BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gavinqiangli/bge-base-financial-matryoshka")
# Run inference
sentences = [
'In 2023, total assets associated with derivatives designated as hedging instruments amounted to $1,527 million, while total liabilities amounted to $5,962 million.',
'What was the total value of assets and liabilities associated with derivatives designated as hedging instruments in 2023?',
'What was the balance of deferred net loss on derivatives included in accumulated other comprehensive income as of December 31, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7314 |
cosine_accuracy@3 | 0.8414 |
cosine_accuracy@5 | 0.88 |
cosine_accuracy@10 | 0.9171 |
cosine_precision@1 | 0.7314 |
cosine_precision@3 | 0.2805 |
cosine_precision@5 | 0.176 |
cosine_precision@10 | 0.0917 |
cosine_recall@1 | 0.7314 |
cosine_recall@3 | 0.8414 |
cosine_recall@5 | 0.88 |
cosine_recall@10 | 0.9171 |
cosine_ndcg@10 | 0.8243 |
cosine_mrr@10 | 0.7946 |
cosine_map@100 | 0.7974 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.73 |
cosine_accuracy@3 | 0.8443 |
cosine_accuracy@5 | 0.8757 |
cosine_accuracy@10 | 0.9114 |
cosine_precision@1 | 0.73 |
cosine_precision@3 | 0.2814 |
cosine_precision@5 | 0.1751 |
cosine_precision@10 | 0.0911 |
cosine_recall@1 | 0.73 |
cosine_recall@3 | 0.8443 |
cosine_recall@5 | 0.8757 |
cosine_recall@10 | 0.9114 |
cosine_ndcg@10 | 0.8208 |
cosine_mrr@10 | 0.7918 |
cosine_map@100 | 0.7951 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7243 |
cosine_accuracy@3 | 0.8286 |
cosine_accuracy@5 | 0.8671 |
cosine_accuracy@10 | 0.9057 |
cosine_precision@1 | 0.7243 |
cosine_precision@3 | 0.2762 |
cosine_precision@5 | 0.1734 |
cosine_precision@10 | 0.0906 |
cosine_recall@1 | 0.7243 |
cosine_recall@3 | 0.8286 |
cosine_recall@5 | 0.8671 |
cosine_recall@10 | 0.9057 |
cosine_ndcg@10 | 0.8145 |
cosine_mrr@10 | 0.7854 |
cosine_map@100 | 0.7887 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7043 |
cosine_accuracy@3 | 0.8129 |
cosine_accuracy@5 | 0.8557 |
cosine_accuracy@10 | 0.9057 |
cosine_precision@1 | 0.7043 |
cosine_precision@3 | 0.271 |
cosine_precision@5 | 0.1711 |
cosine_precision@10 | 0.0906 |
cosine_recall@1 | 0.7043 |
cosine_recall@3 | 0.8129 |
cosine_recall@5 | 0.8557 |
cosine_recall@10 | 0.9057 |
cosine_ndcg@10 | 0.8019 |
cosine_mrr@10 | 0.769 |
cosine_map@100 | 0.7722 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6657 |
cosine_accuracy@3 | 0.78 |
cosine_accuracy@5 | 0.82 |
cosine_accuracy@10 | 0.8686 |
cosine_precision@1 | 0.6657 |
cosine_precision@3 | 0.26 |
cosine_precision@5 | 0.164 |
cosine_precision@10 | 0.0869 |
cosine_recall@1 | 0.6657 |
cosine_recall@3 | 0.78 |
cosine_recall@5 | 0.82 |
cosine_recall@10 | 0.8686 |
cosine_ndcg@10 | 0.7668 |
cosine_mrr@10 | 0.7344 |
cosine_map@100 | 0.7398 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 10 tokens
- mean: 46.04 tokens
- max: 289 tokens
- min: 2 tokens
- mean: 20.38 tokens
- max: 42 tokens
- Samples:
positive anchor The Nominating and Corporate Governance Committee of our Board of Directors is responsible for reviewing and discussing with management our practices related to ESG.
What is the role of the Nominating and Corporate Governance Committee at NVIDIA?
Deferred tax assets and deferred tax liabilities included in the Consolidated Balance Sheets as follows: As of October 31, 2023: Deferred tax assets were $3,155 million and Deferred tax liabilities were $44 million. As of October 31, 2022: Deferred tax assets were $2,167 million and Deferred tax liabilities were $121 million. The total net deferred tax assets were $3,111 million in 2023 and $2,046 million in 2022.
What was the change in HP's net deferred tax assets from 2022 to 2023?
Sales and marketing expense increased $247 million, or 16%, in 2023, compared to 2022, primarily due to a $177 million increase in marketing activities associated with our marketing campaigns and launches and our search engine marketing and advertising spend.
What was the major reason for the increase in Sales and Marketing expenses in 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5963 | - | - | - | - | - |
0.9746 | 12 | - | 0.7791 | 0.7824 | 0.7662 | 0.7483 | 0.7086 |
1.6244 | 20 | 0.6846 | - | - | - | - | - |
1.9492 | 24 | - | 0.7924 | 0.7903 | 0.7859 | 0.7664 | 0.7327 |
2.4365 | 30 | 0.4956 | - | - | - | - | - |
2.9239 | 36 | - | 0.7962 | 0.7939 | 0.7886 | 0.7716 | 0.7378 |
3.2487 | 40 | 0.3998 | - | - | - | - | - |
3.8985 | 48 | - | 0.7974 | 0.7951 | 0.7887 | 0.7722 | 0.7398 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gavinqiangli/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.731
- Cosine Accuracy@3 on dim 768self-reported0.841
- Cosine Accuracy@5 on dim 768self-reported0.880
- Cosine Accuracy@10 on dim 768self-reported0.917
- Cosine Precision@1 on dim 768self-reported0.731
- Cosine Precision@3 on dim 768self-reported0.280
- Cosine Precision@5 on dim 768self-reported0.176
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.731
- Cosine Recall@3 on dim 768self-reported0.841