cls-meta-test
This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7757
- Accuracy: 0.8259
- F1: 0.8036
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.9834 | 1.8182 | 200 | 0.5062 | 0.8314 | 0.6869 |
0.4462 | 3.6364 | 400 | 0.9367 | 0.6784 | 0.7354 |
0.3124 | 5.4545 | 600 | 0.9898 | 0.5084 | 0.6351 |
0.2517 | 7.2727 | 800 | 0.5842 | 0.8350 | 0.8134 |
0.1859 | 9.0909 | 1000 | 0.5760 | 0.8339 | 0.8138 |
0.1493 | 10.9091 | 1200 | 0.6501 | 0.8299 | 0.8145 |
0.1301 | 12.7273 | 1400 | 0.6403 | 0.8310 | 0.8219 |
0.1126 | 14.5455 | 1600 | 0.7262 | 0.8296 | 0.8110 |
0.0946 | 16.3636 | 1800 | 0.7555 | 0.8237 | 0.8048 |
0.0861 | 18.1818 | 2000 | 0.7576 | 0.8270 | 0.8085 |
0.0756 | 20.0 | 2200 | 0.7757 | 0.8259 | 0.8036 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 106
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gechim/cls-metadaweb-dataGemini
Base model
vinai/phobert-base-v2