+
TokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from transformers.modeling_utils import (
|
41 |
+
PreTrainedModel,
|
42 |
+
apply_chunking_to_forward,
|
43 |
+
find_pruneable_heads_and_indices,
|
44 |
+
prune_linear_layer,
|
45 |
+
)
|
46 |
+
from transformers.utils import logging
|
47 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
class BertEmbeddings(nn.Module):
|
53 |
+
"""Construct the embeddings from word and position embeddings."""
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.word_embeddings = nn.Embedding(
|
58 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
59 |
+
)
|
60 |
+
self.position_embeddings = nn.Embedding(
|
61 |
+
config.max_position_embeddings, config.hidden_size
|
62 |
+
)
|
63 |
+
|
64 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
65 |
+
# any TensorFlow checkpoint file
|
66 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
67 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
68 |
+
|
69 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
70 |
+
self.register_buffer(
|
71 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
72 |
+
)
|
73 |
+
self.position_embedding_type = getattr(
|
74 |
+
config, "position_embedding_type", "absolute"
|
75 |
+
)
|
76 |
+
|
77 |
+
self.config = config
|
78 |
+
|
79 |
+
def forward(
|
80 |
+
self,
|
81 |
+
input_ids=None,
|
82 |
+
position_ids=None,
|
83 |
+
query_embeds=None,
|
84 |
+
past_key_values_length=0,
|
85 |
+
):
|
86 |
+
if input_ids is not None:
|
87 |
+
seq_length = input_ids.size()[1]
|
88 |
+
else:
|
89 |
+
seq_length = 0
|
90 |
+
|
91 |
+
if position_ids is None:
|
92 |
+
position_ids = self.position_ids[
|
93 |
+
:, past_key_values_length : seq_length + past_key_values_length
|
94 |
+
].clone()
|
95 |
+
|
96 |
+
if input_ids is not None:
|
97 |
+
embeddings = self.word_embeddings(input_ids)
|
98 |
+
if self.position_embedding_type == "absolute":
|
99 |
+
position_embeddings = self.position_embeddings(position_ids)
|
100 |
+
embeddings = embeddings + position_embeddings
|
101 |
+
|
102 |
+
if query_embeds is not None:
|
103 |
+
embeddings = torch.cat((query_embeds, embeddings), dim=1)
|
104 |
+
else:
|
105 |
+
embeddings = query_embeds
|
106 |
+
|
107 |
+
embeddings = self.LayerNorm(embeddings)
|
108 |
+
embeddings = self.dropout(embeddings)
|
109 |
+
return embeddings
|
110 |
+
|
111 |
+
|
112 |
+
class BertSelfAttention(nn.Module):
|
113 |
+
def __init__(self, config, is_cross_attention):
|
114 |
+
super().__init__()
|
115 |
+
self.config = config
|
116 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
117 |
+
config, "embedding_size"
|
118 |
+
):
|
119 |
+
raise ValueError(
|
120 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
121 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
122 |
+
)
|
123 |
+
|
124 |
+
self.num_attention_heads = config.num_attention_heads
|
125 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
126 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
127 |
+
|
128 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
129 |
+
if is_cross_attention:
|
130 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
131 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
132 |
+
else:
|
133 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
134 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
135 |
+
|
136 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
137 |
+
self.position_embedding_type = getattr(
|
138 |
+
config, "position_embedding_type", "absolute"
|
139 |
+
)
|
140 |
+
if (
|
141 |
+
self.position_embedding_type == "relative_key"
|
142 |
+
or self.position_embedding_type == "relative_key_query"
|
143 |
+
):
|
144 |
+
self.max_position_embeddings = config.max_position_embeddings
|
145 |
+
self.distance_embedding = nn.Embedding(
|
146 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
147 |
+
)
|
148 |
+
self.save_attention = False
|
149 |
+
|
150 |
+
def save_attn_gradients(self, attn_gradients):
|
151 |
+
self.attn_gradients = attn_gradients
|
152 |
+
|
153 |
+
def get_attn_gradients(self):
|
154 |
+
return self.attn_gradients
|
155 |
+
|
156 |
+
def save_attention_map(self, attention_map):
|
157 |
+
self.attention_map = attention_map
|
158 |
+
|
159 |
+
def get_attention_map(self):
|
160 |
+
return self.attention_map
|
161 |
+
|
162 |
+
def transpose_for_scores(self, x):
|
163 |
+
new_x_shape = x.size()[:-1] + (
|
164 |
+
self.num_attention_heads,
|
165 |
+
self.attention_head_size,
|
166 |
+
)
|
167 |
+
x = x.view(*new_x_shape)
|
168 |
+
return x.permute(0, 2, 1, 3)
|
169 |
+
|
170 |
+
def forward(
|
171 |
+
self,
|
172 |
+
hidden_states,
|
173 |
+
attention_mask=None,
|
174 |
+
head_mask=None,
|
175 |
+
encoder_hidden_states=None,
|
176 |
+
encoder_attention_mask=None,
|
177 |
+
past_key_value=None,
|
178 |
+
output_attentions=False,
|
179 |
+
):
|
180 |
+
|
181 |
+
# If this is instantiated as a cross-attention module, the keys
|
182 |
+
# and values come from an encoder; the attention mask needs to be
|
183 |
+
# such that the encoder's padding tokens are not attended to.
|
184 |
+
is_cross_attention = encoder_hidden_states is not None
|
185 |
+
|
186 |
+
if is_cross_attention:
|
187 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
188 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
189 |
+
attention_mask = encoder_attention_mask
|
190 |
+
elif past_key_value is not None:
|
191 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
192 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
193 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
194 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
195 |
+
else:
|
196 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
197 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
198 |
+
|
199 |
+
mixed_query_layer = self.query(hidden_states)
|
200 |
+
|
201 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
202 |
+
|
203 |
+
past_key_value = (key_layer, value_layer)
|
204 |
+
|
205 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
206 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
207 |
+
|
208 |
+
if (
|
209 |
+
self.position_embedding_type == "relative_key"
|
210 |
+
or self.position_embedding_type == "relative_key_query"
|
211 |
+
):
|
212 |
+
seq_length = hidden_states.size()[1]
|
213 |
+
position_ids_l = torch.arange(
|
214 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
215 |
+
).view(-1, 1)
|
216 |
+
position_ids_r = torch.arange(
|
217 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
218 |
+
).view(1, -1)
|
219 |
+
distance = position_ids_l - position_ids_r
|
220 |
+
positional_embedding = self.distance_embedding(
|
221 |
+
distance + self.max_position_embeddings - 1
|
222 |
+
)
|
223 |
+
positional_embedding = positional_embedding.to(
|
224 |
+
dtype=query_layer.dtype
|
225 |
+
) # fp16 compatibility
|
226 |
+
|
227 |
+
if self.position_embedding_type == "relative_key":
|
228 |
+
relative_position_scores = torch.einsum(
|
229 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
230 |
+
)
|
231 |
+
attention_scores = attention_scores + relative_position_scores
|
232 |
+
elif self.position_embedding_type == "relative_key_query":
|
233 |
+
relative_position_scores_query = torch.einsum(
|
234 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
235 |
+
)
|
236 |
+
relative_position_scores_key = torch.einsum(
|
237 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
238 |
+
)
|
239 |
+
attention_scores = (
|
240 |
+
attention_scores
|
241 |
+
+ relative_position_scores_query
|
242 |
+
+ relative_position_scores_key
|
243 |
+
)
|
244 |
+
|
245 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
246 |
+
if attention_mask is not None:
|
247 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
248 |
+
attention_scores = attention_scores + attention_mask
|
249 |
+
|
250 |
+
# Normalize the attention scores to probabilities.
|
251 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
252 |
+
|
253 |
+
if is_cross_attention and self.save_attention:
|
254 |
+
self.save_attention_map(attention_probs)
|
255 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
256 |
+
|
257 |
+
# This is actually dropping out entire tokens to attend to, which might
|
258 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
259 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
260 |
+
|
261 |
+
# Mask heads if we want to
|
262 |
+
if head_mask is not None:
|
263 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
264 |
+
|
265 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
266 |
+
|
267 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
268 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
269 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
270 |
+
|
271 |
+
outputs = (
|
272 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
273 |
+
)
|
274 |
+
|
275 |
+
outputs = outputs + (past_key_value,)
|
276 |
+
return outputs
|
277 |
+
|
278 |
+
|
279 |
+
class DropPath(nn.Module):
|
280 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
281 |
+
"""
|
282 |
+
def __init__(self, drop_prob=None):
|
283 |
+
super(DropPath, self).__init__()
|
284 |
+
self.drop_prob = drop_prob
|
285 |
+
|
286 |
+
def forward(self, x):
|
287 |
+
return drop_path(x, self.drop_prob, self.training)
|
288 |
+
|
289 |
+
def extra_repr(self) -> str:
|
290 |
+
return 'p={}'.format(self.drop_prob)
|
291 |
+
|
292 |
+
|
293 |
+
class BertSelfOutput(nn.Module):
|
294 |
+
def __init__(self, config, drop_path_prob=0.):
|
295 |
+
super().__init__()
|
296 |
+
self.drop_path = DropPath(drop_path_prob) if drop_path_prob > 0. else nn.Identity()
|
297 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
298 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
299 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
300 |
+
|
301 |
+
def forward(self, hidden_states, input_tensor):
|
302 |
+
hidden_states = self.dense(hidden_states)
|
303 |
+
hidden_states = self.dropout(hidden_states)
|
304 |
+
hidden_states = self.drop_path(hidden_states)
|
305 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
306 |
+
return hidden_states
|
307 |
+
|
308 |
+
|
309 |
+
class BertAttention(nn.Module):
|
310 |
+
def __init__(self, config, is_cross_attention=False, drop_path_prob=0.,):
|
311 |
+
super().__init__()
|
312 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
313 |
+
self.output = BertSelfOutput(config, drop_path_prob=drop_path_prob)
|
314 |
+
self.pruned_heads = set()
|
315 |
+
|
316 |
+
def prune_heads(self, heads):
|
317 |
+
if len(heads) == 0:
|
318 |
+
return
|
319 |
+
heads, index = find_pruneable_heads_and_indices(
|
320 |
+
heads,
|
321 |
+
self.self.num_attention_heads,
|
322 |
+
self.self.attention_head_size,
|
323 |
+
self.pruned_heads,
|
324 |
+
)
|
325 |
+
|
326 |
+
# Prune linear layers
|
327 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
328 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
329 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
330 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
331 |
+
|
332 |
+
# Update hyper params and store pruned heads
|
333 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
334 |
+
self.self.all_head_size = (
|
335 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
336 |
+
)
|
337 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
338 |
+
|
339 |
+
def forward(
|
340 |
+
self,
|
341 |
+
hidden_states,
|
342 |
+
attention_mask=None,
|
343 |
+
head_mask=None,
|
344 |
+
encoder_hidden_states=None,
|
345 |
+
encoder_attention_mask=None,
|
346 |
+
past_key_value=None,
|
347 |
+
output_attentions=False,
|
348 |
+
):
|
349 |
+
self_outputs = self.self(
|
350 |
+
hidden_states,
|
351 |
+
attention_mask,
|
352 |
+
head_mask,
|
353 |
+
encoder_hidden_states,
|
354 |
+
encoder_attention_mask,
|
355 |
+
past_key_value,
|
356 |
+
output_attentions,
|
357 |
+
)
|
358 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
359 |
+
|
360 |
+
outputs = (attention_output,) + self_outputs[
|
361 |
+
1:
|
362 |
+
] # add attentions if we output them
|
363 |
+
return outputs
|
364 |
+
|
365 |
+
|
366 |
+
class BertIntermediate(nn.Module):
|
367 |
+
def __init__(self, config):
|
368 |
+
super().__init__()
|
369 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
370 |
+
if isinstance(config.hidden_act, str):
|
371 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
372 |
+
else:
|
373 |
+
self.intermediate_act_fn = config.hidden_act
|
374 |
+
|
375 |
+
def forward(self, hidden_states):
|
376 |
+
hidden_states = self.dense(hidden_states)
|
377 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
378 |
+
return hidden_states
|
379 |
+
|
380 |
+
|
381 |
+
class BertOutput(nn.Module):
|
382 |
+
def __init__(self, config, drop_path=0.):
|
383 |
+
super().__init__()
|
384 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
385 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
386 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
388 |
+
|
389 |
+
def forward(self, hidden_states, input_tensor):
|
390 |
+
hidden_states = self.dense(hidden_states)
|
391 |
+
hidden_states = self.dropout(hidden_states)
|
392 |
+
hidden_states = self.drop_path(hidden_states)
|
393 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
394 |
+
return hidden_states
|
395 |
+
|
396 |
+
|
397 |
+
class BertLayer(nn.Module):
|
398 |
+
def __init__(self, config, layer_num):
|
399 |
+
super().__init__()
|
400 |
+
self.config = config
|
401 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
402 |
+
self.seq_len_dim = 1
|
403 |
+
drop_path_prob = config.drop_path_list[layer_num]
|
404 |
+
self.attention = BertAttention(config, drop_path_prob=drop_path_prob)
|
405 |
+
self.layer_num = layer_num
|
406 |
+
if (
|
407 |
+
self.config.add_cross_attention
|
408 |
+
and layer_num % self.config.cross_attention_freq == 0
|
409 |
+
):
|
410 |
+
self.crossattention = BertAttention(
|
411 |
+
config, is_cross_attention=self.config.add_cross_attention,
|
412 |
+
drop_path_prob=drop_path_prob
|
413 |
+
)
|
414 |
+
self.has_cross_attention = True
|
415 |
+
else:
|
416 |
+
self.has_cross_attention = False
|
417 |
+
self.intermediate = BertIntermediate(config)
|
418 |
+
self.output = BertOutput(config, drop_path=drop_path_prob)
|
419 |
+
|
420 |
+
self.intermediate_query = BertIntermediate(config)
|
421 |
+
self.output_query = BertOutput(config, drop_path=drop_path_prob)
|
422 |
+
|
423 |
+
def forward(
|
424 |
+
self,
|
425 |
+
hidden_states,
|
426 |
+
attention_mask=None,
|
427 |
+
head_mask=None,
|
428 |
+
encoder_hidden_states=None,
|
429 |
+
encoder_attention_mask=None,
|
430 |
+
past_key_value=None,
|
431 |
+
output_attentions=False,
|
432 |
+
query_length=0,
|
433 |
+
):
|
434 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
435 |
+
self_attn_past_key_value = (
|
436 |
+
past_key_value[:2] if past_key_value is not None else None
|
437 |
+
)
|
438 |
+
self_attention_outputs = self.attention(
|
439 |
+
hidden_states,
|
440 |
+
attention_mask,
|
441 |
+
head_mask,
|
442 |
+
output_attentions=output_attentions,
|
443 |
+
past_key_value=self_attn_past_key_value,
|
444 |
+
)
|
445 |
+
attention_output = self_attention_outputs[0]
|
446 |
+
outputs = self_attention_outputs[1:-1]
|
447 |
+
|
448 |
+
present_key_value = self_attention_outputs[-1]
|
449 |
+
|
450 |
+
if query_length > 0:
|
451 |
+
query_attention_output = attention_output[:, :query_length, :]
|
452 |
+
|
453 |
+
if self.has_cross_attention:
|
454 |
+
assert (
|
455 |
+
encoder_hidden_states is not None
|
456 |
+
), "encoder_hidden_states must be given for cross-attention layers"
|
457 |
+
cross_attention_outputs = self.crossattention(
|
458 |
+
query_attention_output,
|
459 |
+
attention_mask,
|
460 |
+
head_mask,
|
461 |
+
encoder_hidden_states,
|
462 |
+
encoder_attention_mask,
|
463 |
+
output_attentions=output_attentions,
|
464 |
+
)
|
465 |
+
query_attention_output = cross_attention_outputs[0]
|
466 |
+
outputs = (
|
467 |
+
outputs + cross_attention_outputs[1:-1]
|
468 |
+
) # add cross attentions if we output attention weights
|
469 |
+
|
470 |
+
layer_output = apply_chunking_to_forward(
|
471 |
+
self.feed_forward_chunk_query,
|
472 |
+
self.chunk_size_feed_forward,
|
473 |
+
self.seq_len_dim,
|
474 |
+
query_attention_output,
|
475 |
+
)
|
476 |
+
if attention_output.shape[1] > query_length:
|
477 |
+
layer_output_text = apply_chunking_to_forward(
|
478 |
+
self.feed_forward_chunk,
|
479 |
+
self.chunk_size_feed_forward,
|
480 |
+
self.seq_len_dim,
|
481 |
+
attention_output[:, query_length:, :],
|
482 |
+
)
|
483 |
+
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
|
484 |
+
else:
|
485 |
+
layer_output = apply_chunking_to_forward(
|
486 |
+
self.feed_forward_chunk,
|
487 |
+
self.chunk_size_feed_forward,
|
488 |
+
self.seq_len_dim,
|
489 |
+
attention_output,
|
490 |
+
)
|
491 |
+
outputs = (layer_output,) + outputs
|
492 |
+
|
493 |
+
outputs = outputs + (present_key_value,)
|
494 |
+
|
495 |
+
return outputs
|
496 |
+
|
497 |
+
def feed_forward_chunk(self, attention_output):
|
498 |
+
intermediate_output = self.intermediate(attention_output)
|
499 |
+
layer_output = self.output(intermediate_output, attention_output)
|
500 |
+
return layer_output
|
501 |
+
|
502 |
+
def feed_forward_chunk_query(self, attention_output):
|
503 |
+
intermediate_output = self.intermediate_query(attention_output)
|
504 |
+
layer_output = self.output_query(intermediate_output, attention_output)
|
505 |
+
return layer_output
|
506 |
+
|
507 |
+
|
508 |
+
class BertEncoder(nn.Module):
|
509 |
+
def __init__(self, config):
|
510 |
+
super().__init__()
|
511 |
+
self.config = config
|
512 |
+
self.layer = nn.ModuleList(
|
513 |
+
[BertLayer(config, i) for i in range(config.num_hidden_layers)]
|
514 |
+
)
|
515 |
+
|
516 |
+
def forward(
|
517 |
+
self,
|
518 |
+
hidden_states,
|
519 |
+
attention_mask=None,
|
520 |
+
head_mask=None,
|
521 |
+
encoder_hidden_states=None,
|
522 |
+
encoder_attention_mask=None,
|
523 |
+
past_key_values=None,
|
524 |
+
use_cache=None,
|
525 |
+
output_attentions=False,
|
526 |
+
output_hidden_states=False,
|
527 |
+
return_dict=True,
|
528 |
+
query_length=0,
|
529 |
+
):
|
530 |
+
all_hidden_states = () if output_hidden_states else None
|
531 |
+
all_self_attentions = () if output_attentions else None
|
532 |
+
all_cross_attentions = (
|
533 |
+
() if output_attentions and self.config.add_cross_attention else None
|
534 |
+
)
|
535 |
+
|
536 |
+
next_decoder_cache = () if use_cache else None
|
537 |
+
|
538 |
+
for i in range(self.config.num_hidden_layers):
|
539 |
+
layer_module = self.layer[i]
|
540 |
+
if output_hidden_states:
|
541 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
542 |
+
|
543 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
544 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
545 |
+
|
546 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
547 |
+
|
548 |
+
if use_cache:
|
549 |
+
logger.warn(
|
550 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
551 |
+
)
|
552 |
+
use_cache = False
|
553 |
+
|
554 |
+
def create_custom_forward(module):
|
555 |
+
def custom_forward(*inputs):
|
556 |
+
return module(
|
557 |
+
*inputs, past_key_value, output_attentions, query_length
|
558 |
+
)
|
559 |
+
|
560 |
+
return custom_forward
|
561 |
+
|
562 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
563 |
+
create_custom_forward(layer_module),
|
564 |
+
hidden_states,
|
565 |
+
attention_mask,
|
566 |
+
layer_head_mask,
|
567 |
+
encoder_hidden_states,
|
568 |
+
encoder_attention_mask,
|
569 |
+
)
|
570 |
+
else:
|
571 |
+
layer_outputs = layer_module(
|
572 |
+
hidden_states,
|
573 |
+
attention_mask,
|
574 |
+
layer_head_mask,
|
575 |
+
encoder_hidden_states,
|
576 |
+
encoder_attention_mask,
|
577 |
+
past_key_value,
|
578 |
+
output_attentions,
|
579 |
+
query_length,
|
580 |
+
)
|
581 |
+
|
582 |
+
hidden_states = layer_outputs[0]
|
583 |
+
if use_cache:
|
584 |
+
next_decoder_cache += (layer_outputs[-1],)
|
585 |
+
if output_attentions:
|
586 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
587 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
588 |
+
|
589 |
+
if output_hidden_states:
|
590 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
591 |
+
|
592 |
+
if not return_dict:
|
593 |
+
return tuple(
|
594 |
+
v
|
595 |
+
for v in [
|
596 |
+
hidden_states,
|
597 |
+
next_decoder_cache,
|
598 |
+
all_hidden_states,
|
599 |
+
all_self_attentions,
|
600 |
+
all_cross_attentions,
|
601 |
+
]
|
602 |
+
if v is not None
|
603 |
+
)
|
604 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
605 |
+
last_hidden_state=hidden_states,
|
606 |
+
past_key_values=next_decoder_cache,
|
607 |
+
hidden_states=all_hidden_states,
|
608 |
+
attentions=all_self_attentions,
|
609 |
+
cross_attentions=all_cross_attentions,
|
610 |
+
)
|
611 |
+
|
612 |
+
|
613 |
+
class BertPooler(nn.Module):
|
614 |
+
def __init__(self, config):
|
615 |
+
super().__init__()
|
616 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
617 |
+
self.activation = nn.Tanh()
|
618 |
+
|
619 |
+
def forward(self, hidden_states):
|
620 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
621 |
+
# to the first token.
|
622 |
+
first_token_tensor = hidden_states[:, 0]
|
623 |
+
pooled_output = self.dense(first_token_tensor)
|
624 |
+
pooled_output = self.activation(pooled_output)
|
625 |
+
return pooled_output
|
626 |
+
|
627 |
+
|
628 |
+
class BertPredictionHeadTransform(nn.Module):
|
629 |
+
def __init__(self, config):
|
630 |
+
super().__init__()
|
631 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
632 |
+
if isinstance(config.hidden_act, str):
|
633 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
634 |
+
else:
|
635 |
+
self.transform_act_fn = config.hidden_act
|
636 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
637 |
+
|
638 |
+
def forward(self, hidden_states):
|
639 |
+
hidden_states = self.dense(hidden_states)
|
640 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
641 |
+
hidden_states = self.LayerNorm(hidden_states)
|
642 |
+
return hidden_states
|
643 |
+
|
644 |
+
|
645 |
+
class BertLMPredictionHead(nn.Module):
|
646 |
+
def __init__(self, config):
|
647 |
+
super().__init__()
|
648 |
+
self.transform = BertPredictionHeadTransform(config)
|
649 |
+
|
650 |
+
# The output weights are the same as the input embeddings, but there is
|
651 |
+
# an output-only bias for each token.
|
652 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
653 |
+
|
654 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
655 |
+
|
656 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
657 |
+
self.decoder.bias = self.bias
|
658 |
+
|
659 |
+
def forward(self, hidden_states):
|
660 |
+
hidden_states = self.transform(hidden_states)
|
661 |
+
hidden_states = self.decoder(hidden_states)
|
662 |
+
return hidden_states
|
663 |
+
|
664 |
+
|
665 |
+
class BertOnlyMLMHead(nn.Module):
|
666 |
+
def __init__(self, config):
|
667 |
+
super().__init__()
|
668 |
+
self.predictions = BertLMPredictionHead(config)
|
669 |
+
|
670 |
+
def forward(self, sequence_output):
|
671 |
+
prediction_scores = self.predictions(sequence_output)
|
672 |
+
return prediction_scores
|
673 |
+
|
674 |
+
|
675 |
+
class BertPreTrainedModel(PreTrainedModel):
|
676 |
+
"""
|
677 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
678 |
+
models.
|
679 |
+
"""
|
680 |
+
|
681 |
+
config_class = BertConfig
|
682 |
+
base_model_prefix = "bert"
|
683 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
684 |
+
|
685 |
+
def _init_weights(self, module):
|
686 |
+
"""Initialize the weights"""
|
687 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
688 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
689 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
690 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
691 |
+
elif isinstance(module, nn.LayerNorm):
|
692 |
+
module.bias.data.zero_()
|
693 |
+
module.weight.data.fill_(1.0)
|
694 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
695 |
+
module.bias.data.zero_()
|
696 |
+
|
697 |
+
|
698 |
+
class BertModel(BertPreTrainedModel):
|
699 |
+
"""
|
700 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
701 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
702 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
703 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
704 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
705 |
+
input to the forward pass.
|
706 |
+
"""
|
707 |
+
|
708 |
+
def __init__(self, config, add_pooling_layer=False):
|
709 |
+
super().__init__(config)
|
710 |
+
self.config = config
|
711 |
+
|
712 |
+
self.embeddings = BertEmbeddings(config)
|
713 |
+
|
714 |
+
self.encoder = BertEncoder(config)
|
715 |
+
|
716 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
717 |
+
|
718 |
+
self.init_weights()
|
719 |
+
|
720 |
+
def get_input_embeddings(self):
|
721 |
+
return self.embeddings.word_embeddings
|
722 |
+
|
723 |
+
def set_input_embeddings(self, value):
|
724 |
+
self.embeddings.word_embeddings = value
|
725 |
+
|
726 |
+
def _prune_heads(self, heads_to_prune):
|
727 |
+
"""
|
728 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
729 |
+
class PreTrainedModel
|
730 |
+
"""
|
731 |
+
for layer, heads in heads_to_prune.items():
|
732 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
733 |
+
|
734 |
+
def get_extended_attention_mask(
|
735 |
+
self,
|
736 |
+
attention_mask: Tensor,
|
737 |
+
input_shape: Tuple[int],
|
738 |
+
device: device,
|
739 |
+
is_decoder: bool,
|
740 |
+
has_query: bool = False,
|
741 |
+
) -> Tensor:
|
742 |
+
"""
|
743 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
744 |
+
|
745 |
+
Arguments:
|
746 |
+
attention_mask (:obj:`torch.Tensor`):
|
747 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
748 |
+
input_shape (:obj:`Tuple[int]`):
|
749 |
+
The shape of the input to the model.
|
750 |
+
device: (:obj:`torch.device`):
|
751 |
+
The device of the input to the model.
|
752 |
+
|
753 |
+
Returns:
|
754 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
755 |
+
"""
|
756 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
757 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
758 |
+
if attention_mask.dim() == 3:
|
759 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
760 |
+
elif attention_mask.dim() == 2:
|
761 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
762 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
763 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
764 |
+
if is_decoder:
|
765 |
+
batch_size, seq_length = input_shape
|
766 |
+
|
767 |
+
seq_ids = torch.arange(seq_length, device=device)
|
768 |
+
causal_mask = (
|
769 |
+
seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
|
770 |
+
<= seq_ids[None, :, None]
|
771 |
+
)
|
772 |
+
|
773 |
+
# add a prefix ones mask to the causal mask
|
774 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
775 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
776 |
+
|
777 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
778 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
779 |
+
if has_query: # UniLM style attention mask
|
780 |
+
causal_mask = torch.cat(
|
781 |
+
[
|
782 |
+
torch.zeros(
|
783 |
+
(batch_size, prefix_seq_len, seq_length),
|
784 |
+
device=device,
|
785 |
+
dtype=causal_mask.dtype,
|
786 |
+
),
|
787 |
+
causal_mask,
|
788 |
+
],
|
789 |
+
axis=1,
|
790 |
+
)
|
791 |
+
causal_mask = torch.cat(
|
792 |
+
[
|
793 |
+
torch.ones(
|
794 |
+
(batch_size, causal_mask.shape[1], prefix_seq_len),
|
795 |
+
device=device,
|
796 |
+
dtype=causal_mask.dtype,
|
797 |
+
),
|
798 |
+
causal_mask,
|
799 |
+
],
|
800 |
+
axis=-1,
|
801 |
+
)
|
802 |
+
extended_attention_mask = (
|
803 |
+
causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
804 |
+
)
|
805 |
+
else:
|
806 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
807 |
+
else:
|
808 |
+
raise ValueError(
|
809 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
810 |
+
input_shape, attention_mask.shape
|
811 |
+
)
|
812 |
+
)
|
813 |
+
|
814 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
815 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
816 |
+
# positions we want to attend and -10000.0 for masked positions.
|
817 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
818 |
+
# effectively the same as removing these entirely.
|
819 |
+
extended_attention_mask = extended_attention_mask.to(
|
820 |
+
dtype=self.dtype
|
821 |
+
) # fp16 compatibility
|
822 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
823 |
+
return extended_attention_mask
|
824 |
+
|
825 |
+
def forward(
|
826 |
+
self,
|
827 |
+
input_ids=None,
|
828 |
+
attention_mask=None,
|
829 |
+
position_ids=None,
|
830 |
+
head_mask=None,
|
831 |
+
query_embeds=None,
|
832 |
+
encoder_hidden_states=None,
|
833 |
+
encoder_attention_mask=None,
|
834 |
+
past_key_values=None,
|
835 |
+
use_cache=None,
|
836 |
+
output_attentions=None,
|
837 |
+
output_hidden_states=None,
|
838 |
+
return_dict=None,
|
839 |
+
is_decoder=False,
|
840 |
+
):
|
841 |
+
r"""
|
842 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
843 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
844 |
+
the model is configured as a decoder.
|
845 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
846 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
847 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
848 |
+
- 1 for tokens that are **not masked**,
|
849 |
+
- 0 for tokens that are **masked**.
|
850 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
851 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
852 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
853 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
854 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
855 |
+
use_cache (:obj:`bool`, `optional`):
|
856 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
857 |
+
decoding (see :obj:`past_key_values`).
|
858 |
+
"""
|
859 |
+
output_attentions = (
|
860 |
+
output_attentions
|
861 |
+
if output_attentions is not None
|
862 |
+
else self.config.output_attentions
|
863 |
+
)
|
864 |
+
output_hidden_states = (
|
865 |
+
output_hidden_states
|
866 |
+
if output_hidden_states is not None
|
867 |
+
else self.config.output_hidden_states
|
868 |
+
)
|
869 |
+
return_dict = (
|
870 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
871 |
+
)
|
872 |
+
|
873 |
+
# use_cache = use_cache if use_cache is not None else self.config.use_cache
|
874 |
+
|
875 |
+
if input_ids is None:
|
876 |
+
assert (
|
877 |
+
query_embeds is not None
|
878 |
+
), "You have to specify query_embeds when input_ids is None"
|
879 |
+
|
880 |
+
# past_key_values_length
|
881 |
+
past_key_values_length = (
|
882 |
+
past_key_values[0][0].shape[2] - self.config.query_length
|
883 |
+
if past_key_values is not None
|
884 |
+
else 0
|
885 |
+
)
|
886 |
+
|
887 |
+
query_length = query_embeds.shape[1] if query_embeds is not None else 0
|
888 |
+
|
889 |
+
embedding_output = self.embeddings(
|
890 |
+
input_ids=input_ids,
|
891 |
+
position_ids=position_ids,
|
892 |
+
query_embeds=query_embeds,
|
893 |
+
past_key_values_length=past_key_values_length,
|
894 |
+
)
|
895 |
+
|
896 |
+
input_shape = embedding_output.size()[:-1]
|
897 |
+
batch_size, seq_length = input_shape
|
898 |
+
device = embedding_output.device
|
899 |
+
|
900 |
+
if attention_mask is None:
|
901 |
+
attention_mask = torch.ones(
|
902 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
903 |
+
)
|
904 |
+
|
905 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
906 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
907 |
+
if is_decoder:
|
908 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
909 |
+
attention_mask,
|
910 |
+
input_ids.shape,
|
911 |
+
device,
|
912 |
+
is_decoder,
|
913 |
+
has_query=(query_embeds is not None),
|
914 |
+
)
|
915 |
+
else:
|
916 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
917 |
+
attention_mask, input_shape, device, is_decoder
|
918 |
+
)
|
919 |
+
|
920 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
921 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
922 |
+
if encoder_hidden_states is not None:
|
923 |
+
if type(encoder_hidden_states) == list:
|
924 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
|
925 |
+
0
|
926 |
+
].size()
|
927 |
+
else:
|
928 |
+
(
|
929 |
+
encoder_batch_size,
|
930 |
+
encoder_sequence_length,
|
931 |
+
_,
|
932 |
+
) = encoder_hidden_states.size()
|
933 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
934 |
+
|
935 |
+
if type(encoder_attention_mask) == list:
|
936 |
+
encoder_extended_attention_mask = [
|
937 |
+
self.invert_attention_mask(mask) for mask in encoder_attention_mask
|
938 |
+
]
|
939 |
+
elif encoder_attention_mask is None:
|
940 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
941 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
942 |
+
encoder_attention_mask
|
943 |
+
)
|
944 |
+
else:
|
945 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
946 |
+
encoder_attention_mask
|
947 |
+
)
|
948 |
+
else:
|
949 |
+
encoder_extended_attention_mask = None
|
950 |
+
|
951 |
+
# Prepare head mask if needed
|
952 |
+
# 1.0 in head_mask indicate we keep the head
|
953 |
+
# attention_probs has shape bsz x n_heads x N x N
|
954 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
955 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
956 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
957 |
+
|
958 |
+
encoder_outputs = self.encoder(
|
959 |
+
embedding_output,
|
960 |
+
attention_mask=extended_attention_mask,
|
961 |
+
head_mask=head_mask,
|
962 |
+
encoder_hidden_states=encoder_hidden_states,
|
963 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
964 |
+
past_key_values=past_key_values,
|
965 |
+
use_cache=use_cache,
|
966 |
+
output_attentions=output_attentions,
|
967 |
+
output_hidden_states=output_hidden_states,
|
968 |
+
return_dict=return_dict,
|
969 |
+
query_length=query_length,
|
970 |
+
)
|
971 |
+
sequence_output = encoder_outputs[0]
|
972 |
+
pooled_output = (
|
973 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
974 |
+
)
|
975 |
+
|
976 |
+
if not return_dict:
|
977 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
978 |
+
|
979 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
980 |
+
last_hidden_state=sequence_output,
|
981 |
+
pooler_output=pooled_output,
|
982 |
+
past_key_values=encoder_outputs.past_key_values,
|
983 |
+
hidden_states=encoder_outputs.hidden_states,
|
984 |
+
attentions=encoder_outputs.attentions,
|
985 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
986 |
+
)
|
987 |
+
|
988 |
+
|
989 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
990 |
+
|
991 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
992 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
993 |
+
|
994 |
+
def __init__(self, config):
|
995 |
+
super().__init__(config)
|
996 |
+
|
997 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
998 |
+
self.cls = BertOnlyMLMHead(config)
|
999 |
+
|
1000 |
+
self.init_weights()
|
1001 |
+
|
1002 |
+
def get_output_embeddings(self):
|
1003 |
+
return self.cls.predictions.decoder
|
1004 |
+
|
1005 |
+
def set_output_embeddings(self, new_embeddings):
|
1006 |
+
self.cls.predictions.decoder = new_embeddings
|
1007 |
+
|
1008 |
+
def forward(
|
1009 |
+
self,
|
1010 |
+
input_ids=None,
|
1011 |
+
attention_mask=None,
|
1012 |
+
position_ids=None,
|
1013 |
+
head_mask=None,
|
1014 |
+
query_embeds=None,
|
1015 |
+
encoder_hidden_states=None,
|
1016 |
+
encoder_attention_mask=None,
|
1017 |
+
labels=None,
|
1018 |
+
past_key_values=None,
|
1019 |
+
use_cache=True,
|
1020 |
+
output_attentions=None,
|
1021 |
+
output_hidden_states=None,
|
1022 |
+
return_dict=None,
|
1023 |
+
return_logits=False,
|
1024 |
+
is_decoder=True,
|
1025 |
+
reduction="mean",
|
1026 |
+
):
|
1027 |
+
r"""
|
1028 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1029 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1030 |
+
the model is configured as a decoder.
|
1031 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1032 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1033 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
1034 |
+
- 1 for tokens that are **not masked**,
|
1035 |
+
- 0 for tokens that are **masked**.
|
1036 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1037 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1038 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
1039 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
1040 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1041 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1042 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1043 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1044 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1045 |
+
use_cache (:obj:`bool`, `optional`):
|
1046 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1047 |
+
decoding (see :obj:`past_key_values`).
|
1048 |
+
Returns:
|
1049 |
+
Example::
|
1050 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
1051 |
+
>>> import torch
|
1052 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
1053 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
1054 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
1055 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1056 |
+
>>> outputs = model(**inputs)
|
1057 |
+
>>> prediction_logits = outputs.logits
|
1058 |
+
"""
|
1059 |
+
return_dict = (
|
1060 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1061 |
+
)
|
1062 |
+
if labels is not None:
|
1063 |
+
use_cache = False
|
1064 |
+
if past_key_values is not None:
|
1065 |
+
query_embeds = None
|
1066 |
+
|
1067 |
+
outputs = self.bert(
|
1068 |
+
input_ids,
|
1069 |
+
attention_mask=attention_mask,
|
1070 |
+
position_ids=position_ids,
|
1071 |
+
head_mask=head_mask,
|
1072 |
+
query_embeds=query_embeds,
|
1073 |
+
encoder_hidden_states=encoder_hidden_states,
|
1074 |
+
encoder_attention_mask=encoder_attention_mask,
|
1075 |
+
past_key_values=past_key_values,
|
1076 |
+
use_cache=use_cache,
|
1077 |
+
output_attentions=output_attentions,
|
1078 |
+
output_hidden_states=output_hidden_states,
|
1079 |
+
return_dict=return_dict,
|
1080 |
+
is_decoder=is_decoder,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
sequence_output = outputs[0]
|
1084 |
+
if query_embeds is not None:
|
1085 |
+
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
1086 |
+
|
1087 |
+
prediction_scores = self.cls(sequence_output)
|
1088 |
+
|
1089 |
+
if return_logits:
|
1090 |
+
return prediction_scores[:, :-1, :].contiguous()
|
1091 |
+
|
1092 |
+
lm_loss = None
|
1093 |
+
if labels is not None:
|
1094 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1095 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1096 |
+
labels = labels[:, 1:].contiguous()
|
1097 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
1098 |
+
lm_loss = loss_fct(
|
1099 |
+
shifted_prediction_scores.view(-1, self.config.vocab_size),
|
1100 |
+
labels.view(-1),
|
1101 |
+
)
|
1102 |
+
if reduction == "none":
|
1103 |
+
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
1104 |
+
|
1105 |
+
if not return_dict:
|
1106 |
+
output = (prediction_scores,) + outputs[2:]
|
1107 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1108 |
+
|
1109 |
+
return CausalLMOutputWithCrossAttentions(
|
1110 |
+
loss=lm_loss,
|
1111 |
+
logits=prediction_scores,
|
1112 |
+
past_key_values=outputs.past_key_values,
|
1113 |
+
hidden_states=outputs.hidden_states,
|
1114 |
+
attentions=outputs.attentions,
|
1115 |
+
cross_attentions=outputs.cross_attentions,
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
def prepare_inputs_for_generation(
|
1119 |
+
self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs
|
1120 |
+
):
|
1121 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1122 |
+
if attention_mask is None:
|
1123 |
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
1124 |
+
query_mask = input_ids.new_ones(query_embeds.shape[:-1])
|
1125 |
+
attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
|
1126 |
+
|
1127 |
+
# cut decoder_input_ids if past is used
|
1128 |
+
if past is not None:
|
1129 |
+
input_ids = input_ids[:, -1:]
|
1130 |
+
|
1131 |
+
return {
|
1132 |
+
"input_ids": input_ids,
|
1133 |
+
"query_embeds": query_embeds,
|
1134 |
+
"attention_mask": attention_mask,
|
1135 |
+
"past_key_values": past,
|
1136 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1137 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1138 |
+
"is_decoder": True,
|
1139 |
+
}
|
1140 |
+
|
1141 |
+
def _reorder_cache(self, past, beam_idx):
|
1142 |
+
reordered_past = ()
|
1143 |
+
for layer_past in past:
|
1144 |
+
reordered_past += (
|
1145 |
+
tuple(
|
1146 |
+
past_state.index_select(0, beam_idx) for past_state in layer_past
|
1147 |
+
),
|
1148 |
+
)
|
1149 |
+
return reordered_past
|
1150 |
+
|
1151 |
+
|
1152 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1153 |
+
|
1154 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1155 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1156 |
+
|
1157 |
+
def __init__(self, config):
|
1158 |
+
super().__init__(config)
|
1159 |
+
|
1160 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1161 |
+
self.cls = BertOnlyMLMHead(config)
|
1162 |
+
|
1163 |
+
self.init_weights()
|
1164 |
+
|
1165 |
+
def get_output_embeddings(self):
|
1166 |
+
return self.cls.predictions.decoder
|
1167 |
+
|
1168 |
+
def set_output_embeddings(self, new_embeddings):
|
1169 |
+
self.cls.predictions.decoder = new_embeddings
|
1170 |
+
|
1171 |
+
def forward(
|
1172 |
+
self,
|
1173 |
+
input_ids=None,
|
1174 |
+
attention_mask=None,
|
1175 |
+
position_ids=None,
|
1176 |
+
head_mask=None,
|
1177 |
+
query_embeds=None,
|
1178 |
+
encoder_hidden_states=None,
|
1179 |
+
encoder_attention_mask=None,
|
1180 |
+
labels=None,
|
1181 |
+
output_attentions=None,
|
1182 |
+
output_hidden_states=None,
|
1183 |
+
return_dict=None,
|
1184 |
+
return_logits=False,
|
1185 |
+
is_decoder=False,
|
1186 |
+
):
|
1187 |
+
r"""
|
1188 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1189 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1190 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1191 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1192 |
+
"""
|
1193 |
+
|
1194 |
+
return_dict = (
|
1195 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
outputs = self.bert(
|
1199 |
+
input_ids,
|
1200 |
+
attention_mask=attention_mask,
|
1201 |
+
position_ids=position_ids,
|
1202 |
+
head_mask=head_mask,
|
1203 |
+
query_embeds=query_embeds,
|
1204 |
+
encoder_hidden_states=encoder_hidden_states,
|
1205 |
+
encoder_attention_mask=encoder_attention_mask,
|
1206 |
+
output_attentions=output_attentions,
|
1207 |
+
output_hidden_states=output_hidden_states,
|
1208 |
+
return_dict=return_dict,
|
1209 |
+
is_decoder=is_decoder,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
if query_embeds is not None:
|
1213 |
+
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
1214 |
+
prediction_scores = self.cls(sequence_output)
|
1215 |
+
|
1216 |
+
if return_logits:
|
1217 |
+
return prediction_scores
|
1218 |
+
|
1219 |
+
masked_lm_loss = None
|
1220 |
+
if labels is not None:
|
1221 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1222 |
+
masked_lm_loss = loss_fct(
|
1223 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
if not return_dict:
|
1227 |
+
output = (prediction_scores,) + outputs[2:]
|
1228 |
+
return (
|
1229 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
return MaskedLMOutput(
|
1233 |
+
loss=masked_lm_loss,
|
1234 |
+
logits=prediction_scores,
|
1235 |
+
hidden_states=outputs.hidden_states,
|
1236 |
+
attentions=outputs.attentions,
|
1237 |
+
)
|
models_viclip/backbones/blip_toremove/__init__.py
ADDED
File without changes
|
models_viclip/backbones/blip_toremove/builder.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import logging
|
4 |
+
|
5 |
+
|
6 |
+
from .Qformer import BertConfig, BertLMHeadModel
|
7 |
+
from .modeling_t5 import T5Config, T5ForConditionalGeneration
|
8 |
+
from models.utils import load_temp_embed_with_mismatch
|
9 |
+
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
def build_qformer(num_query_token, vision_width,
|
14 |
+
qformer_hidden_dropout_prob=0.1,
|
15 |
+
qformer_attention_probs_dropout_prob=0.1,
|
16 |
+
drop_path_rate=0.,
|
17 |
+
):
|
18 |
+
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
|
19 |
+
encoder_config.encoder_width = vision_width
|
20 |
+
# insert cross-attention layer every other block
|
21 |
+
encoder_config.add_cross_attention = True
|
22 |
+
encoder_config.cross_attention_freq = 2
|
23 |
+
encoder_config.query_length = num_query_token
|
24 |
+
encoder_config.hidden_dropout_prob = qformer_hidden_dropout_prob
|
25 |
+
encoder_config.attention_probs_dropout_prob = qformer_attention_probs_dropout_prob
|
26 |
+
encoder_config.drop_path_list = [x.item() for x in torch.linspace(0, drop_path_rate, encoder_config.num_hidden_layers)]
|
27 |
+
logger.info(f"Drop_path:{encoder_config.drop_path_list}")
|
28 |
+
logger.info(encoder_config)
|
29 |
+
Qformer = BertLMHeadModel.from_pretrained(
|
30 |
+
"bert-base-uncased", config=encoder_config
|
31 |
+
)
|
32 |
+
query_tokens = nn.Parameter(
|
33 |
+
torch.zeros(1, num_query_token, encoder_config.hidden_size)
|
34 |
+
)
|
35 |
+
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
|
36 |
+
return Qformer, query_tokens
|
37 |
+
|
38 |
+
def interpolate_pos_embed_blip(state_dict, new_model):
|
39 |
+
if "vision_temp_embed" in state_dict:
|
40 |
+
vision_temp_embed_new = new_model.state_dict()["vision_temp_embed"]
|
41 |
+
state_dict["vision_temp_embed"] = load_temp_embed_with_mismatch(
|
42 |
+
state_dict["vision_temp_embed"], vision_temp_embed_new, add_zero=False
|
43 |
+
)
|
44 |
+
return state_dict
|
models_viclip/backbones/blip_toremove/modeling_t5.py
ADDED
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch T5 model."""
|
16 |
+
|
17 |
+
|
18 |
+
import copy
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import warnings
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import CrossEntropyLoss
|
27 |
+
from torch.utils.checkpoint import checkpoint
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.modeling_outputs import (
|
31 |
+
BaseModelOutput,
|
32 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
33 |
+
Seq2SeqLMOutput,
|
34 |
+
Seq2SeqModelOutput,
|
35 |
+
)
|
36 |
+
from transformers.modeling_utils import PreTrainedModel
|
37 |
+
from transformers.pytorch_utils import (
|
38 |
+
ALL_LAYERNORM_LAYERS,
|
39 |
+
find_pruneable_heads_and_indices,
|
40 |
+
prune_linear_layer,
|
41 |
+
)
|
42 |
+
from transformers.utils import (
|
43 |
+
DUMMY_INPUTS,
|
44 |
+
DUMMY_MASK,
|
45 |
+
add_start_docstrings,
|
46 |
+
add_start_docstrings_to_model_forward,
|
47 |
+
is_torch_fx_proxy,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
52 |
+
from transformers.models.t5.configuration_t5 import T5Config
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CONFIG_FOR_DOC = "T5Config"
|
58 |
+
_TOKENIZER_FOR_DOC = "T5Tokenizer"
|
59 |
+
_CHECKPOINT_FOR_DOC = "t5-small"
|
60 |
+
|
61 |
+
####################################################
|
62 |
+
# This dict contains ids and associated url
|
63 |
+
# for the pretrained weights provided with the models
|
64 |
+
####################################################
|
65 |
+
T5_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
66 |
+
"t5-small",
|
67 |
+
"t5-base",
|
68 |
+
"t5-large",
|
69 |
+
"t5-3b",
|
70 |
+
"t5-11b",
|
71 |
+
# See all T5 models at https://huggingface.co/models?filter=t5
|
72 |
+
]
|
73 |
+
|
74 |
+
|
75 |
+
####################################################
|
76 |
+
# This is a conversion method from TF 1.0 to PyTorch
|
77 |
+
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
|
78 |
+
####################################################
|
79 |
+
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
|
80 |
+
"""Load tf checkpoints in a pytorch model."""
|
81 |
+
try:
|
82 |
+
import re
|
83 |
+
|
84 |
+
import numpy as np
|
85 |
+
import tensorflow as tf
|
86 |
+
except ImportError:
|
87 |
+
logger.error(
|
88 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
89 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
90 |
+
)
|
91 |
+
raise
|
92 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
93 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
94 |
+
# Load weights from TF model
|
95 |
+
init_vars = tf.train.list_variables(tf_path)
|
96 |
+
names = []
|
97 |
+
tf_weights = {}
|
98 |
+
for name, shape in init_vars:
|
99 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
100 |
+
array = tf.train.load_variable(tf_path, name)
|
101 |
+
names.append(name)
|
102 |
+
tf_weights[name] = array
|
103 |
+
|
104 |
+
for txt_name in names:
|
105 |
+
name = txt_name.split("/")
|
106 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
107 |
+
# which are not required for using pretrained model
|
108 |
+
if any(
|
109 |
+
n
|
110 |
+
in [
|
111 |
+
"adam_v",
|
112 |
+
"adam_m",
|
113 |
+
"AdamWeightDecayOptimizer",
|
114 |
+
"AdamWeightDecayOptimizer_1",
|
115 |
+
"global_step",
|
116 |
+
]
|
117 |
+
for n in name
|
118 |
+
):
|
119 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
120 |
+
tf_weights.pop(txt_name, None)
|
121 |
+
continue
|
122 |
+
if "_slot_" in name[-1]:
|
123 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
124 |
+
tf_weights.pop(txt_name, None)
|
125 |
+
continue
|
126 |
+
pointer = model
|
127 |
+
array = tf_weights[txt_name]
|
128 |
+
|
129 |
+
for m_name in name:
|
130 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
131 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
132 |
+
else:
|
133 |
+
scope_names = [m_name]
|
134 |
+
if scope_names[0] in ["kernel", "scale", "embedding"]:
|
135 |
+
pointer = getattr(pointer, "weight")
|
136 |
+
elif scope_names[0] == "self_attention":
|
137 |
+
pointer = getattr(pointer, "layer")
|
138 |
+
pointer = pointer[0]
|
139 |
+
elif scope_names[0] == "enc_dec_attention":
|
140 |
+
pointer = getattr(pointer, "layer")
|
141 |
+
pointer = pointer[1]
|
142 |
+
elif scope_names[0] == "dense_relu_dense":
|
143 |
+
pointer = getattr(pointer, "layer")
|
144 |
+
pointer = pointer[2]
|
145 |
+
elif scope_names[0] == "rms_norm":
|
146 |
+
if hasattr(pointer, "layer_norm"):
|
147 |
+
pointer = getattr(pointer, "layer_norm")
|
148 |
+
elif hasattr(pointer, "final_layer_norm"):
|
149 |
+
pointer = getattr(pointer, "final_layer_norm")
|
150 |
+
elif scope_names[0] == "scale":
|
151 |
+
pointer = getattr(pointer, "weight")
|
152 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
153 |
+
pointer = getattr(pointer, "bias")
|
154 |
+
elif scope_names[0] == "squad":
|
155 |
+
pointer = getattr(pointer, "classifier")
|
156 |
+
elif scope_names[0] == "decoder" and name[1] == "logits":
|
157 |
+
continue
|
158 |
+
elif scope_names[0] == "logits":
|
159 |
+
pointer = getattr(pointer, "lm_head")
|
160 |
+
elif (
|
161 |
+
scope_names[0] == "wi"
|
162 |
+
and len(scope_names) > 1
|
163 |
+
and scope_names[1].isdigit()
|
164 |
+
):
|
165 |
+
pointer = getattr(pointer, f"wi_{scope_names[1]}")
|
166 |
+
continue
|
167 |
+
else:
|
168 |
+
try:
|
169 |
+
pointer = getattr(pointer, scope_names[0])
|
170 |
+
except AttributeError:
|
171 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
172 |
+
continue
|
173 |
+
if len(scope_names) >= 2:
|
174 |
+
num = int(scope_names[1])
|
175 |
+
pointer = pointer[num]
|
176 |
+
if scope_names[0] not in ["kernel", "scale", "embedding"]:
|
177 |
+
pointer = getattr(pointer, "weight")
|
178 |
+
if scope_names[0] != "embedding":
|
179 |
+
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
|
180 |
+
array = np.transpose(array)
|
181 |
+
try:
|
182 |
+
assert (
|
183 |
+
pointer.shape == array.shape
|
184 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
185 |
+
except AssertionError as e:
|
186 |
+
e.args += (pointer.shape, array.shape)
|
187 |
+
raise
|
188 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
189 |
+
pointer.data = torch.from_numpy(array.astype(np.float32))
|
190 |
+
tf_weights.pop(txt_name, None)
|
191 |
+
|
192 |
+
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
|
193 |
+
return model
|
194 |
+
|
195 |
+
|
196 |
+
####################################################
|
197 |
+
# PyTorch Models are constructed by sub-classing
|
198 |
+
# - torch.nn.Module for the layers and
|
199 |
+
# - PreTrainedModel for the models (it-self a sub-class of nn.Module)
|
200 |
+
####################################################
|
201 |
+
PARALLELIZE_DOCSTRING = r"""
|
202 |
+
This is an experimental feature and is a subject to change at a moment's notice.
|
203 |
+
|
204 |
+
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
205 |
+
it will evenly distribute blocks across all devices.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
209 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
210 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
211 |
+
have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
|
212 |
+
following number of attention modules:
|
213 |
+
|
214 |
+
- t5-small: 6
|
215 |
+
- t5-base: 12
|
216 |
+
- t5-large: 24
|
217 |
+
- t5-3b: 24
|
218 |
+
- t5-11b: 24
|
219 |
+
|
220 |
+
Example:
|
221 |
+
|
222 |
+
```python
|
223 |
+
# Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules:
|
224 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-3b")
|
225 |
+
device_map = {
|
226 |
+
0: [0, 1, 2],
|
227 |
+
1: [3, 4, 5, 6, 7, 8, 9],
|
228 |
+
2: [10, 11, 12, 13, 14, 15, 16],
|
229 |
+
3: [17, 18, 19, 20, 21, 22, 23],
|
230 |
+
}
|
231 |
+
model.parallelize(device_map)
|
232 |
+
```
|
233 |
+
"""
|
234 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
235 |
+
Moves the model to cpu from a model parallel state.
|
236 |
+
|
237 |
+
Example:
|
238 |
+
|
239 |
+
```python
|
240 |
+
# On a 4 GPU machine with t5-3b:
|
241 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-3b")
|
242 |
+
device_map = {
|
243 |
+
0: [0, 1, 2],
|
244 |
+
1: [3, 4, 5, 6, 7, 8, 9],
|
245 |
+
2: [10, 11, 12, 13, 14, 15, 16],
|
246 |
+
3: [17, 18, 19, 20, 21, 22, 23],
|
247 |
+
}
|
248 |
+
model.parallelize(device_map) # Splits the model across several devices
|
249 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
250 |
+
```
|
251 |
+
"""
|
252 |
+
|
253 |
+
|
254 |
+
class T5LayerNorm(nn.Module):
|
255 |
+
def __init__(self, hidden_size, eps=1e-6):
|
256 |
+
"""
|
257 |
+
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
|
258 |
+
"""
|
259 |
+
super().__init__()
|
260 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
261 |
+
self.variance_epsilon = eps
|
262 |
+
|
263 |
+
def forward(self, hidden_states):
|
264 |
+
|
265 |
+
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
266 |
+
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
|
267 |
+
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
268 |
+
# half-precision inputs is done in fp32
|
269 |
+
|
270 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
271 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
272 |
+
|
273 |
+
# convert into half-precision if necessary
|
274 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
275 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
276 |
+
|
277 |
+
return self.weight * hidden_states
|
278 |
+
|
279 |
+
|
280 |
+
try:
|
281 |
+
from apex.normalization import FusedRMSNorm
|
282 |
+
|
283 |
+
T5LayerNorm = FusedRMSNorm # noqa
|
284 |
+
|
285 |
+
logger.info(
|
286 |
+
"Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm"
|
287 |
+
)
|
288 |
+
except ImportError:
|
289 |
+
# using the normal T5LayerNorm
|
290 |
+
pass
|
291 |
+
except Exception:
|
292 |
+
logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm")
|
293 |
+
pass
|
294 |
+
|
295 |
+
ALL_LAYERNORM_LAYERS.append(T5LayerNorm)
|
296 |
+
|
297 |
+
|
298 |
+
class T5DenseActDense(nn.Module):
|
299 |
+
def __init__(self, config: T5Config):
|
300 |
+
super().__init__()
|
301 |
+
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
|
302 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
303 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
304 |
+
self.act = ACT2FN[config.dense_act_fn]
|
305 |
+
|
306 |
+
def forward(self, hidden_states):
|
307 |
+
hidden_states = self.wi(hidden_states)
|
308 |
+
hidden_states = self.act(hidden_states)
|
309 |
+
hidden_states = self.dropout(hidden_states)
|
310 |
+
hidden_states = self.wo(hidden_states)
|
311 |
+
return hidden_states
|
312 |
+
|
313 |
+
|
314 |
+
class T5DenseGatedActDense(nn.Module):
|
315 |
+
def __init__(self, config: T5Config):
|
316 |
+
super().__init__()
|
317 |
+
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
318 |
+
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
319 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
320 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
321 |
+
self.act = ACT2FN[config.dense_act_fn]
|
322 |
+
|
323 |
+
def forward(self, hidden_states):
|
324 |
+
hidden_gelu = self.act(self.wi_0(hidden_states))
|
325 |
+
hidden_linear = self.wi_1(hidden_states)
|
326 |
+
hidden_states = hidden_gelu * hidden_linear
|
327 |
+
hidden_states = self.dropout(hidden_states)
|
328 |
+
hidden_states = self.wo(hidden_states)
|
329 |
+
return hidden_states
|
330 |
+
|
331 |
+
|
332 |
+
class T5LayerFF(nn.Module):
|
333 |
+
def __init__(self, config: T5Config):
|
334 |
+
super().__init__()
|
335 |
+
if config.is_gated_act:
|
336 |
+
self.DenseReluDense = T5DenseGatedActDense(config)
|
337 |
+
else:
|
338 |
+
self.DenseReluDense = T5DenseActDense(config)
|
339 |
+
|
340 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
341 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
342 |
+
|
343 |
+
def forward(self, hidden_states):
|
344 |
+
forwarded_states = self.layer_norm(hidden_states)
|
345 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
346 |
+
hidden_states = hidden_states + self.dropout(forwarded_states)
|
347 |
+
return hidden_states
|
348 |
+
|
349 |
+
|
350 |
+
class T5Attention(nn.Module):
|
351 |
+
def __init__(self, config: T5Config, has_relative_attention_bias=False):
|
352 |
+
super().__init__()
|
353 |
+
self.is_decoder = config.is_decoder
|
354 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
355 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
356 |
+
self.relative_attention_max_distance = config.relative_attention_max_distance
|
357 |
+
self.d_model = config.d_model
|
358 |
+
self.key_value_proj_dim = config.d_kv
|
359 |
+
self.n_heads = config.num_heads
|
360 |
+
self.dropout = config.dropout_rate
|
361 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
362 |
+
|
363 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
364 |
+
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
365 |
+
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
366 |
+
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
367 |
+
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
368 |
+
|
369 |
+
if self.has_relative_attention_bias:
|
370 |
+
self.relative_attention_bias = nn.Embedding(
|
371 |
+
self.relative_attention_num_buckets, self.n_heads
|
372 |
+
)
|
373 |
+
self.pruned_heads = set()
|
374 |
+
self.gradient_checkpointing = False
|
375 |
+
|
376 |
+
def prune_heads(self, heads):
|
377 |
+
if len(heads) == 0:
|
378 |
+
return
|
379 |
+
heads, index = find_pruneable_heads_and_indices(
|
380 |
+
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
|
381 |
+
)
|
382 |
+
# Prune linear layers
|
383 |
+
self.q = prune_linear_layer(self.q, index)
|
384 |
+
self.k = prune_linear_layer(self.k, index)
|
385 |
+
self.v = prune_linear_layer(self.v, index)
|
386 |
+
self.o = prune_linear_layer(self.o, index, dim=1)
|
387 |
+
# Update hyper params
|
388 |
+
self.n_heads = self.n_heads - len(heads)
|
389 |
+
self.inner_dim = self.key_value_proj_dim * self.n_heads
|
390 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
391 |
+
|
392 |
+
@staticmethod
|
393 |
+
def _relative_position_bucket(
|
394 |
+
relative_position, bidirectional=True, num_buckets=32, max_distance=128
|
395 |
+
):
|
396 |
+
"""
|
397 |
+
Adapted from Mesh Tensorflow:
|
398 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
399 |
+
|
400 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
401 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
402 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
403 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
404 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
405 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
406 |
+
|
407 |
+
Args:
|
408 |
+
relative_position: an int32 Tensor
|
409 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
410 |
+
num_buckets: an integer
|
411 |
+
max_distance: an integer
|
412 |
+
|
413 |
+
Returns:
|
414 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
415 |
+
"""
|
416 |
+
relative_buckets = 0
|
417 |
+
if bidirectional:
|
418 |
+
num_buckets //= 2
|
419 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
420 |
+
relative_position = torch.abs(relative_position)
|
421 |
+
else:
|
422 |
+
relative_position = -torch.min(
|
423 |
+
relative_position, torch.zeros_like(relative_position)
|
424 |
+
)
|
425 |
+
# now relative_position is in the range [0, inf)
|
426 |
+
|
427 |
+
# half of the buckets are for exact increments in positions
|
428 |
+
max_exact = num_buckets // 2
|
429 |
+
is_small = relative_position < max_exact
|
430 |
+
|
431 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
432 |
+
relative_position_if_large = max_exact + (
|
433 |
+
torch.log(relative_position.float() / max_exact)
|
434 |
+
/ math.log(max_distance / max_exact)
|
435 |
+
* (num_buckets - max_exact)
|
436 |
+
).to(torch.long)
|
437 |
+
relative_position_if_large = torch.min(
|
438 |
+
relative_position_if_large,
|
439 |
+
torch.full_like(relative_position_if_large, num_buckets - 1),
|
440 |
+
)
|
441 |
+
|
442 |
+
relative_buckets += torch.where(
|
443 |
+
is_small, relative_position, relative_position_if_large
|
444 |
+
)
|
445 |
+
return relative_buckets
|
446 |
+
|
447 |
+
def compute_bias(self, query_length, key_length, device=None):
|
448 |
+
"""Compute binned relative position bias"""
|
449 |
+
if device is None:
|
450 |
+
device = self.relative_attention_bias.weight.device
|
451 |
+
context_position = torch.arange(query_length, dtype=torch.long, device=device)[
|
452 |
+
:, None
|
453 |
+
]
|
454 |
+
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[
|
455 |
+
None, :
|
456 |
+
]
|
457 |
+
relative_position = (
|
458 |
+
memory_position - context_position
|
459 |
+
) # shape (query_length, key_length)
|
460 |
+
relative_position_bucket = self._relative_position_bucket(
|
461 |
+
relative_position, # shape (query_length, key_length)
|
462 |
+
bidirectional=(not self.is_decoder),
|
463 |
+
num_buckets=self.relative_attention_num_buckets,
|
464 |
+
max_distance=self.relative_attention_max_distance,
|
465 |
+
)
|
466 |
+
values = self.relative_attention_bias(
|
467 |
+
relative_position_bucket
|
468 |
+
) # shape (query_length, key_length, num_heads)
|
469 |
+
values = values.permute([2, 0, 1]).unsqueeze(
|
470 |
+
0
|
471 |
+
) # shape (1, num_heads, query_length, key_length)
|
472 |
+
return values
|
473 |
+
|
474 |
+
def forward(
|
475 |
+
self,
|
476 |
+
hidden_states,
|
477 |
+
mask=None,
|
478 |
+
key_value_states=None,
|
479 |
+
position_bias=None,
|
480 |
+
past_key_value=None,
|
481 |
+
layer_head_mask=None,
|
482 |
+
query_length=None,
|
483 |
+
use_cache=False,
|
484 |
+
output_attentions=False,
|
485 |
+
):
|
486 |
+
"""
|
487 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
488 |
+
"""
|
489 |
+
# Input is (batch_size, seq_length, dim)
|
490 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
491 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
492 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
493 |
+
|
494 |
+
real_seq_length = seq_length
|
495 |
+
|
496 |
+
if past_key_value is not None:
|
497 |
+
assert (
|
498 |
+
len(past_key_value) == 2
|
499 |
+
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
500 |
+
real_seq_length += (
|
501 |
+
past_key_value[0].shape[2] if query_length is None else query_length
|
502 |
+
)
|
503 |
+
|
504 |
+
key_length = (
|
505 |
+
real_seq_length if key_value_states is None else key_value_states.shape[1]
|
506 |
+
)
|
507 |
+
|
508 |
+
def shape(states):
|
509 |
+
"""projection"""
|
510 |
+
return states.view(
|
511 |
+
batch_size, -1, self.n_heads, self.key_value_proj_dim
|
512 |
+
).transpose(1, 2)
|
513 |
+
|
514 |
+
def unshape(states):
|
515 |
+
"""reshape"""
|
516 |
+
return (
|
517 |
+
states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
518 |
+
)
|
519 |
+
|
520 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
521 |
+
"""projects hidden states correctly to key/query states"""
|
522 |
+
if key_value_states is None:
|
523 |
+
# self-attn
|
524 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
525 |
+
hidden_states = shape(proj_layer(hidden_states))
|
526 |
+
elif past_key_value is None:
|
527 |
+
# cross-attn
|
528 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
529 |
+
hidden_states = shape(proj_layer(key_value_states))
|
530 |
+
|
531 |
+
if past_key_value is not None:
|
532 |
+
if key_value_states is None:
|
533 |
+
# self-attn
|
534 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
535 |
+
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
536 |
+
else:
|
537 |
+
# cross-attn
|
538 |
+
hidden_states = past_key_value
|
539 |
+
return hidden_states
|
540 |
+
|
541 |
+
# get query states
|
542 |
+
query_states = shape(
|
543 |
+
self.q(hidden_states)
|
544 |
+
) # (batch_size, n_heads, seq_length, dim_per_head)
|
545 |
+
|
546 |
+
# get key/value states
|
547 |
+
key_states = project(
|
548 |
+
hidden_states,
|
549 |
+
self.k,
|
550 |
+
key_value_states,
|
551 |
+
past_key_value[0] if past_key_value is not None else None,
|
552 |
+
)
|
553 |
+
value_states = project(
|
554 |
+
hidden_states,
|
555 |
+
self.v,
|
556 |
+
key_value_states,
|
557 |
+
past_key_value[1] if past_key_value is not None else None,
|
558 |
+
)
|
559 |
+
|
560 |
+
# compute scores
|
561 |
+
scores = torch.matmul(
|
562 |
+
query_states, key_states.transpose(3, 2)
|
563 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
564 |
+
|
565 |
+
if position_bias is None:
|
566 |
+
if not self.has_relative_attention_bias:
|
567 |
+
position_bias = torch.zeros(
|
568 |
+
(1, self.n_heads, real_seq_length, key_length),
|
569 |
+
device=scores.device,
|
570 |
+
dtype=scores.dtype,
|
571 |
+
)
|
572 |
+
if self.gradient_checkpointing and self.training:
|
573 |
+
position_bias.requires_grad = True
|
574 |
+
else:
|
575 |
+
position_bias = self.compute_bias(
|
576 |
+
real_seq_length, key_length, device=scores.device
|
577 |
+
)
|
578 |
+
|
579 |
+
# if key and values are already calculated
|
580 |
+
# we want only the last query position bias
|
581 |
+
if past_key_value is not None:
|
582 |
+
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
|
583 |
+
|
584 |
+
if mask is not None:
|
585 |
+
position_bias = (
|
586 |
+
position_bias + mask
|
587 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
588 |
+
|
589 |
+
if self.pruned_heads:
|
590 |
+
mask = torch.ones(position_bias.shape[1])
|
591 |
+
mask[list(self.pruned_heads)] = 0
|
592 |
+
position_bias_masked = position_bias[:, mask.bool()]
|
593 |
+
else:
|
594 |
+
position_bias_masked = position_bias
|
595 |
+
|
596 |
+
scores += position_bias_masked
|
597 |
+
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
598 |
+
scores
|
599 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
600 |
+
attn_weights = nn.functional.dropout(
|
601 |
+
attn_weights, p=self.dropout, training=self.training
|
602 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
603 |
+
|
604 |
+
# Mask heads if we want to
|
605 |
+
if layer_head_mask is not None:
|
606 |
+
attn_weights = attn_weights * layer_head_mask
|
607 |
+
|
608 |
+
attn_output = unshape(
|
609 |
+
torch.matmul(attn_weights, value_states)
|
610 |
+
) # (batch_size, seq_length, dim)
|
611 |
+
attn_output = self.o(attn_output)
|
612 |
+
|
613 |
+
present_key_value_state = (
|
614 |
+
(key_states, value_states) if (self.is_decoder and use_cache) else None
|
615 |
+
)
|
616 |
+
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
617 |
+
|
618 |
+
if output_attentions:
|
619 |
+
outputs = outputs + (attn_weights,)
|
620 |
+
return outputs
|
621 |
+
|
622 |
+
|
623 |
+
class T5LayerSelfAttention(nn.Module):
|
624 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
625 |
+
super().__init__()
|
626 |
+
self.SelfAttention = T5Attention(
|
627 |
+
config, has_relative_attention_bias=has_relative_attention_bias
|
628 |
+
)
|
629 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
630 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
631 |
+
|
632 |
+
def forward(
|
633 |
+
self,
|
634 |
+
hidden_states,
|
635 |
+
attention_mask=None,
|
636 |
+
position_bias=None,
|
637 |
+
layer_head_mask=None,
|
638 |
+
past_key_value=None,
|
639 |
+
use_cache=False,
|
640 |
+
output_attentions=False,
|
641 |
+
):
|
642 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
643 |
+
attention_output = self.SelfAttention(
|
644 |
+
normed_hidden_states,
|
645 |
+
mask=attention_mask,
|
646 |
+
position_bias=position_bias,
|
647 |
+
layer_head_mask=layer_head_mask,
|
648 |
+
past_key_value=past_key_value,
|
649 |
+
use_cache=use_cache,
|
650 |
+
output_attentions=output_attentions,
|
651 |
+
)
|
652 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
653 |
+
outputs = (hidden_states,) + attention_output[
|
654 |
+
1:
|
655 |
+
] # add attentions if we output them
|
656 |
+
return outputs
|
657 |
+
|
658 |
+
|
659 |
+
class T5LayerCrossAttention(nn.Module):
|
660 |
+
def __init__(self, config):
|
661 |
+
super().__init__()
|
662 |
+
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
|
663 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
664 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
665 |
+
|
666 |
+
def forward(
|
667 |
+
self,
|
668 |
+
hidden_states,
|
669 |
+
key_value_states,
|
670 |
+
attention_mask=None,
|
671 |
+
position_bias=None,
|
672 |
+
layer_head_mask=None,
|
673 |
+
past_key_value=None,
|
674 |
+
use_cache=False,
|
675 |
+
query_length=None,
|
676 |
+
output_attentions=False,
|
677 |
+
):
|
678 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
679 |
+
attention_output = self.EncDecAttention(
|
680 |
+
normed_hidden_states,
|
681 |
+
mask=attention_mask,
|
682 |
+
key_value_states=key_value_states,
|
683 |
+
position_bias=position_bias,
|
684 |
+
layer_head_mask=layer_head_mask,
|
685 |
+
past_key_value=past_key_value,
|
686 |
+
use_cache=use_cache,
|
687 |
+
query_length=query_length,
|
688 |
+
output_attentions=output_attentions,
|
689 |
+
)
|
690 |
+
layer_output = hidden_states + self.dropout(attention_output[0])
|
691 |
+
outputs = (layer_output,) + attention_output[
|
692 |
+
1:
|
693 |
+
] # add attentions if we output them
|
694 |
+
return outputs
|
695 |
+
|
696 |
+
|
697 |
+
class T5Block(nn.Module):
|
698 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
699 |
+
super().__init__()
|
700 |
+
self.is_decoder = config.is_decoder
|
701 |
+
self.layer = nn.ModuleList()
|
702 |
+
self.layer.append(
|
703 |
+
T5LayerSelfAttention(
|
704 |
+
config, has_relative_attention_bias=has_relative_attention_bias
|
705 |
+
)
|
706 |
+
)
|
707 |
+
if self.is_decoder:
|
708 |
+
self.layer.append(T5LayerCrossAttention(config))
|
709 |
+
|
710 |
+
self.layer.append(T5LayerFF(config))
|
711 |
+
|
712 |
+
def forward(
|
713 |
+
self,
|
714 |
+
hidden_states,
|
715 |
+
attention_mask=None,
|
716 |
+
position_bias=None,
|
717 |
+
encoder_hidden_states=None,
|
718 |
+
encoder_attention_mask=None,
|
719 |
+
encoder_decoder_position_bias=None,
|
720 |
+
layer_head_mask=None,
|
721 |
+
cross_attn_layer_head_mask=None,
|
722 |
+
past_key_value=None,
|
723 |
+
use_cache=False,
|
724 |
+
output_attentions=False,
|
725 |
+
return_dict=True,
|
726 |
+
):
|
727 |
+
|
728 |
+
if past_key_value is not None:
|
729 |
+
if not self.is_decoder:
|
730 |
+
logger.warning(
|
731 |
+
"`past_key_values` is passed to the encoder. Please make sure this is intended."
|
732 |
+
)
|
733 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
734 |
+
|
735 |
+
if len(past_key_value) != expected_num_past_key_values:
|
736 |
+
raise ValueError(
|
737 |
+
f"There should be {expected_num_past_key_values} past states. "
|
738 |
+
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
739 |
+
f"Got {len(past_key_value)} past key / value states"
|
740 |
+
)
|
741 |
+
|
742 |
+
self_attn_past_key_value = past_key_value[:2]
|
743 |
+
cross_attn_past_key_value = past_key_value[2:]
|
744 |
+
else:
|
745 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
746 |
+
|
747 |
+
self_attention_outputs = self.layer[0](
|
748 |
+
hidden_states,
|
749 |
+
attention_mask=attention_mask,
|
750 |
+
position_bias=position_bias,
|
751 |
+
layer_head_mask=layer_head_mask,
|
752 |
+
past_key_value=self_attn_past_key_value,
|
753 |
+
use_cache=use_cache,
|
754 |
+
output_attentions=output_attentions,
|
755 |
+
)
|
756 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
757 |
+
attention_outputs = self_attention_outputs[
|
758 |
+
2:
|
759 |
+
] # Keep self-attention outputs and relative position weights
|
760 |
+
|
761 |
+
# clamp inf values to enable fp16 training
|
762 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
763 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
764 |
+
hidden_states = torch.clamp(
|
765 |
+
hidden_states, min=-clamp_value, max=clamp_value
|
766 |
+
)
|
767 |
+
|
768 |
+
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
769 |
+
if do_cross_attention:
|
770 |
+
# the actual query length is unknown for cross attention
|
771 |
+
# if using past key value states. Need to inject it here
|
772 |
+
if present_key_value_state is not None:
|
773 |
+
query_length = present_key_value_state[0].shape[2]
|
774 |
+
else:
|
775 |
+
query_length = None
|
776 |
+
|
777 |
+
cross_attention_outputs = self.layer[1](
|
778 |
+
hidden_states,
|
779 |
+
key_value_states=encoder_hidden_states,
|
780 |
+
attention_mask=encoder_attention_mask,
|
781 |
+
position_bias=encoder_decoder_position_bias,
|
782 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
783 |
+
past_key_value=cross_attn_past_key_value,
|
784 |
+
query_length=query_length,
|
785 |
+
use_cache=use_cache,
|
786 |
+
output_attentions=output_attentions,
|
787 |
+
)
|
788 |
+
hidden_states = cross_attention_outputs[0]
|
789 |
+
|
790 |
+
# clamp inf values to enable fp16 training
|
791 |
+
if (
|
792 |
+
hidden_states.dtype == torch.float16
|
793 |
+
and torch.isinf(hidden_states).any()
|
794 |
+
):
|
795 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
796 |
+
hidden_states = torch.clamp(
|
797 |
+
hidden_states, min=-clamp_value, max=clamp_value
|
798 |
+
)
|
799 |
+
|
800 |
+
# Combine self attn and cross attn key value states
|
801 |
+
if present_key_value_state is not None:
|
802 |
+
present_key_value_state = (
|
803 |
+
present_key_value_state + cross_attention_outputs[1]
|
804 |
+
)
|
805 |
+
|
806 |
+
# Keep cross-attention outputs and relative position weights
|
807 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
808 |
+
|
809 |
+
# Apply Feed Forward layer
|
810 |
+
hidden_states = self.layer[-1](hidden_states)
|
811 |
+
|
812 |
+
# clamp inf values to enable fp16 training
|
813 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
814 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
815 |
+
hidden_states = torch.clamp(
|
816 |
+
hidden_states, min=-clamp_value, max=clamp_value
|
817 |
+
)
|
818 |
+
|
819 |
+
outputs = (hidden_states,)
|
820 |
+
|
821 |
+
if use_cache:
|
822 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
823 |
+
else:
|
824 |
+
outputs = outputs + attention_outputs
|
825 |
+
|
826 |
+
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
827 |
+
|
828 |
+
|
829 |
+
class T5PreTrainedModel(PreTrainedModel):
|
830 |
+
"""
|
831 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
832 |
+
models.
|
833 |
+
"""
|
834 |
+
|
835 |
+
config_class = T5Config
|
836 |
+
load_tf_weights = load_tf_weights_in_t5
|
837 |
+
base_model_prefix = "transformer"
|
838 |
+
is_parallelizable = True
|
839 |
+
supports_gradient_checkpointing = True
|
840 |
+
_no_split_modules = ["T5Block"]
|
841 |
+
|
842 |
+
@property
|
843 |
+
def dummy_inputs(self):
|
844 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
845 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
846 |
+
dummy_inputs = {
|
847 |
+
"decoder_input_ids": input_ids,
|
848 |
+
"input_ids": input_ids,
|
849 |
+
"decoder_attention_mask": input_mask,
|
850 |
+
}
|
851 |
+
return dummy_inputs
|
852 |
+
|
853 |
+
def _init_weights(self, module):
|
854 |
+
"""Initialize the weights"""
|
855 |
+
factor = (
|
856 |
+
self.config.initializer_factor
|
857 |
+
) # Used for testing weights initialization
|
858 |
+
if isinstance(module, T5LayerNorm):
|
859 |
+
module.weight.data.fill_(factor * 1.0)
|
860 |
+
elif isinstance(module, (T5Model, T5ForConditionalGeneration, T5EncoderModel)):
|
861 |
+
# Mesh TensorFlow embeddings initialization
|
862 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
863 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
864 |
+
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
865 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
866 |
+
elif isinstance(module, T5DenseActDense):
|
867 |
+
# Mesh TensorFlow FF initialization
|
868 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
869 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
870 |
+
module.wi.weight.data.normal_(
|
871 |
+
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)
|
872 |
+
)
|
873 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
874 |
+
module.wi.bias.data.zero_()
|
875 |
+
module.wo.weight.data.normal_(
|
876 |
+
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)
|
877 |
+
)
|
878 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
879 |
+
module.wo.bias.data.zero_()
|
880 |
+
elif isinstance(module, T5DenseGatedActDense):
|
881 |
+
module.wi_0.weight.data.normal_(
|
882 |
+
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)
|
883 |
+
)
|
884 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
885 |
+
module.wi_0.bias.data.zero_()
|
886 |
+
module.wi_1.weight.data.normal_(
|
887 |
+
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)
|
888 |
+
)
|
889 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
890 |
+
module.wi_1.bias.data.zero_()
|
891 |
+
module.wo.weight.data.normal_(
|
892 |
+
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)
|
893 |
+
)
|
894 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
895 |
+
module.wo.bias.data.zero_()
|
896 |
+
elif isinstance(module, T5Attention):
|
897 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
898 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
899 |
+
d_model = self.config.d_model
|
900 |
+
key_value_proj_dim = self.config.d_kv
|
901 |
+
n_heads = self.config.num_heads
|
902 |
+
module.q.weight.data.normal_(
|
903 |
+
mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)
|
904 |
+
)
|
905 |
+
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
906 |
+
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
907 |
+
module.o.weight.data.normal_(
|
908 |
+
mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)
|
909 |
+
)
|
910 |
+
if module.has_relative_attention_bias:
|
911 |
+
module.relative_attention_bias.weight.data.normal_(
|
912 |
+
mean=0.0, std=factor * ((d_model) ** -0.5)
|
913 |
+
)
|
914 |
+
|
915 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
916 |
+
if isinstance(module, (T5Attention, T5Stack)):
|
917 |
+
module.gradient_checkpointing = value
|
918 |
+
|
919 |
+
def _shift_right(self, input_ids):
|
920 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
921 |
+
pad_token_id = self.config.pad_token_id
|
922 |
+
|
923 |
+
assert decoder_start_token_id is not None, (
|
924 |
+
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
|
925 |
+
" See T5 docs for more information"
|
926 |
+
)
|
927 |
+
|
928 |
+
# shift inputs to the right
|
929 |
+
if is_torch_fx_proxy(input_ids):
|
930 |
+
# Item assignment is not supported natively for proxies.
|
931 |
+
shifted_input_ids = torch.full(
|
932 |
+
input_ids.shape[:-1] + (1,), decoder_start_token_id
|
933 |
+
)
|
934 |
+
shifted_input_ids = torch.cat(
|
935 |
+
[shifted_input_ids, input_ids[..., :-1]], dim=-1
|
936 |
+
)
|
937 |
+
else:
|
938 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
939 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
940 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
941 |
+
|
942 |
+
assert (
|
943 |
+
pad_token_id is not None
|
944 |
+
), "self.model.config.pad_token_id has to be defined."
|
945 |
+
# replace possible -100 values in labels by `pad_token_id`
|
946 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
947 |
+
|
948 |
+
return shifted_input_ids
|
949 |
+
|
950 |
+
|
951 |
+
class T5Stack(T5PreTrainedModel):
|
952 |
+
def __init__(self, config, embed_tokens=None):
|
953 |
+
super().__init__(config)
|
954 |
+
|
955 |
+
self.embed_tokens = embed_tokens
|
956 |
+
self.is_decoder = config.is_decoder
|
957 |
+
|
958 |
+
self.block = nn.ModuleList(
|
959 |
+
[
|
960 |
+
T5Block(config, has_relative_attention_bias=bool(i == 0))
|
961 |
+
for i in range(config.num_layers)
|
962 |
+
]
|
963 |
+
)
|
964 |
+
self.final_layer_norm = T5LayerNorm(
|
965 |
+
config.d_model, eps=config.layer_norm_epsilon
|
966 |
+
)
|
967 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
968 |
+
|
969 |
+
# Initialize weights and apply final processing
|
970 |
+
self.post_init()
|
971 |
+
# Model parallel
|
972 |
+
self.model_parallel = False
|
973 |
+
self.device_map = None
|
974 |
+
self.gradient_checkpointing = False
|
975 |
+
|
976 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
977 |
+
def parallelize(self, device_map=None):
|
978 |
+
# Check validity of device_map
|
979 |
+
self.device_map = (
|
980 |
+
get_device_map(len(self.block), range(torch.cuda.device_count()))
|
981 |
+
if device_map is None
|
982 |
+
else device_map
|
983 |
+
)
|
984 |
+
assert_device_map(self.device_map, len(self.block))
|
985 |
+
self.model_parallel = True
|
986 |
+
self.first_device = (
|
987 |
+
"cpu"
|
988 |
+
if "cpu" in self.device_map.keys()
|
989 |
+
else "cuda:" + str(min(self.device_map.keys()))
|
990 |
+
)
|
991 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
992 |
+
# Load onto devices
|
993 |
+
for k, v in self.device_map.items():
|
994 |
+
for layer in v:
|
995 |
+
cuda_device = "cuda:" + str(k)
|
996 |
+
self.block[layer] = self.block[layer].to(cuda_device)
|
997 |
+
|
998 |
+
# Set embed_tokens to first layer
|
999 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
1000 |
+
# Set final layer norm to last device
|
1001 |
+
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
|
1002 |
+
|
1003 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1004 |
+
def deparallelize(self):
|
1005 |
+
self.model_parallel = False
|
1006 |
+
self.device_map = None
|
1007 |
+
self.first_device = "cpu"
|
1008 |
+
self.last_device = "cpu"
|
1009 |
+
for i in range(len(self.block)):
|
1010 |
+
self.block[i] = self.block[i].to("cpu")
|
1011 |
+
self.embed_tokens = self.embed_tokens.to("cpu")
|
1012 |
+
self.final_layer_norm = self.final_layer_norm.to("cpu")
|
1013 |
+
torch.cuda.empty_cache()
|
1014 |
+
|
1015 |
+
def get_input_embeddings(self):
|
1016 |
+
return self.embed_tokens
|
1017 |
+
|
1018 |
+
def set_input_embeddings(self, new_embeddings):
|
1019 |
+
self.embed_tokens = new_embeddings
|
1020 |
+
|
1021 |
+
def forward(
|
1022 |
+
self,
|
1023 |
+
input_ids=None,
|
1024 |
+
attention_mask=None,
|
1025 |
+
encoder_hidden_states=None,
|
1026 |
+
encoder_attention_mask=None,
|
1027 |
+
inputs_embeds=None,
|
1028 |
+
head_mask=None,
|
1029 |
+
cross_attn_head_mask=None,
|
1030 |
+
past_key_values=None,
|
1031 |
+
use_cache=None,
|
1032 |
+
output_attentions=None,
|
1033 |
+
output_hidden_states=None,
|
1034 |
+
return_dict=None,
|
1035 |
+
):
|
1036 |
+
# Model parallel
|
1037 |
+
if self.model_parallel:
|
1038 |
+
torch.cuda.set_device(self.first_device)
|
1039 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
1040 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1041 |
+
output_attentions = (
|
1042 |
+
output_attentions
|
1043 |
+
if output_attentions is not None
|
1044 |
+
else self.config.output_attentions
|
1045 |
+
)
|
1046 |
+
output_hidden_states = (
|
1047 |
+
output_hidden_states
|
1048 |
+
if output_hidden_states is not None
|
1049 |
+
else self.config.output_hidden_states
|
1050 |
+
)
|
1051 |
+
return_dict = (
|
1052 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
if input_ids is not None and inputs_embeds is not None:
|
1056 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
1057 |
+
raise ValueError(
|
1058 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
1059 |
+
)
|
1060 |
+
elif input_ids is not None:
|
1061 |
+
input_shape = input_ids.size()
|
1062 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1063 |
+
elif inputs_embeds is not None:
|
1064 |
+
input_shape = inputs_embeds.size()[:-1]
|
1065 |
+
else:
|
1066 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
1067 |
+
raise ValueError(
|
1068 |
+
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
|
1069 |
+
)
|
1070 |
+
|
1071 |
+
if inputs_embeds is None:
|
1072 |
+
assert (
|
1073 |
+
self.embed_tokens is not None
|
1074 |
+
), "You have to initialize the model with valid token embeddings"
|
1075 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1076 |
+
|
1077 |
+
batch_size, seq_length = input_shape
|
1078 |
+
|
1079 |
+
# required mask seq length can be calculated via length of past
|
1080 |
+
mask_seq_length = (
|
1081 |
+
past_key_values[0][0].shape[2] + seq_length
|
1082 |
+
if past_key_values is not None
|
1083 |
+
else seq_length
|
1084 |
+
)
|
1085 |
+
|
1086 |
+
if use_cache is True:
|
1087 |
+
assert (
|
1088 |
+
self.is_decoder
|
1089 |
+
), f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
1090 |
+
|
1091 |
+
if attention_mask is None:
|
1092 |
+
attention_mask = torch.ones(
|
1093 |
+
batch_size, mask_seq_length, device=inputs_embeds.device
|
1094 |
+
)
|
1095 |
+
if (
|
1096 |
+
self.is_decoder
|
1097 |
+
and encoder_attention_mask is None
|
1098 |
+
and encoder_hidden_states is not None
|
1099 |
+
):
|
1100 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
1101 |
+
encoder_attention_mask = torch.ones(
|
1102 |
+
batch_size,
|
1103 |
+
encoder_seq_length,
|
1104 |
+
device=inputs_embeds.device,
|
1105 |
+
dtype=torch.long,
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
# initialize past_key_values with `None` if past does not exist
|
1109 |
+
if past_key_values is None:
|
1110 |
+
past_key_values = [None] * len(self.block)
|
1111 |
+
|
1112 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1113 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1114 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
1115 |
+
attention_mask, input_shape
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1119 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1120 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1121 |
+
(
|
1122 |
+
encoder_batch_size,
|
1123 |
+
encoder_sequence_length,
|
1124 |
+
_,
|
1125 |
+
) = encoder_hidden_states.size()
|
1126 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1127 |
+
if encoder_attention_mask is None:
|
1128 |
+
encoder_attention_mask = torch.ones(
|
1129 |
+
encoder_hidden_shape, device=inputs_embeds.device
|
1130 |
+
)
|
1131 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
1132 |
+
encoder_attention_mask
|
1133 |
+
)
|
1134 |
+
else:
|
1135 |
+
encoder_extended_attention_mask = None
|
1136 |
+
|
1137 |
+
# Prepare head mask if needed
|
1138 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
1139 |
+
cross_attn_head_mask = self.get_head_mask(
|
1140 |
+
cross_attn_head_mask, self.config.num_layers
|
1141 |
+
)
|
1142 |
+
present_key_value_states = () if use_cache else None
|
1143 |
+
all_hidden_states = () if output_hidden_states else None
|
1144 |
+
all_attentions = () if output_attentions else None
|
1145 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
1146 |
+
position_bias = None
|
1147 |
+
encoder_decoder_position_bias = None
|
1148 |
+
|
1149 |
+
hidden_states = self.dropout(inputs_embeds)
|
1150 |
+
|
1151 |
+
for i, (layer_module, past_key_value) in enumerate(
|
1152 |
+
zip(self.block, past_key_values)
|
1153 |
+
):
|
1154 |
+
layer_head_mask = head_mask[i]
|
1155 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
1156 |
+
# Model parallel
|
1157 |
+
if self.model_parallel:
|
1158 |
+
torch.cuda.set_device(hidden_states.device)
|
1159 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
1160 |
+
if attention_mask is not None:
|
1161 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
1162 |
+
if position_bias is not None:
|
1163 |
+
position_bias = position_bias.to(hidden_states.device)
|
1164 |
+
if encoder_hidden_states is not None:
|
1165 |
+
encoder_hidden_states = encoder_hidden_states.to(
|
1166 |
+
hidden_states.device
|
1167 |
+
)
|
1168 |
+
if encoder_extended_attention_mask is not None:
|
1169 |
+
encoder_extended_attention_mask = (
|
1170 |
+
encoder_extended_attention_mask.to(hidden_states.device)
|
1171 |
+
)
|
1172 |
+
if encoder_decoder_position_bias is not None:
|
1173 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(
|
1174 |
+
hidden_states.device
|
1175 |
+
)
|
1176 |
+
if layer_head_mask is not None:
|
1177 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
1178 |
+
if cross_attn_layer_head_mask is not None:
|
1179 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(
|
1180 |
+
hidden_states.device
|
1181 |
+
)
|
1182 |
+
if output_hidden_states:
|
1183 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1184 |
+
|
1185 |
+
if self.gradient_checkpointing and self.training:
|
1186 |
+
if use_cache:
|
1187 |
+
logger.warning(
|
1188 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1189 |
+
)
|
1190 |
+
use_cache = False
|
1191 |
+
|
1192 |
+
def create_custom_forward(module):
|
1193 |
+
def custom_forward(*inputs):
|
1194 |
+
return tuple(module(*inputs, use_cache, output_attentions))
|
1195 |
+
|
1196 |
+
return custom_forward
|
1197 |
+
|
1198 |
+
layer_outputs = checkpoint(
|
1199 |
+
create_custom_forward(layer_module),
|
1200 |
+
hidden_states,
|
1201 |
+
extended_attention_mask,
|
1202 |
+
position_bias,
|
1203 |
+
encoder_hidden_states,
|
1204 |
+
encoder_extended_attention_mask,
|
1205 |
+
encoder_decoder_position_bias,
|
1206 |
+
layer_head_mask,
|
1207 |
+
cross_attn_layer_head_mask,
|
1208 |
+
None, # past_key_value is always None with gradient checkpointing
|
1209 |
+
)
|
1210 |
+
else:
|
1211 |
+
layer_outputs = layer_module(
|
1212 |
+
hidden_states,
|
1213 |
+
attention_mask=extended_attention_mask,
|
1214 |
+
position_bias=position_bias,
|
1215 |
+
encoder_hidden_states=encoder_hidden_states,
|
1216 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1217 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
1218 |
+
layer_head_mask=layer_head_mask,
|
1219 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
1220 |
+
past_key_value=past_key_value,
|
1221 |
+
use_cache=use_cache,
|
1222 |
+
output_attentions=output_attentions,
|
1223 |
+
)
|
1224 |
+
|
1225 |
+
# layer_outputs is a tuple with:
|
1226 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
1227 |
+
if use_cache is False:
|
1228 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
1229 |
+
|
1230 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
1231 |
+
|
1232 |
+
# We share the position biases between the layers - the first layer store them
|
1233 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
1234 |
+
# (cross-attention position bias), (cross-attention weights)
|
1235 |
+
position_bias = layer_outputs[2]
|
1236 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1237 |
+
encoder_decoder_position_bias = layer_outputs[
|
1238 |
+
4 if output_attentions else 3
|
1239 |
+
]
|
1240 |
+
# append next layer key value states
|
1241 |
+
if use_cache:
|
1242 |
+
present_key_value_states = present_key_value_states + (
|
1243 |
+
present_key_value_state,
|
1244 |
+
)
|
1245 |
+
|
1246 |
+
if output_attentions:
|
1247 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
1248 |
+
if self.is_decoder:
|
1249 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
1250 |
+
|
1251 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
1252 |
+
if self.model_parallel:
|
1253 |
+
for k, v in self.device_map.items():
|
1254 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
1255 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
1256 |
+
|
1257 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1258 |
+
hidden_states = self.dropout(hidden_states)
|
1259 |
+
|
1260 |
+
# Add last layer
|
1261 |
+
if output_hidden_states:
|
1262 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1263 |
+
|
1264 |
+
if not return_dict:
|
1265 |
+
return tuple(
|
1266 |
+
v
|
1267 |
+
for v in [
|
1268 |
+
hidden_states,
|
1269 |
+
present_key_value_states,
|
1270 |
+
all_hidden_states,
|
1271 |
+
all_attentions,
|
1272 |
+
all_cross_attentions,
|
1273 |
+
]
|
1274 |
+
if v is not None
|
1275 |
+
)
|
1276 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1277 |
+
last_hidden_state=hidden_states,
|
1278 |
+
past_key_values=present_key_value_states,
|
1279 |
+
hidden_states=all_hidden_states,
|
1280 |
+
attentions=all_attentions,
|
1281 |
+
cross_attentions=all_cross_attentions,
|
1282 |
+
)
|
1283 |
+
|
1284 |
+
|
1285 |
+
T5_START_DOCSTRING = r"""
|
1286 |
+
|
1287 |
+
The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
|
1288 |
+
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
|
1289 |
+
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
|
1290 |
+
text-to-text denoising generative setting.
|
1291 |
+
|
1292 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1293 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1294 |
+
etc.)
|
1295 |
+
|
1296 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1297 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1298 |
+
and behavior.
|
1299 |
+
|
1300 |
+
Parameters:
|
1301 |
+
config ([`T5Config`]): Model configuration class with all the parameters of the model.
|
1302 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1303 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1304 |
+
"""
|
1305 |
+
|
1306 |
+
T5_INPUTS_DOCSTRING = r"""
|
1307 |
+
Args:
|
1308 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1309 |
+
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
1310 |
+
should be able to pad the inputs on both the right and the left.
|
1311 |
+
|
1312 |
+
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1313 |
+
[`PreTrainedTokenizer.__call__`] for detail.
|
1314 |
+
|
1315 |
+
[What are input IDs?](../glossary#input-ids)
|
1316 |
+
|
1317 |
+
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
|
1318 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1319 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1320 |
+
|
1321 |
+
- 1 for tokens that are **not masked**,
|
1322 |
+
- 0 for tokens that are **masked**.
|
1323 |
+
|
1324 |
+
[What are attention masks?](../glossary#attention-mask)
|
1325 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1326 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
1327 |
+
|
1328 |
+
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1329 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1330 |
+
|
1331 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
1332 |
+
|
1333 |
+
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
|
1334 |
+
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
|
1335 |
+
|
1336 |
+
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
|
1337 |
+
Training](./t5#training).
|
1338 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1339 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
1340 |
+
be used by default.
|
1341 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1342 |
+
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
|
1343 |
+
1]`:
|
1344 |
+
|
1345 |
+
- 1 indicates the head is **not masked**,
|
1346 |
+
- 0 indicates the head is **masked**.
|
1347 |
+
|
1348 |
+
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1349 |
+
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
|
1350 |
+
1]`:
|
1351 |
+
|
1352 |
+
- 1 indicates the head is **not masked**,
|
1353 |
+
- 0 indicates the head is **masked**.
|
1354 |
+
|
1355 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1356 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
|
1357 |
+
`[0, 1]`:
|
1358 |
+
|
1359 |
+
- 1 indicates the head is **not masked**,
|
1360 |
+
- 0 indicates the head is **masked**.
|
1361 |
+
|
1362 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
1363 |
+
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
|
1364 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
|
1365 |
+
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
1366 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1367 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1368 |
+
|
1369 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1370 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1371 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1372 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1373 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1374 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1375 |
+
model's internal embedding lookup matrix.
|
1376 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
1377 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
1378 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
1379 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
1380 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
1381 |
+
|
1382 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
1383 |
+
of `inputs_embeds`.
|
1384 |
+
|
1385 |
+
use_cache (`bool`, *optional*):
|
1386 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1387 |
+
`past_key_values`).
|
1388 |
+
|
1389 |
+
output_attentions (`bool`, *optional*):
|
1390 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1391 |
+
tensors for more detail.
|
1392 |
+
output_hidden_states (`bool`, *optional*):
|
1393 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1394 |
+
more detail.
|
1395 |
+
return_dict (`bool`, *optional*):
|
1396 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1397 |
+
"""
|
1398 |
+
|
1399 |
+
T5_ENCODER_INPUTS_DOCSTRING = r"""
|
1400 |
+
Args:
|
1401 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1402 |
+
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
1403 |
+
should be able to pad the inputs on both the right and the left.
|
1404 |
+
|
1405 |
+
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1406 |
+
[`PreTrainedTokenizer.__call__`] for detail.
|
1407 |
+
|
1408 |
+
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
|
1409 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1410 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1411 |
+
|
1412 |
+
- 1 for tokens that are **not masked**,
|
1413 |
+
- 0 for tokens that are **masked**.
|
1414 |
+
|
1415 |
+
[What are attention masks?](../glossary#attention-mask)
|
1416 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1417 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
1418 |
+
|
1419 |
+
- 1 indicates the head is **not masked**,
|
1420 |
+
- 0 indicates the head is **masked**.
|
1421 |
+
|
1422 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1423 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1424 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1425 |
+
model's internal embedding lookup matrix.
|
1426 |
+
output_attentions (`bool`, *optional*):
|
1427 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1428 |
+
tensors for more detail.
|
1429 |
+
output_hidden_states (`bool`, *optional*):
|
1430 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1431 |
+
more detail.
|
1432 |
+
return_dict (`bool`, *optional*):
|
1433 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1434 |
+
"""
|
1435 |
+
|
1436 |
+
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1437 |
+
__HEAD_MASK_WARNING_MSG = """
|
1438 |
+
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
|
1439 |
+
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
|
1440 |
+
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
|
1441 |
+
num_heads)`.
|
1442 |
+
"""
|
1443 |
+
|
1444 |
+
|
1445 |
+
@add_start_docstrings(
|
1446 |
+
"The bare T5 Model transformer outputting raw hidden-states without any specific head on top.",
|
1447 |
+
T5_START_DOCSTRING,
|
1448 |
+
)
|
1449 |
+
class T5Model(T5PreTrainedModel):
|
1450 |
+
_keys_to_ignore_on_load_missing = [
|
1451 |
+
r"encoder.embed_tokens.weight",
|
1452 |
+
r"decoder.embed_tokens.weight",
|
1453 |
+
]
|
1454 |
+
_keys_to_ignore_on_load_unexpected = [
|
1455 |
+
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
1456 |
+
]
|
1457 |
+
|
1458 |
+
def __init__(self, config: T5Config):
|
1459 |
+
super().__init__(config)
|
1460 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1461 |
+
|
1462 |
+
encoder_config = copy.deepcopy(config)
|
1463 |
+
encoder_config.is_decoder = False
|
1464 |
+
encoder_config.use_cache = False
|
1465 |
+
encoder_config.is_encoder_decoder = False
|
1466 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1467 |
+
|
1468 |
+
decoder_config = copy.deepcopy(config)
|
1469 |
+
decoder_config.is_decoder = True
|
1470 |
+
decoder_config.is_encoder_decoder = False
|
1471 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1472 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
1473 |
+
|
1474 |
+
# Initialize weights and apply final processing
|
1475 |
+
self.post_init()
|
1476 |
+
|
1477 |
+
# Model parallel
|
1478 |
+
self.model_parallel = False
|
1479 |
+
self.device_map = None
|
1480 |
+
|
1481 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1482 |
+
def parallelize(self, device_map=None):
|
1483 |
+
self.device_map = (
|
1484 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1485 |
+
if device_map is None
|
1486 |
+
else device_map
|
1487 |
+
)
|
1488 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1489 |
+
self.encoder.parallelize(self.device_map)
|
1490 |
+
self.decoder.parallelize(self.device_map)
|
1491 |
+
self.model_parallel = True
|
1492 |
+
|
1493 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1494 |
+
def deparallelize(self):
|
1495 |
+
self.encoder.deparallelize()
|
1496 |
+
self.decoder.deparallelize()
|
1497 |
+
self.encoder = self.encoder.to("cpu")
|
1498 |
+
self.decoder = self.decoder.to("cpu")
|
1499 |
+
self.model_parallel = False
|
1500 |
+
self.device_map = None
|
1501 |
+
torch.cuda.empty_cache()
|
1502 |
+
|
1503 |
+
def get_input_embeddings(self):
|
1504 |
+
return self.shared
|
1505 |
+
|
1506 |
+
def set_input_embeddings(self, new_embeddings):
|
1507 |
+
self.shared = new_embeddings
|
1508 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1509 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1510 |
+
|
1511 |
+
def get_encoder(self):
|
1512 |
+
return self.encoder
|
1513 |
+
|
1514 |
+
def get_decoder(self):
|
1515 |
+
return self.decoder
|
1516 |
+
|
1517 |
+
def _prune_heads(self, heads_to_prune):
|
1518 |
+
"""
|
1519 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1520 |
+
class PreTrainedModel
|
1521 |
+
"""
|
1522 |
+
for layer, heads in heads_to_prune.items():
|
1523 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1524 |
+
|
1525 |
+
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
1526 |
+
@replace_return_docstrings(
|
1527 |
+
output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC
|
1528 |
+
)
|
1529 |
+
def forward(
|
1530 |
+
self,
|
1531 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1532 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1533 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1534 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1535 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1536 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
1537 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1538 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1539 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1540 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1541 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
1542 |
+
use_cache: Optional[bool] = None,
|
1543 |
+
output_attentions: Optional[bool] = None,
|
1544 |
+
output_hidden_states: Optional[bool] = None,
|
1545 |
+
return_dict: Optional[bool] = None,
|
1546 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
1547 |
+
r"""
|
1548 |
+
Returns:
|
1549 |
+
|
1550 |
+
Example:
|
1551 |
+
|
1552 |
+
```python
|
1553 |
+
>>> from transformers import T5Tokenizer, T5Model
|
1554 |
+
|
1555 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
1556 |
+
>>> model = T5Model.from_pretrained("t5-small")
|
1557 |
+
|
1558 |
+
>>> input_ids = tokenizer(
|
1559 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1560 |
+
... ).input_ids # Batch size 1
|
1561 |
+
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
1562 |
+
|
1563 |
+
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model.
|
1564 |
+
>>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg.
|
1565 |
+
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
|
1566 |
+
|
1567 |
+
>>> # forward pass
|
1568 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
1569 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1570 |
+
```"""
|
1571 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1572 |
+
return_dict = (
|
1573 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1574 |
+
)
|
1575 |
+
|
1576 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1577 |
+
if head_mask is not None and decoder_head_mask is None:
|
1578 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1579 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
1580 |
+
decoder_head_mask = head_mask
|
1581 |
+
|
1582 |
+
# Encode if needed (training, first prediction pass)
|
1583 |
+
if encoder_outputs is None:
|
1584 |
+
encoder_outputs = self.encoder(
|
1585 |
+
input_ids=input_ids,
|
1586 |
+
attention_mask=attention_mask,
|
1587 |
+
inputs_embeds=inputs_embeds,
|
1588 |
+
head_mask=head_mask,
|
1589 |
+
output_attentions=output_attentions,
|
1590 |
+
output_hidden_states=output_hidden_states,
|
1591 |
+
return_dict=return_dict,
|
1592 |
+
)
|
1593 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1594 |
+
encoder_outputs = BaseModelOutput(
|
1595 |
+
last_hidden_state=encoder_outputs[0],
|
1596 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1597 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1598 |
+
)
|
1599 |
+
|
1600 |
+
hidden_states = encoder_outputs[0]
|
1601 |
+
|
1602 |
+
# Set device for model parallelism
|
1603 |
+
if self.model_parallel:
|
1604 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1605 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1606 |
+
if decoder_input_ids is not None:
|
1607 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1608 |
+
if attention_mask is not None:
|
1609 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1610 |
+
if decoder_attention_mask is not None:
|
1611 |
+
decoder_attention_mask = decoder_attention_mask.to(
|
1612 |
+
self.decoder.first_device
|
1613 |
+
)
|
1614 |
+
|
1615 |
+
# Decode
|
1616 |
+
decoder_outputs = self.decoder(
|
1617 |
+
input_ids=decoder_input_ids,
|
1618 |
+
attention_mask=decoder_attention_mask,
|
1619 |
+
inputs_embeds=decoder_inputs_embeds,
|
1620 |
+
past_key_values=past_key_values,
|
1621 |
+
encoder_hidden_states=hidden_states,
|
1622 |
+
encoder_attention_mask=attention_mask,
|
1623 |
+
head_mask=decoder_head_mask,
|
1624 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1625 |
+
use_cache=use_cache,
|
1626 |
+
output_attentions=output_attentions,
|
1627 |
+
output_hidden_states=output_hidden_states,
|
1628 |
+
return_dict=return_dict,
|
1629 |
+
)
|
1630 |
+
|
1631 |
+
if not return_dict:
|
1632 |
+
return decoder_outputs + encoder_outputs
|
1633 |
+
|
1634 |
+
return Seq2SeqModelOutput(
|
1635 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1636 |
+
past_key_values=decoder_outputs.past_key_values,
|
1637 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1638 |
+
decoder_attentions=decoder_outputs.attentions,
|
1639 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1640 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1641 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1642 |
+
encoder_attentions=encoder_outputs.attentions,
|
1643 |
+
)
|
1644 |
+
|
1645 |
+
|
1646 |
+
@add_start_docstrings(
|
1647 |
+
"""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING
|
1648 |
+
)
|
1649 |
+
class T5ForConditionalGeneration(T5PreTrainedModel):
|
1650 |
+
_keys_to_ignore_on_load_missing = [
|
1651 |
+
r"encoder.embed_tokens.weight",
|
1652 |
+
r"decoder.embed_tokens.weight",
|
1653 |
+
r"lm_head.weight",
|
1654 |
+
]
|
1655 |
+
_keys_to_ignore_on_load_unexpected = [
|
1656 |
+
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
1657 |
+
]
|
1658 |
+
|
1659 |
+
def __init__(self, config: T5Config):
|
1660 |
+
super().__init__(config)
|
1661 |
+
self.model_dim = config.d_model
|
1662 |
+
|
1663 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1664 |
+
|
1665 |
+
encoder_config = copy.deepcopy(config)
|
1666 |
+
encoder_config.is_decoder = False
|
1667 |
+
encoder_config.use_cache = False
|
1668 |
+
encoder_config.is_encoder_decoder = False
|
1669 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1670 |
+
|
1671 |
+
decoder_config = copy.deepcopy(config)
|
1672 |
+
decoder_config.is_decoder = True
|
1673 |
+
decoder_config.is_encoder_decoder = False
|
1674 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1675 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
1676 |
+
|
1677 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
1678 |
+
|
1679 |
+
# Initialize weights and apply final processing
|
1680 |
+
self.post_init()
|
1681 |
+
|
1682 |
+
# Model parallel
|
1683 |
+
self.model_parallel = False
|
1684 |
+
self.device_map = None
|
1685 |
+
|
1686 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1687 |
+
def parallelize(self, device_map=None):
|
1688 |
+
self.device_map = (
|
1689 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1690 |
+
if device_map is None
|
1691 |
+
else device_map
|
1692 |
+
)
|
1693 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1694 |
+
self.encoder.parallelize(self.device_map)
|
1695 |
+
self.decoder.parallelize(self.device_map)
|
1696 |
+
self.lm_head = self.lm_head.to(self.decoder.first_device)
|
1697 |
+
self.model_parallel = True
|
1698 |
+
|
1699 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1700 |
+
def deparallelize(self):
|
1701 |
+
self.encoder.deparallelize()
|
1702 |
+
self.decoder.deparallelize()
|
1703 |
+
self.encoder = self.encoder.to("cpu")
|
1704 |
+
self.decoder = self.decoder.to("cpu")
|
1705 |
+
self.lm_head = self.lm_head.to("cpu")
|
1706 |
+
self.model_parallel = False
|
1707 |
+
self.device_map = None
|
1708 |
+
torch.cuda.empty_cache()
|
1709 |
+
|
1710 |
+
def get_input_embeddings(self):
|
1711 |
+
return self.shared
|
1712 |
+
|
1713 |
+
def set_input_embeddings(self, new_embeddings):
|
1714 |
+
self.shared = new_embeddings
|
1715 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1716 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1717 |
+
|
1718 |
+
def set_output_embeddings(self, new_embeddings):
|
1719 |
+
self.lm_head = new_embeddings
|
1720 |
+
|
1721 |
+
def get_output_embeddings(self):
|
1722 |
+
return self.lm_head
|
1723 |
+
|
1724 |
+
def get_encoder(self):
|
1725 |
+
return self.encoder
|
1726 |
+
|
1727 |
+
def get_decoder(self):
|
1728 |
+
return self.decoder
|
1729 |
+
|
1730 |
+
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
1731 |
+
@replace_return_docstrings(
|
1732 |
+
output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
|
1733 |
+
)
|
1734 |
+
def forward(
|
1735 |
+
self,
|
1736 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1737 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1738 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1739 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1740 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1741 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
1742 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1743 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1744 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1745 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1746 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1747 |
+
labels: Optional[torch.LongTensor] = None,
|
1748 |
+
use_cache: Optional[bool] = None,
|
1749 |
+
output_attentions: Optional[bool] = None,
|
1750 |
+
output_hidden_states: Optional[bool] = None,
|
1751 |
+
return_dict: Optional[bool] = None,
|
1752 |
+
reduction: Optional[str] = "mean",
|
1753 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
1754 |
+
r"""
|
1755 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1756 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
1757 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
1758 |
+
labels in `[0, ..., config.vocab_size]`
|
1759 |
+
|
1760 |
+
Returns:
|
1761 |
+
|
1762 |
+
Examples:
|
1763 |
+
|
1764 |
+
```python
|
1765 |
+
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
|
1766 |
+
|
1767 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
1768 |
+
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
1769 |
+
|
1770 |
+
>>> # training
|
1771 |
+
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
|
1772 |
+
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
|
1773 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
1774 |
+
>>> loss = outputs.loss
|
1775 |
+
>>> logits = outputs.logits
|
1776 |
+
|
1777 |
+
>>> # inference
|
1778 |
+
>>> input_ids = tokenizer(
|
1779 |
+
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
|
1780 |
+
... ).input_ids # Batch size 1
|
1781 |
+
>>> outputs = model.generate(input_ids)
|
1782 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
1783 |
+
>>> # studies have shown that owning a dog is good for you.
|
1784 |
+
```"""
|
1785 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1786 |
+
return_dict = (
|
1787 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1788 |
+
)
|
1789 |
+
|
1790 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1791 |
+
if head_mask is not None and decoder_head_mask is None:
|
1792 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1793 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
1794 |
+
decoder_head_mask = head_mask
|
1795 |
+
|
1796 |
+
# Encode if needed (training, first prediction pass)
|
1797 |
+
if encoder_outputs is None:
|
1798 |
+
# Convert encoder inputs in embeddings if needed
|
1799 |
+
encoder_outputs = self.encoder(
|
1800 |
+
input_ids=input_ids,
|
1801 |
+
attention_mask=attention_mask,
|
1802 |
+
inputs_embeds=inputs_embeds,
|
1803 |
+
head_mask=head_mask,
|
1804 |
+
output_attentions=output_attentions,
|
1805 |
+
output_hidden_states=output_hidden_states,
|
1806 |
+
return_dict=return_dict,
|
1807 |
+
)
|
1808 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1809 |
+
encoder_outputs = BaseModelOutput(
|
1810 |
+
last_hidden_state=encoder_outputs[0],
|
1811 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1812 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1813 |
+
)
|
1814 |
+
|
1815 |
+
hidden_states = encoder_outputs[0]
|
1816 |
+
|
1817 |
+
if self.model_parallel:
|
1818 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1819 |
+
|
1820 |
+
if (
|
1821 |
+
labels is not None
|
1822 |
+
and decoder_input_ids is None
|
1823 |
+
and decoder_inputs_embeds is None
|
1824 |
+
):
|
1825 |
+
# get decoder inputs from shifting lm labels to the right
|
1826 |
+
decoder_input_ids = self._shift_right(labels)
|
1827 |
+
|
1828 |
+
# Set device for model parallelism
|
1829 |
+
if self.model_parallel:
|
1830 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1831 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1832 |
+
if decoder_input_ids is not None:
|
1833 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1834 |
+
if attention_mask is not None:
|
1835 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1836 |
+
if decoder_attention_mask is not None:
|
1837 |
+
decoder_attention_mask = decoder_attention_mask.to(
|
1838 |
+
self.decoder.first_device
|
1839 |
+
)
|
1840 |
+
|
1841 |
+
# Decode
|
1842 |
+
decoder_outputs = self.decoder(
|
1843 |
+
input_ids=decoder_input_ids,
|
1844 |
+
attention_mask=decoder_attention_mask,
|
1845 |
+
inputs_embeds=decoder_inputs_embeds,
|
1846 |
+
past_key_values=past_key_values,
|
1847 |
+
encoder_hidden_states=hidden_states,
|
1848 |
+
encoder_attention_mask=attention_mask,
|
1849 |
+
head_mask=decoder_head_mask,
|
1850 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1851 |
+
use_cache=use_cache,
|
1852 |
+
output_attentions=output_attentions,
|
1853 |
+
output_hidden_states=output_hidden_states,
|
1854 |
+
return_dict=return_dict,
|
1855 |
+
)
|
1856 |
+
|
1857 |
+
sequence_output = decoder_outputs[0]
|
1858 |
+
|
1859 |
+
# Set device for model parallelism
|
1860 |
+
if self.model_parallel:
|
1861 |
+
torch.cuda.set_device(self.encoder.first_device)
|
1862 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
1863 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
1864 |
+
|
1865 |
+
if self.config.tie_word_embeddings:
|
1866 |
+
# Rescale output before projecting on vocab
|
1867 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
1868 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
1869 |
+
|
1870 |
+
lm_logits = self.lm_head(sequence_output)
|
1871 |
+
|
1872 |
+
loss = None
|
1873 |
+
if labels is not None:
|
1874 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100, reduction=reduction)
|
1875 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
1876 |
+
if reduction == "none":
|
1877 |
+
loss = loss.view(lm_logits.size(0), -1).sum(1)
|
1878 |
+
|
1879 |
+
if not return_dict:
|
1880 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
1881 |
+
return ((loss,) + output) if loss is not None else output
|
1882 |
+
|
1883 |
+
return Seq2SeqLMOutput(
|
1884 |
+
loss=loss,
|
1885 |
+
logits=lm_logits,
|
1886 |
+
past_key_values=decoder_outputs.past_key_values,
|
1887 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1888 |
+
decoder_attentions=decoder_outputs.attentions,
|
1889 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1890 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1891 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1892 |
+
encoder_attentions=encoder_outputs.attentions,
|
1893 |
+
)
|
1894 |
+
|
1895 |
+
def prepare_inputs_for_generation(
|
1896 |
+
self,
|
1897 |
+
input_ids,
|
1898 |
+
past=None,
|
1899 |
+
attention_mask=None,
|
1900 |
+
head_mask=None,
|
1901 |
+
decoder_head_mask=None,
|
1902 |
+
cross_attn_head_mask=None,
|
1903 |
+
use_cache=None,
|
1904 |
+
encoder_outputs=None,
|
1905 |
+
**kwargs,
|
1906 |
+
):
|
1907 |
+
|
1908 |
+
# cut decoder_input_ids if past is used
|
1909 |
+
if past is not None:
|
1910 |
+
input_ids = input_ids[:, -1:]
|
1911 |
+
|
1912 |
+
return {
|
1913 |
+
"decoder_input_ids": input_ids,
|
1914 |
+
"past_key_values": past,
|
1915 |
+
"encoder_outputs": encoder_outputs,
|
1916 |
+
"attention_mask": attention_mask,
|
1917 |
+
"head_mask": head_mask,
|
1918 |
+
"decoder_head_mask": decoder_head_mask,
|
1919 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1920 |
+
"use_cache": use_cache,
|
1921 |
+
}
|
1922 |
+
|
1923 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1924 |
+
return self._shift_right(labels)
|
1925 |
+
|
1926 |
+
def _reorder_cache(self, past, beam_idx):
|
1927 |
+
# if decoder past is not included in output
|
1928 |
+
# speedy decoding is disabled and no need to reorder
|
1929 |
+
if past is None:
|
1930 |
+
logger.warning(
|
1931 |
+
"You might want to consider setting `use_cache=True` to speed up decoding"
|
1932 |
+
)
|
1933 |
+
return past
|
1934 |
+
|
1935 |
+
reordered_decoder_past = ()
|
1936 |
+
for layer_past_states in past:
|
1937 |
+
# get the correct batch idx from layer past batch dim
|
1938 |
+
# batch dim of `past` is at 2nd position
|
1939 |
+
reordered_layer_past_states = ()
|
1940 |
+
for layer_past_state in layer_past_states:
|
1941 |
+
# need to set correct `past` for each of the four key / value states
|
1942 |
+
reordered_layer_past_states = reordered_layer_past_states + (
|
1943 |
+
layer_past_state.index_select(
|
1944 |
+
0, beam_idx.to(layer_past_state.device)
|
1945 |
+
),
|
1946 |
+
)
|
1947 |
+
|
1948 |
+
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
|
1949 |
+
assert len(reordered_layer_past_states) == len(layer_past_states)
|
1950 |
+
|
1951 |
+
reordered_decoder_past = reordered_decoder_past + (
|
1952 |
+
reordered_layer_past_states,
|
1953 |
+
)
|
1954 |
+
return reordered_decoder_past
|
1955 |
+
|
1956 |
+
|
1957 |
+
@add_start_docstrings(
|
1958 |
+
"The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
|
1959 |
+
T5_START_DOCSTRING,
|
1960 |
+
)
|
1961 |
+
class T5EncoderModel(T5PreTrainedModel):
|
1962 |
+
authorized_missing_keys = [
|
1963 |
+
r"encoder.embed_tokens.weight",
|
1964 |
+
]
|
1965 |
+
|
1966 |
+
def __init__(self, config: T5Config):
|
1967 |
+
super().__init__(config)
|
1968 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1969 |
+
|
1970 |
+
encoder_config = copy.deepcopy(config)
|
1971 |
+
encoder_config.use_cache = False
|
1972 |
+
encoder_config.is_encoder_decoder = False
|
1973 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1974 |
+
|
1975 |
+
# Initialize weights and apply final processing
|
1976 |
+
self.post_init()
|
1977 |
+
|
1978 |
+
# Model parallel
|
1979 |
+
self.model_parallel = False
|
1980 |
+
self.device_map = None
|
1981 |
+
|
1982 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1983 |
+
def parallelize(self, device_map=None):
|
1984 |
+
self.device_map = (
|
1985 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1986 |
+
if device_map is None
|
1987 |
+
else device_map
|
1988 |
+
)
|
1989 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1990 |
+
self.encoder.parallelize(self.device_map)
|
1991 |
+
self.model_parallel = True
|
1992 |
+
|
1993 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1994 |
+
def deparallelize(self):
|
1995 |
+
self.encoder.deparallelize()
|
1996 |
+
self.encoder = self.encoder.to("cpu")
|
1997 |
+
self.model_parallel = False
|
1998 |
+
self.device_map = None
|
1999 |
+
torch.cuda.empty_cache()
|
2000 |
+
|
2001 |
+
def get_input_embeddings(self):
|
2002 |
+
return self.shared
|
2003 |
+
|
2004 |
+
def set_input_embeddings(self, new_embeddings):
|
2005 |
+
self.shared = new_embeddings
|
2006 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
2007 |
+
|
2008 |
+
def get_encoder(self):
|
2009 |
+
return self.encoder
|
2010 |
+
|
2011 |
+
def _prune_heads(self, heads_to_prune):
|
2012 |
+
"""
|
2013 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
2014 |
+
class PreTrainedModel
|
2015 |
+
"""
|
2016 |
+
for layer, heads in heads_to_prune.items():
|
2017 |
+
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
|
2018 |
+
|
2019 |
+
@add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING)
|
2020 |
+
@replace_return_docstrings(
|
2021 |
+
output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC
|
2022 |
+
)
|
2023 |
+
def forward(
|
2024 |
+
self,
|
2025 |
+
input_ids: Optional[torch.LongTensor] = None,
|
2026 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
2027 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
2028 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2029 |
+
output_attentions: Optional[bool] = None,
|
2030 |
+
output_hidden_states: Optional[bool] = None,
|
2031 |
+
return_dict: Optional[bool] = None,
|
2032 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
2033 |
+
r"""
|
2034 |
+
Returns:
|
2035 |
+
|
2036 |
+
Example:
|
2037 |
+
|
2038 |
+
```python
|
2039 |
+
>>> from transformers import T5Tokenizer, T5EncoderModel
|
2040 |
+
|
2041 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
2042 |
+
>>> model = T5EncoderModel.from_pretrained("t5-small")
|
2043 |
+
>>> input_ids = tokenizer(
|
2044 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
2045 |
+
... ).input_ids # Batch size 1
|
2046 |
+
>>> outputs = model(input_ids=input_ids)
|
2047 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
2048 |
+
```"""
|
2049 |
+
return_dict = (
|
2050 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
2051 |
+
)
|
2052 |
+
|
2053 |
+
encoder_outputs = self.encoder(
|
2054 |
+
input_ids=input_ids,
|
2055 |
+
attention_mask=attention_mask,
|
2056 |
+
inputs_embeds=inputs_embeds,
|
2057 |
+
head_mask=head_mask,
|
2058 |
+
output_attentions=output_attentions,
|
2059 |
+
output_hidden_states=output_hidden_states,
|
2060 |
+
return_dict=return_dict,
|
2061 |
+
)
|
2062 |
+
|
2063 |
+
return encoder_outputs
|
models_viclip/backbones/clip/__pycache__/clip_text.cpython-310.pyc
ADDED
Binary file (9 kB). View file
|
|
models_viclip/backbones/clip/__pycache__/clip_text.cpython-38.pyc
ADDED
Binary file (9.28 kB). View file
|
|
models_viclip/backbones/clip/__pycache__/clip_vision.cpython-310.pyc
ADDED
Binary file (9.75 kB). View file
|
|